nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,629 +0,0 @@
1
- import math
2
- from functools import partial
3
- from typing import Any, Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- from mlx_lm.models.cache import _BaseCache
8
-
9
- from ..base import (
10
- LanguageModelOutput,
11
- create_attention_mask,
12
- scaled_dot_product_attention,
13
- )
14
- from ..cache import KVCache, RotatingKVCache
15
- from .config import TextConfig
16
-
17
-
18
- class Gemma3nRMSNorm(nn.Module):
19
- def __init__(
20
- self,
21
- dim: int,
22
- eps: float = 1e-6,
23
- scale_shift: float = 0.0,
24
- with_scale: bool = True,
25
- ):
26
- super().__init__()
27
- self.eps = eps
28
- self.scale_shift = scale_shift
29
- self.with_scale = with_scale
30
-
31
- if self.with_scale:
32
- # Make weight a proper parameter
33
- self.weight = mx.ones(dim)
34
- else:
35
- self.weight = None
36
-
37
- def _norm(self, x):
38
- # Match PyTorch's normalization exactly
39
- return x * mx.rsqrt(x.square().mean(axis=-1, keepdims=True) + self.eps)
40
-
41
- def __call__(self, x: mx.array) -> mx.array:
42
- # Match PyTorch implementation
43
- output = self._norm(x.astype(mx.float32))
44
-
45
- if self.with_scale:
46
- output = output * (self.weight + self.scale_shift)
47
-
48
- return output.astype(x.dtype)
49
-
50
-
51
- class RMSNoScale(nn.Module):
52
- def __init__(self, eps: float = 1e-5):
53
- super().__init__()
54
- self.eps = eps
55
-
56
- def __call__(self, x):
57
- return mx.fast.rms_norm(x, None, self.eps)
58
-
59
-
60
- class Gemma3nLaurelBlock(nn.Module):
61
- """Learned Augmented Residual Layer"""
62
-
63
- def __init__(self, config: TextConfig):
64
- super().__init__()
65
- self.config = config
66
-
67
- self.linear_left = nn.Linear(
68
- self.config.hidden_size, self.config.laurel_rank, bias=False
69
- )
70
- self.linear_right = nn.Linear(
71
- self.config.laurel_rank, self.config.hidden_size, bias=False
72
- )
73
- self.post_laurel_norm = nn.RMSNorm(
74
- dims=self.config.hidden_size,
75
- eps=self.config.rms_norm_eps,
76
- )
77
-
78
- def __call__(self, x: mx.array) -> mx.array:
79
- laurel_x = self.linear_left(x)
80
- laurel_x = self.linear_right(laurel_x)
81
- normed_laurel_x = self.post_laurel_norm(laurel_x)
82
- return x + normed_laurel_x
83
-
84
-
85
- class Gemma3nAttention(nn.Module):
86
- def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
87
- super().__init__()
88
- self.is_sliding = config.layer_types[layer_idx] == "sliding_attention"
89
-
90
- dim = config.hidden_size
91
- self.n_heads = n_heads = config.num_attention_heads
92
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
93
- self.repeats = n_heads // n_kv_heads
94
- self.head_dim = head_dim = config.head_dim
95
- self.layer_idx = layer_idx
96
-
97
- self.scale = 1.0
98
-
99
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
100
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
101
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
102
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
103
-
104
- self.q_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
105
- self.k_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
106
- self.v_norm = RMSNoScale(eps=config.rms_norm_eps)
107
-
108
- self.is_kv_shared_layer = is_kv_shared_layer
109
-
110
- self.rope = nn.RoPE(
111
- head_dim,
112
- traditional=False,
113
- base=(
114
- config.rope_local_base_freq if self.is_sliding else config.rope_theta
115
- ),
116
- )
117
-
118
- def __call__(
119
- self,
120
- x: mx.array,
121
- mask: Optional[mx.array] = None,
122
- cache: Optional[Any] = None,
123
- ) -> mx.array:
124
- B, L, _ = x.shape
125
-
126
- queries = self.q_proj(x)
127
- queries = queries.reshape(B, L, -1, self.head_dim)
128
- queries = self.q_norm(queries)
129
-
130
- offset = 0
131
- if self.is_kv_shared_layer and cache is not None:
132
- # For shared layers, retrieve KV from the designated cache layer
133
- keys, values = cache.state
134
- offset = cache.offset
135
-
136
- else:
137
-
138
