nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,267 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- hidden_size: int
14
- intermediate_size: int
15
- num_hidden_layers: int
16
- num_attention_heads: int
17
- image_size: int
18
- patch_size: int
19
- layer_norm_eps: float = 1e-6
20
- num_channels: int = 3
21
-
22
- @classmethod
23
- def from_dict(cls, params):
24
- return cls(
25
- **{
26
- k: v
27
- for k, v in params.items()
28
- if k in inspect.signature(cls).parameters
29
- }
30
- )
31
-
32
-
33
- def check_array_shape(arr):
34
- shape = arr.shape
35
-
36
- # Check if the shape has 4 dimensions
37
- if len(shape) != 4:
38
- return False
39
-
40
- out_channels, kH, KW, _ = shape
41
-
42
- # Check if out_channels is the largest, and kH and KW are the same
43
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
44
- return True
45
- else:
46
- return False
47
-
48
-
49
- class Attention(nn.Module):
50
- def __init__(
51
- self,
52
- dims: int,
53
- num_heads: int,
54
- query_input_dims: Optional[int] = None,
55
- key_input_dims: Optional[int] = None,
56
- value_input_dims: Optional[int] = None,
57
- value_dims: Optional[int] = None,
58
- value_output_dims: Optional[int] = None,
59
- ):
60
- super().__init__()
61
-
62
- if (dims % num_heads) != 0:
63
- raise ValueError(
64
- "The input feature dimensions should be divisible by the "
65
- f"number of heads ({dims} % {num_heads}) != 0"
66
- )
67
-
68
- query_input_dims = query_input_dims or dims
69
- key_input_dims = key_input_dims or dims
70
- value_input_dims = value_input_dims or key_input_dims
71
- value_dims = value_dims or dims
72
- value_output_dims = value_output_dims or dims
73
-
74
- self.num_heads = num_heads
75
- head_dim = dims // num_heads
76
- self.scale = head_dim**-0.5
77
-
78
- self.q_proj = nn.Linear(query_input_dims, dims, bias=True)
79
- self.k_proj = nn.Linear(key_input_dims, dims, bias=True)
80
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=True)
81
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=True)
82
-
83
- def __call__(self, x: mx.array, mask=None):
84
- B, L, _ = x.shape
85
- queries = self.q_proj(x)
86
- keys = self.k_proj(x)
87
- values = self.v_proj(x)
88
-
89
- num_heads = self.num_heads
90
-
91
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
92
- keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
93
- values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
94
- if mask is not None:
95
- mask = mask[:, :, mask.shape[-2] :, :]
96
-
97
- output = mx.fast.scaled_dot_product_attention(
98
- queries, keys, values, scale=self.scale, mask=mask
99
- )
100
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
101
- return self.out_proj(output)
102
-
103
-
104
- class MLP(nn.Module):
105
- def __init__(self, config: VisionConfig):
106
- super().__init__()
107
- self.activation_fn = nn.GELU(approx="fast")
108
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
109
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
110
-
111
- def __call__(self, x: mx.array) -> mx.array:
112
- x = self.activation_fn(self.fc1(x))
113
- x = self.fc2(x)
114
- return x
115
-
116
-
117
- class EncoderLayer(nn.Module):
118
- def __init__(self, config: VisionConfig):
119
- super().__init__()
120
- self.embed_dim = config.hidden_size
121
- self.self_attn = Attention(config.hidden_size, config.num_attention_heads)
122
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
123
- self.mlp = MLP(config)
124
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
125
-
126
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
127
- y = self.layer_norm1(x)
128
- y = self.self_attn(y, mask)
129
- x = x + y
130
- y = self.layer_norm2(x)
131
- y = self.mlp(y)
132
- return x + y
133
-
134
-
135
- class Encoder(nn.Module):
136
