nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,488 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from typing import Optional, Tuple
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from ..base import (
10
- LanguageModelOutput,
11
- create_attention_mask,
12
- scaled_dot_product_attention,
13
- )
14
- from ..cache import SimpleKVCache
15
-
16
-
17
- @dataclass
18
- class TextConfig:
19
- d_model: int = 768
20
- model_type: str = "florence2"
21
- encoder_attention_heads: int = 8
22
- decoder_attention_heads: int = 8
23
- encoder_ffn_dim: int = 3072
24
- decoder_ffn_dim: int = 3072
25
- dropout: float = 0.1
26
- attention_dropout: float = 0.0
27
- activation_dropout: float = 0.0
28
- activation_function: str = "gelu"
29
- init_std: float = 0.02
30
- encoder_layerdrop: float = 0.0
31
- decoder_layerdrop: float = 0.0
32
- scale_embedding: bool = False
33
- use_cache: bool = True
34
- max_position_embeddings: int = 1024
35
- vocab_size: int = 51289
36
- pad_token_id: int = 1
37
- bos_token_id: int = 0
38
- eos_token_id: int = 2
39
- encoder_layers: int = 6
40
- decoder_layers: int = 6
41
-
42
- @classmethod
43
- def from_dict(cls, params):
44
- return cls(
45
- **{
46
- k: v
47
- for k, v in params.items()
48
- if k in inspect.signature(cls).parameters
49
- }
50
- )
51
-
52
-
53
- class Florence2Attention(nn.Module):
54
- def __init__(
55
- self, config: TextConfig, is_decoder: bool = False, is_causal: bool = False
56
- ):
57
- super().__init__()
58
- self.embed_dim = config.d_model
59
- self.num_heads = (
60
- config.decoder_attention_heads
61
- if is_decoder
62
- else config.encoder_attention_heads
63
- )
64
- self.is_decoder = is_decoder
65
- self.is_causal = is_causal
66
- self.head_dim = self.embed_dim // self.num_heads
67
- self.scaling = self.head_dim**-0.5
68
-
69
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
70
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
71
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
72
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
73
-
74
- def __call__(
75
- self,
76
- hidden_states,
77
- key_value_states=None,
78
- cache: Optional[SimpleKVCache] = None,
79
- attention_mask=None,
80
- layer_head_mask=None,
81
- ):
82
- batch_size, tgt_len, _ = hidden_states.shape
83
-
84
- q = (
85
- self.q_proj(hidden_states)
86
- .reshape(batch_size, tgt_len, self.num_heads, self.head_dim)
87
- .transpose(0, 2, 1, 3)
88
- )
89
-
90
- is_cross_attention = key_value_states is not None
91
-
92
- batch_size, tgt_len, _ = hidden_states.shape
93
- src_len = (
94
- key_value_states.shape[1]
95
- if key_value_states is not None
96
- else hidden_states.shape[1]
97
- )
98
-
99
- if (
100
- is_cross_attention
101
- and cache.cache_length > 0
102
- and cache.keys.shape[2] == key_value_states.shape[1]
103
- ):
104
- # k = cache[0]
105
- # v = cache[1]
106
- k = cache.keys
107
- v = cache.values
108
-
109
- elif is_cross_attention:
110
- # Cross attention
111
- k = (
112
- self.k_proj(key_value_states)
113
- .reshape(batch_size, src_len, self.num_heads, self.head_dim)
114
- .transpose(0, 2, 1, 3)
115
- )
116
- v = (
117
- self.v_proj(key_value_states)
118
- .reshape(batch_size, src_len, self.num_heads, self.head_dim)
119
- .transpose(0, 2, 1, 3)
120
- )
121
- elif cache is not None:
122
- # reuse k, v, self_attention
123
- k = (
124
- self.k_proj(hidden_states)
125
- .reshape(batch_size, src_len, self.num_heads, -1)
126
- .transpose(0, 2, 1, 3)
127
- )
128
- v = (
129
- self.v_proj(hidden_states)
130
- .reshape(batch_size, src_len, self.num_heads, -1)
131
- .transpose(0, 2, 1, 3)
132
- )
133
-
134
- k, v = cache.update_and_fetch(k, v)
135
- else:
136
- # Self attention
137
- k = (
138
- self.k_proj(hidden_states)
139
- .reshape(batch_size, src_len, self.num_heads, self.head_dim)
140
- .transpose(0, 2, 1, 3)
141
- )
142
- v = (
143