- if cache is not None:
139
- offset = cache.offset
140
-
141
- keys = self.k_proj(x).reshape(B, L, -1, self.head_dim)
142
- keys = self.k_norm(keys)
143
- keys = keys.transpose(0, 2, 1, 3)
144
- keys = self.rope(keys, offset=offset)
145
-
146
- values = self.v_proj(x).reshape(B, L, -1, self.head_dim)
147
- values = self.v_norm(values)
148
- values = values.transpose(0, 2, 1, 3)
149
-
150
- if cache is not None:
151
- keys, values = cache.update_and_fetch(keys, values)
152
-
153
- queries = queries.transpose(0, 2, 1, 3)
154
- queries = self.rope(queries, offset=offset)
155
-
156
- if isinstance(mask, mx.array) and mask.shape[-1] != keys.shape[-2]:
157
- mask = mask[:, : keys.shape[-2]]
158
-
159
- output = scaled_dot_product_attention(
160
- queries, keys, values, cache=cache, scale=self.scale, mask=mask
161
- )
162
-
163
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
164
-
165
- return self.o_proj(output)
166
-
167
-
168
- @partial(mx.compile, shapeless=True)
169
- def gelu_topk(inputs, std_multiplier):
170
- inputs_mean = mx.mean(inputs, axis=-1, keepdims=True)
171
- inputs_std = mx.std(inputs, axis=-1, keepdims=True)
172
- cutoff_x = inputs_mean + inputs_std * std_multiplier.astype(inputs_std.dtype)
173
- return nn.gelu_approx(mx.maximum(0, inputs - cutoff_x))
174
-
175
-
176
- class MLP(nn.Module):
177
- def __init__(self, config: TextConfig, layer_idx: int = 0):
178
- super().__init__()
179
- self.config = config
180
- self.hidden_size = config.hidden_size
181
- self.intermediate_size = config.intermediate_size
182
- self.gate_proj = nn.Linear(
183
- self.hidden_size, self.intermediate_size[0], bias=False
184
- )
185
- self.up_proj = nn.Linear(
186
- self.hidden_size, self.intermediate_size[0], bias=False
187
- )
188
- self.down_proj = nn.Linear(
189
- self.intermediate_size[0], self.hidden_size, bias=False
190
- )
191
- if config.activation_sparsity_pattern is not None:
192
- self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
193
- else:
194
- self.activation_sparsity = 0.0
195
- if self.activation_sparsity > 0:
196
- self._std_multiplier = math.sqrt(2.0) * mx.erfinv(
197
- 2 * self.activation_sparsity - 1
198
- )
199
-
200
- def __call__(self, x: mx.array):
201
- gate_proj = self.gate_proj(x)
202
- if self.activation_sparsity > 0.0:
203
- activations = gelu_topk(gate_proj, self._std_multiplier)
204
- else:
205
- activations = nn.gelu_approx(gate_proj)
206
- up_proj = self.up_proj(x)
207
- down_proj = self.down_proj(activations * up_proj)
208
- return down_proj
209
-
210
-
211
- class Gemma3nAltUp(nn.Module):
212
- """Alternating Updates (AltUp)"""
213
-
214
- def __init__(self, config: TextConfig):
215
- super().__init__()
216
- self.config = config
217
-
218
- self.correct_output_scale = mx.zeros((self.config.hidden_size,))
219
- self.correction_coefs = nn.Linear(
220
- self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False
221
- )
222
- self.prediction_coefs = nn.Linear(
223
- self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False
224
- )
225
- self.modality_router = nn.Linear(
226
- self.config.hidden_size, self.config.altup_num_inputs, bias=False
227
- )
228
- self.router_norm = nn.RMSNorm(
229
- dims=self.config.hidden_size,
230
- eps=self.config.rms_norm_eps,
231
- )
232
-
233
- def compute_router_modalities(self, x: mx.array) -> mx.array:
234
- router_inputs = self.router_norm(x) * (self.config.hidden_size**-1.0)
235
- routed = self.modality_router(router_inputs).astype(mx.float32)
236
- return mx.tanh(routed)
237
-
238
- def predict(self, x: mx.array) -> mx.array:
239
- modalities = self.compute_router_modalities(x[self.config.altup_active_idx])
240
-
241
- self.prediction_coefs.weight = self.prediction_coefs.weight.astype(mx.float32)
242
-
243
- if self.config.altup_coef_clip is not None:
244
- self.prediction_coefs.weight = mx.clip(
245
- self.prediction_coefs.weight,
246
- -self.config.altup_coef_clip,
247
- self.config.altup_coef_clip,
248
- )
249
-
250
- all_coefs = (
251