- def __init__(self, config: VisionConfig):
137
- super().__init__()
138
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
139
-
140
- def __call__(
141
- self,
142
- x: mx.array,
143
- output_hidden_states: Optional[bool] = None,
144
- mask: Optional[mx.array] = None,
145
- ) -> mx.array:
146
- encoder_states = (x,) if output_hidden_states else None
147
- h = x
148
- for l in self.layers:
149
- x = l(x, mask=mask)
150
- if output_hidden_states:
151
- encoder_states = encoder_states + (x,)
152
-
153
- h = x
154
-
155
- return (h, encoder_states)
156
-
157
-
158
- class VisionEmbeddings(nn.Module):
159
- def __init__(self, config: VisionConfig):
160
- super().__init__()
161
- self.config = config
162
- self.embed_dim = config.hidden_size
163
- self.image_size = config.image_size
164
- self.patch_size = config.patch_size
165
-
166
- self.patch_embedding = nn.Conv2d(
167
- in_channels=config.num_channels,
168
- out_channels=self.embed_dim,
169
- kernel_size=self.patch_size,
170
- stride=self.patch_size,
171
- )
172
-
173
- self.num_patches = self.image_size // self.patch_size
174
- self.num_positions = self.num_patches**2
175
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
176
-
177
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
178
- B, H, W, C = x.shape
179
- patch_embeddings = self.patch_embedding(x)
180
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
181
- max_nb_patches_h, max_nb_patches_w = (
182
- H // self.patch_size,
183
- W // self.patch_size,
184
- )
185
- boundaries = np.linspace(
186
- 1 / self.num_patches, 1.0, self.num_patches, endpoint=False
187
- )
188
- position_ids = np.zeros((B, max_nb_patches_h * max_nb_patches_w), dtype=int)
189
-
190
- for batch_idx, p_attn_mask in enumerate(mask):
191
- p_attn_mask = np.array(p_attn_mask)
192
- nb_patches_h = p_attn_mask[:, 0].sum()
193
- nb_patches_w = p_attn_mask[0, :].sum()
194
-
195
- fractional_coords_h = np.linspace(0, 1, nb_patches_h, endpoint=False)
196
- fractional_coords_w = np.linspace(0, 1, nb_patches_w, endpoint=False)
197
-
198
- bucket_coords_h = (
199
- np.digitize(fractional_coords_h, boundaries, right=True) - 1
200
- )
201
- bucket_coords_w = (
202
- np.digitize(fractional_coords_w, boundaries, right=True) - 1
203
- )
204
-
205
- pos_ids = (
206
- bucket_coords_h[:, None] * self.num_patches + bucket_coords_w
207
- ).flatten()
208
- position_ids[batch_idx][p_attn_mask.reshape(-1)] = pos_ids
209
-
210
- embeddings = patch_embeddings
211
- embeddings += self.position_embedding(mx.array(position_ids))
212
- return embeddings
213
-
214
-
215
- class VisionModel(nn.Module):
216
- def __init__(self, config: VisionConfig):
217
- super().__init__()
218
- self.config = config
219
- self.model_type = config.model_type
220
- if self.model_type not in ["idefics2", "idefics2_vision"]:
221
- raise ValueError(f"Unsupported model type: {self.model_type}")
222
- self.embeddings = VisionEmbeddings(config)
223
- self.encoder = Encoder(config)
224
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
225
-
226
- def __call__(
227
- self,
228
- x: mx.array,
229
- patch_attention_mask: Optional[mx.array] = None,
230
- output_hidden_states: Optional[bool] = None,
231
- ) -> mx.array:
232
-
233
- B, L, D, C = x.shape
234
- if patch_attention_mask is None:
235
- patch_size = self.config.patch_size
236
- patch_attention_mask = mx.ones(
237
- (
238
- B,
239
- L // patch_size,
240
- D // patch_size,
241
- ),
242
- dtype=mx.bool_,
243
- )
244
-
245
- x = self.embeddings(x, mask=patch_attention_mask)
246
- encoder_outputs = self.encoder(x=x, output_hidden_states=output_hidden_states)
247
-
248
- pooler_output = self.post_layernorm(encoder_outputs[0])
249
-
250
- return pooler_output, x, encoder_outputs[-1]
251
-
252
- def sanitize(self, weights):
253
- sanitized_weights = {}
254