- self.v_proj(hidden_states)
144
- .reshape(batch_size, src_len, self.num_heads, self.head_dim)
145
- .transpose(0, 2, 1, 3)
146
- )
147
-
148
- if self.is_decoder:
149
- cache.update(k, v)
150
-
151
- if self.is_causal and self.is_decoder:
152
- causal_mask = create_attention_mask(hidden_states)
153
- attention_mask = causal_mask
154
-
155
- attn_output = (
156
- scaled_dot_product_attention(
157
- q, k, v, cache=cache, scale=self.scaling, mask=attention_mask
158
- )
159
- .transpose(0, 2, 1, 3)
160
- .reshape(batch_size, tgt_len, -1)
161
- )
162
-
163
- attn_output = self.out_proj(attn_output)
164
-
165
- return attn_output
166
-
167
-
168
- class Florence2EncoderLayer(nn.Module):
169
- def __init__(self, config: TextConfig):
170
- super().__init__()
171
- self.embed_dim = config.d_model
172
- self.self_attn = Florence2Attention(config, is_decoder=False, is_causal=False)
173
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
174
- self.activation_fn = nn.GELU()
175
- self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
176
- self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
177
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
178
-
179
- def __call__(self, hidden_states, attention_mask=None):
180
- residual = hidden_states
181
- hidden_states = self.self_attn(hidden_states, attention_mask=attention_mask)
182
- hidden_states = residual + hidden_states
183
- hidden_states = self.self_attn_layer_norm(hidden_states)
184
-
185
- residual = hidden_states
186
- hidden_states = self.activation_fn(self.fc1(hidden_states))
187
- hidden_states = self.fc2(hidden_states)
188
- hidden_states = residual + hidden_states
189
- hidden_states = self.final_layer_norm(hidden_states)
190
-
191
- return hidden_states
192
-
193
-
194
- class Florence2DecoderLayer(nn.Module):
195
- def __init__(self, config: TextConfig):
196
- super().__init__()
197
- self.embed_dim = config.d_model
198
- self.self_attn = Florence2Attention(config, is_decoder=True, is_causal=True)
199
- self.dropout = config.dropout
200
- self.activation_fn = nn.GELU()
201
- self.activation_dropout = config.activation_dropout
202
-
203
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
204
- self.encoder_attn = Florence2Attention(config, is_decoder=True)
205
- self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
206
- self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
207
- self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
208
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
209
-
210
- def __call__(
211
- self,
212
- hidden_states,
213
- encoder_hidden_states,
214
- attention_mask=None,
215
- encoder_attention_mask=None,
216
- cache: Optional[Tuple[SimpleKVCache, SimpleKVCache]] = None,
217
- ):
218
- residual = hidden_states
219
-
220
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
221
- self_attn_cache = cache[0] if cache[0] is not None else None
222
-
223
- hidden_states = self.self_attn(
224
- hidden_states, attention_mask=attention_mask, cache=self_attn_cache
225
- )
226
-
227
- hidden_states = residual + hidden_states
228
- hidden_states = self.self_attn_layer_norm(hidden_states)
229
-
230
- if encoder_hidden_states is not None:
231
- residual = hidden_states
232
-
233
- mask = create_attention_mask(hidden_states)
234
-
235
- # cross_attn cached key/values tuple is at positions 3,4 of cache tuple
236
- cross_attn_cache = cache[-1] if cache[-1] is not None else None
237
-
238
- hidden_states = self.encoder_attn(
239
- hidden_states,
240
- key_value_states=encoder_hidden_states,
241
- attention_mask=mask,
242
- cache=cross_attn_cache,
243
- )
244
- hidden_states = residual + hidden_states
245
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
246
-
247
- # Fully Connected
248
- residual = hidden_states
249
- hidden_states = self.activation_fn(self.fc1(hidden_states))
250