- for k, v in weights.items():
255
- if "patch_embedding.weight" in k:
256
- # PyTorch conv2d weight tensors have shape:
257
- # [out_channels, in_channels, kH, KW]
258
- # MLX conv2d expects the weight be of shape:
259
- # [out_channels, kH, KW, in_channels]
260
- if check_array_shape(v):
261
- sanitized_weights[k] = v
262
- else:
263
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
264
- else:
265
- sanitized_weights[k] = v
266
-
267
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .idefics3 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
@@ -1,175 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import re
5
- from dataclasses import dataclass
6
- from pathlib import Path
7
- from typing import List, Optional
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- import numpy as np
12
- from huggingface_hub import snapshot_download
13
- from transformers import AutoConfig
14
-
15
- from .language import LanguageModel, TextConfig
16
- from .vision import VisionConfig, VisionModel
17
-
18
-
19
- @dataclass
20
- class ModelConfig:
21
- text_config: TextConfig
22
- vision_config: VisionConfig
23
- model_type: str
24
- ignore_index: int = -100
25
- vocab_size: int = 128259
26
- scale_factor: int = 2
27
- image_token_id: int = 49153
28
- image_token_index: Optional[int] = None
29
- eos_token_id: Optional[List[int]] = None
30
-
31
- def __post_init__(self):
32
- if self.image_token_index is None:
33
- self.image_token_index = self.image_token_id
34
-
35
- @classmethod
36
- def from_dict(cls, params):
37
- return cls(
38
- **{
39
- k: v
40
- for k, v in params.items()
41
- if k in inspect.signature(cls).parameters
42
- }
43
- )
44
-
45
-
46
- class MLP(nn.Module):
47
- def __init__(self, config: ModelConfig):
48
- super().__init__()
49
- input_size = config.vision_config.hidden_size * (config.scale_factor**2)
50
- output_size = config.text_config.hidden_size
51
- self.proj = nn.Linear(input_size, output_size, bias=False)
52
-
53
- def __call__(self, x):
54
- return self.proj(x)
55
-
56
-
57
- class Idefics3Connector(nn.Module):
58
- def __init__(self, config: ModelConfig):
59
- super().__init__()
60
- self.scale_factor = config.scale_factor
61
- self.modality_projection = MLP(config)
62
-
63
- def pixel_shuffle(self, x, scale_factor=2):
64
- bsz, seq, embed_dim = x.shape
65
- height = width = int(seq**0.5)
66
- x = x.reshape(bsz, height, width, embed_dim)
67
- x = x.reshape(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
68
- x = x.transpose(0, 2, 1, 3)
69
- x = x.reshape(
70
- bsz,
71
- int(width / scale_factor),
72
- int(height / scale_factor),
73
- embed_dim * (scale_factor**2),
74
- )
75
- x = x.transpose(0, 2, 1, 3)
76
- x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
77
- return x
78
-
79
- def __call__(self, image_hidden_states):
80
- image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
81
- image_hidden_states = self.modality_projection(image_hidden_states)
82
- return image_hidden_states
83
-
84
-
85
- class Model(nn.Module):
86
- def __init__(self, config: ModelConfig):
87
- super().__init__()
88
- self.model_type = config.model_type
89
- self.config = config
90
-
91
- self.vision_model = VisionModel(config.vision_config)
92
- self.language_model = LanguageModel(config.text_config)
93
- self.connector = Idefics3Connector(config)
94
-
95
- def get_input_embeddings(
96
- self,
97
- input_ids: Optional[mx.array] = None,
98
- pixel_values: Optional[mx.array] = None,
99
- pixel_attention_mask: Optional[mx.array] = None,
100
- ):
101
- if pixel_values is None:
102
- return self.language_model.embed_tokens(input_ids)
103
-
104
- inputs_embeds = self.language_model.embed_tokens(input_ids)
105
-
106
- pooler_output, embeddings, hidden_state = self.vision_model(
107
- pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
108
- )
109
-
110
- image_features = pooler_output.astype(pixel_values.dtype)
111
- image_features = self.connector(image_features)
112
-
113
- final_inputs_embeds = self._prepare_inputs_for_multimodal(
114
- image_features, inputs_embeds, input_ids
115
- )
116
- return final_inputs_embeds
117
-
118
- def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
119
- image_token_index = self.config.image_token_index
120
-
121
- # Positions of <image> tokens in input_ids, assuming batch size is 1
122
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
123
-
124
- num_images, _, vision_hidden_size = image_features.shape
125
-
126
- reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
127
-
128
- # cast to the dtype of the input_embeds to support quantized models
129
- reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
130
- inputs_embeds.dtype
131
- )
132
- inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
133
-
134
- return inputs_embeds
135
-
136
- @property
137
- def layers(self):
138
- return self.language_model.model.layers
139
-
140
- def __call__(
141
- self,
142
- input_ids: mx.array,
143
- pixel_values: mx.array,
144
- cache=None,
145
- **kwargs,
146
- ):
147
- input_embeddings = self.get_input_embeddings(input_ids, pixel_values)
148
- logits = self.language_model(
149
- inputs=input_ids, cache=cache, inputs_embeds=input_embeddings
150
- )
151
- return logits
152
-
153
- def sanitize(self, weights):
154
- weights = {
155
- (
156
- f"{k.split('.', 1)[1]}"
157
- if re.match(r"^model\.", k)
158
- else (f"language_model.{k}" if re.match(r"^lm_head\.", k) else k)
159
- ): v
160
- for k, v in weights.items()
161
- }
162
-
163
- weights = {
164
- (
165
- f"language_model.{k.split('.', 1)[1]}"
166
- if re.match(
167
- r"^text_model\.",
168
- k,
169
- )
170
- else k
171
- ): v
172
- for k, v in weights.items()
173
- }
174
-
175
- return weights
@@ -1,192 +0,0 @@
1
- import inspect
2
- import re
3
- from dataclasses import dataclass
4
- from typing import Dict, Optional, Tuple, Union
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from ..base import (
10
- LanguageModelOutput,
11
- create_attention_mask,
12
- scaled_dot_product_attention,
13
- )
14
- from ..cache import KVCache
15
-
16
-
17
- @dataclass
18
- class TextConfig:
19
- model_type: str
20
- hidden_size: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- rms_norm_eps: float
24
- vocab_size: int
25
- num_key_value_heads: int
26
- rope_theta: float = 1000000.0
27
- num_hidden_layers: int = 32
28
- rope_traditional: bool = False
29
- max_position_embeddings: int = 4096
30
- tie_word_embeddings: bool = False
31
-
32
- @classmethod
33
- def from_dict(cls, params):
34
- return cls(
35
- **{
36
- k: v
37
- for k, v in params.items()
38
- if k in inspect.signature(cls).parameters
39
- }
40
- )
41
-
42
- def __post_init__(self):
43
- if self.num_key_value_heads is None:
44
- self.num_key_value_heads = self.num_attention_heads
45
-
46
-
47
- class Attention(nn.Module):
48
- def __init__(self, config: TextConfig):
49
- super().__init__()
50
-
51
- dim = config.hidden_size
52
- self.n_heads = n_heads = config.num_attention_heads
53
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
54
-
55
- head_dim = config.hidden_size // n_heads
56
- self.scale = head_dim**-0.5
57
-
58
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
59
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
60
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
61
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
62
-
63
- self.rope = nn.RoPE(
64
- head_dim,
65
- traditional=config.rope_traditional,
66
- base=config.rope_theta,
67
- )
68
-
69
- def __call__(
70
- self,
71
- x: mx.array,
72
- mask: Optional[mx.array] = None,
73