- hidden_states = self.fc2(hidden_states)
251
- hidden_states = residual + hidden_states
252
- hidden_states = self.final_layer_norm(hidden_states)
253
-
254
- return hidden_states
255
-
256
-
257
- class Florence2Encoder(nn.Module):
258
- def __init__(self, config: TextConfig):
259
- super().__init__()
260
- self.config = config
261
- self.dropout = config.dropout
262
- self.layerdrop = config.encoder_layerdrop
263
-
264
- embed_dim = config.d_model
265
- self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
266
- self.offset = 2
267
- self.embed_positions = nn.Embedding(
268
- config.max_position_embeddings + self.offset, embed_dim
269
- )
270
- self.layers = [
271
- Florence2EncoderLayer(config) for _ in range(config.encoder_layers)
272
- ]
273
- self.layernorm_embedding = nn.LayerNorm(embed_dim)
274
-
275
- def __call__(self, input_ids=None, inputs_embeds=None, attention_mask=None):
276
-
277
- if inputs_embeds is None:
278
- inputs_embeds = self.embed_tokens(input_ids)
279
- input_shape = inputs_embeds.shape
280
- else:
281
- input_shape = inputs_embeds.shape
282
-
283
- positions = mx.arange(input_shape[1])
284
-
285
- if positions.ndim == 1:
286
- positions = mx.expand_dims(positions, axis=0)
287
-
288
- embed_pos = self.embed_positions(positions + self.offset)
289
-
290
- hidden_states = inputs_embeds + embed_pos
291
- hidden_states = self.layernorm_embedding(hidden_states)
292
-
293
- for encoder_layer in self.layers:
294
- # Add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
295
- dropout_probability = mx.random.uniform()
296
- if self.training and (dropout_probability < self.layerdrop):
297
- continue
298
- hidden_states = encoder_layer(hidden_states, attention_mask)
299
-
300
- return hidden_states
301
-
302
-
303
- class Florence2Decoder(nn.Module):
304
- def __init__(self, config: TextConfig):
305
- super().__init__()
306
- self.config = config
307
- self.dropout = config.dropout
308
- self.layerdrop = config.decoder_layerdrop
309
- self.padding_idx = config.pad_token_id
310
- self.max_target_positions = config.max_position_embeddings
311
- self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
312
- self.offset = 2
313
- self.embed_positions = nn.Embedding(
314
- config.max_position_embeddings + self.offset, config.d_model
315
- )
316
- self.layers = [
317
- Florence2DecoderLayer(config) for _ in range(config.decoder_layers)
318
- ]
319
- self.layernorm_embedding = nn.LayerNorm(config.d_model)
320
-
321
- def __call__(
322
- self,
323
- input_ids=None,
324
- attention_mask=None,
325
- encoder_hidden_states=None,
326
- encoder_attention_mask=None,
327
- head_mask=None,
328
- cross_attn_head_mask=None,
329
- inputs_embeds=None,
330
- cache=None,
331
- ):
332
- if input_ids is not None and inputs_embeds is not None:
333
- raise ValueError(
334
- "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
335
- )
336
- elif input_ids is not None:
337
- inputs_embeds = self.embed_tokens(input_ids)
338
- input_shape = inputs_embeds.shape # for 2d masks
339
- positions = input_ids
340
- elif inputs_embeds is not None:
341
- input_shape = inputs_embeds.shape[:-1] # for 4d masks
342
- positions = inputs_embeds[:, :, -1]
343
- else:
344
- raise ValueError(
345
- "You have to specify either decoder_input_ids or decoder_inputs_embeds"
346
- )
347
-
348
- if positions.ndim == 1:
349
- positions = mx.expand_dims(positions, axis=0)
350
-
351
- cache_length = cache[0][0].keys.shape[2] if cache[0][0].cache_length > 0 else 0
352
-
353
- bsz, seq_len = inputs_embeds.shape[:2]
354
- positions = mx.arange(
355
- cache_length,
356
- cache_length + seq_len,
357
- dtype=mx.int64,
358
- )
359
- positions = mx.expand_dims(positions, axis=0)
360
-
361
- embed_pos = self.embed_positions(positions + self.offset)
362
-
363
- hidden_states = inputs_embeds + embed_pos
364
- hidden_states = self.layernorm_embedding(hidden_states)