- cache: Optional[KVCache] = None,
74
- ) -> mx.array:
75
- B, L, D = x.shape
76
-
77
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
78
-
79
- # Prepare the queries, keys and values for the attention computation
80
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
81
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
82
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
83
-
84
- if cache is not None:
85
- queries = self.rope(queries, offset=cache.offset)
86
- keys = self.rope(keys, offset=cache.offset)
87
- keys, values = cache.update_and_fetch(keys, values)
88
- else:
89
- queries = self.rope(queries)
90
- keys = self.rope(keys)
91
-
92
- output = scaled_dot_product_attention(
93
- queries, keys, values, cache, scale=self.scale, mask=mask
94
- )
95
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
96
- return self.o_proj(output)
97
-
98
-
99
- class MLP(nn.Module):
100
- def __init__(self, dim, hidden_dim):
101
- super().__init__()
102
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
103
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
104
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
105
-
106
- def __call__(self, x) -> mx.array:
107
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
108
-
109
-
110
- class TransformerBlock(nn.Module):
111
- def __init__(self, config: TextConfig):
112
- super().__init__()
113
- self.num_attention_heads = config.num_attention_heads
114
- self.hidden_size = config.hidden_size
115
- self.self_attn = Attention(config)
116
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
117
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
118
- self.post_attention_layernorm = nn.RMSNorm(
119
- config.hidden_size, eps=config.rms_norm_eps
120
- )
121
- self.config = config
122
-
123
- def __call__(
124
- self,
125
- x: mx.array,
126
- mask: Optional[mx.array] = None,
127
- cache: Optional[KVCache] = None,
128
- ) -> mx.array:
129
- r = self.self_attn(self.input_layernorm(x), mask, cache)
130
- h = x + r
131
- r = self.mlp(self.post_attention_layernorm(h))
132
- out = h + r
133
- return out
134
-
135
-
136
- class LanguageModel(nn.Module):
137
- def __init__(self, config: TextConfig):
138
- super().__init__()
139
- self.config = config
140
- self.model_type = config.model_type
141
- self.vocab_size = config.vocab_size
142
- self.num_hidden_layers = config.num_hidden_layers
143
- assert self.vocab_size > 0
144
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
145
- self.layers = [
146
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
147
- ]
148
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
149
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
150
-
151
- def __call__(
152
- self,
153
- inputs: mx.array,
154
- inputs_embeds: Optional[mx.array] = None,
155
- mask: Optional[mx.array] = None,
156
- cache=None,
157
- ):
158
- # for passing merged input embeddings
159
- if inputs_embeds is None:
160
- h = self.embed_tokens(inputs)
161
- else:
162
- h = inputs_embeds.astype(self.norm.weight.dtype)
163
-
164
- if cache is None:
165
- cache = [None] * len(self.layers)
166
-
167
- if mask is None:
168
- mask = create_attention_mask(h, cache)
169
-
170
- for layer, c in zip(self.layers, cache):
171
- h = layer(h, mask, c)
172
-
173
- logits = self.lm_head(self.norm(h))
174
- return LanguageModelOutput(logits=logits)
175
-
176
- def sanitize(self, weights):
177
- # Remove unused precomputed rotary freqs
178
- return {
179
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
180
- }
181
-
182
- @property
183
- def layers(self):
184
- return self.model.layers
185
-
186
- @property
187
- def head_dim(self):
188
- return self.config.hidden_size // self.config.num_attention_heads
189
-
190
- @property
191
- def n_kv_heads(self):
192
- return self.config.num_key_value_heads