365
-
366
- for decoder_layer, c in zip(self.layers, cache):
367
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
368
- dropout_probability = mx.random.uniform()
369
- if self.training and (dropout_probability < self.layerdrop):
370
- continue
371
- hidden_states = decoder_layer(
372
- hidden_states=hidden_states,
373
- encoder_hidden_states=encoder_hidden_states,
374
- attention_mask=attention_mask,
375
- encoder_attention_mask=encoder_attention_mask,
376
- cache=c,
377
- )
378
-
379
- return hidden_states
380
-
381
-
382
- class Florence2LanguageModel(nn.Module):
383
- def __init__(self, config: TextConfig):
384
- super().__init__()
385
- self.config = config
386
- self.shared = nn.Embedding(config.vocab_size, config.d_model)
387
- self.encoder = Florence2Encoder(config)
388
- self.decoder = Florence2Decoder(config)
389
- if config.scale_embedding:
390
- self.embed_scale = math.sqrt(config.d_model)
391
- else:
392
- self.embed_scale = 1.0
393
-
394
- def __call__(
395
- self,
396
- input_ids=None,
397
- inputs_embeds=None,
398
- decoder_input_ids=None,
399
- decoder_inputs_embeds=None,
400
- attention_mask=None,
401
- decoder_attention_mask=None,
402
- encoder_outputs=None,
403
- cache=None,
404
- ):
405
- self.encoder.embed_tokens = self.shared
406
- self.decoder.embed_tokens = self.shared
407
-
408
- if decoder_input_ids is None and decoder_inputs_embeds is None:
409
- if input_ids is None:
410
- raise ValueError(
411
- "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
412
- "passed, `input_ids` cannot be `None`. Please pass either "
413
- "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
414
- )
415
-
416
- decoder_input_ids = mx.zeros_like(input_ids)
417
- decoder_input_ids[:, 1:] = input_ids[:, :-1]
418
- decoder_input_ids[:, 0] = self.config.bos_token_id
419
-
420
- if inputs_embeds is not None:
421
- inputs_embeds = inputs_embeds * self.embed_scale
422
-
423
- if cache is None:
424
- cache = [(SimpleKVCache(), SimpleKVCache())] * len(self.decoder.layers)
425
-
426
- if encoder_outputs is None:
427
- encoder_outputs = self.encoder(
428
- input_ids=input_ids,
429
- inputs_embeds=inputs_embeds,
430
- attention_mask=attention_mask,
431
- )
432
-
433
- decoder_outputs = self.decoder(
434
- input_ids=decoder_input_ids,
435
- attention_mask=decoder_attention_mask,
436
- encoder_hidden_states=encoder_outputs,
437
- encoder_attention_mask=attention_mask,
438
- inputs_embeds=decoder_inputs_embeds,
439
- cache=cache,
440
- )
441
- return decoder_outputs, encoder_outputs
442
-
443
-
444
- class LanguageModel(nn.Module):
445
- def __init__(self, config: TextConfig):
446
- super().__init__()
447
- self.config = config
448
- self.model = Florence2LanguageModel(config)
449
- self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
450
-
451
- def __call__(
452
- self,
453
- input_ids=None,
454
- inputs_embeds=None,
455
- decoder_input_ids=None,
456
- decoder_inputs_embeds=None,
457
- attention_mask=None,
458
- decoder_attention_mask=None,
459
- encoder_outputs=None,
460
- cache=None,
461
- ):
462
- decoder_outputs, encoder_outputs = self.model(
463
- input_ids,
464
- inputs_embeds,
465
- decoder_input_ids,
466
- decoder_inputs_embeds,
467
- attention_mask,
468
- decoder_attention_mask,
469
- encoder_outputs,
470
- cache,
471
- )
472
- out = self.lm_head(decoder_outputs)
473
- return LanguageModelOutput(logits=out, encoder_outputs=encoder_outputs)
474
-
475
- @property
476
- def layers(self):
477
- return range(self.model.config.decoder_layers)
478
-
479
- @property
480
- def head_dim(self):
481
- return self.config.d_model // self.config.decoder_attention_heads
482
-
483
- @property
484
- def n_kv_heads(self):
485
- return self.config.decoder_attention_heads
486
-
487
- def make_cache(self):
488
- return [(SimpleKVCache(), SimpleKVCache()) for n in self.layers]