- self.prediction_coefs(modalities)
252
- .reshape(
253
- *modalities.shape[:-1],
254
- self.config.altup_num_inputs,
255
- self.config.altup_num_inputs,
256
- )
257
- .transpose(0, 1, 3, 2)
258
- )
259
-
260
- x_up = x.astype(mx.float32)
261
- x_permuted = x_up.transpose(1, 2, 3, 0)
262
- predictions = mx.matmul(x_permuted, all_coefs)
263
- predictions = predictions.transpose(3, 0, 1, 2)
264
- predictions += x_up
265
- return predictions.astype(x.dtype)
266
-
267
- def correct(self, predictions: mx.array, activated: mx.array):
268
- modalities = self.compute_router_modalities(activated)
269
-
270
- self.correction_coefs.weight = self.correction_coefs.weight.astype(mx.float32)
271
-
272
- if self.config.altup_coef_clip is not None:
273
- self.correction_coefs.weight = mx.clip(
274
- self.correction_coefs.weight,
275
- -self.config.altup_coef_clip,
276
- self.config.altup_coef_clip,
277
- )
278
-
279
- all_coefs = self.correction_coefs(modalities) + 1.0
280
-
281
- active_x = predictions[self.config.altup_active_idx]
282
- innovation = activated - active_x
283
-
284
- all_coefs = all_coefs.transpose(2, 1, 0)
285
- corrected = innovation[None] * all_coefs[:, None]
286
- corrected += predictions
287
-
288
- return corrected.astype(activated.dtype)
289
-
290
-
291
- class Gemma3nDecoderLayer(nn.Module):
292
- def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
293
- super().__init__()
294
- self.config = config
295
- self.hidden_size = config.hidden_size
296
- self.layer_idx = layer_idx
297
- self.self_attn = Gemma3nAttention(config, layer_idx, is_kv_shared_layer)
298
- self.mlp = MLP(config, layer_idx=layer_idx)
299
- self.input_layernorm = nn.RMSNorm(
300
- self.hidden_size,
301
- eps=config.rms_norm_eps,
302
- )
303
-
304
- self.post_attention_layernorm = nn.RMSNorm(
305
- self.hidden_size,
306
- eps=config.rms_norm_eps,
307
- )
308
- self.pre_feedforward_layernorm = nn.RMSNorm(
309
- self.hidden_size,
310
- eps=config.rms_norm_eps,
311
- )
312
- self.post_feedforward_layernorm = nn.RMSNorm(
313
- self.hidden_size,
314
- eps=config.rms_norm_eps,
315
- )
316
- self.is_sliding = self.self_attn.is_sliding
317
- self.sliding_window = config.sliding_window
318
-
319
- self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
320
-
321
- self.altup = Gemma3nAltUp(config)
322
- self.laurel = Gemma3nLaurelBlock(config)
323
- self.per_layer_input_gate = nn.Linear(
324
- self.hidden_size, self.hidden_size_per_layer_input, bias=False
325
- )
326
- self.per_layer_projection = nn.Linear(
327
- self.hidden_size_per_layer_input, self.hidden_size, bias=False
328
- )
329
- self.post_per_layer_input_norm = nn.RMSNorm(
330
- self.hidden_size,
331
- eps=config.rms_norm_eps,
332
- )
333
-
334
- def __call__(
335
- self,
336
- x: mx.array,
337
- mask: Optional[mx.array] = None,
338
- cache: Optional[Any] = None,
339
- per_layer_input: Optional[mx.array] = None,
340
- ):
341
- predictions = self.altup.predict(x)
342
- active_prediction = predictions[self.config.altup_active_idx]
343
-
344
- active_prediction_normed = self.input_layernorm(active_prediction)
345
- laurel_output = self.laurel(active_prediction_normed)
346
-
347
- attn = self.self_attn(
348
- active_prediction_normed,
349
- mask,
350
- cache,
351
- )
352
-
353
- attn = self.post_attention_layernorm(attn)
354
-
355
- attn_gated = active_prediction + attn
356
- attn_laurel = (attn_gated + laurel_output) * (2.0**-0.5)
357
-
358
- attn_norm = self.pre_feedforward_layernorm(attn_laurel)
359
- attn_ffw = self.mlp(attn_norm)
360
- attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
361
- attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
362
-
363
- corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
364
-
365
- first_prediction = corrected_predictions[self.config.altup_active_idx]
366
- if self.config.altup_correct_scale:
367
- first_prediction = first_prediction * self.altup.correct_output_scale
368
-
369
- first_prediction = self.per_layer_input_gate(first_prediction)
370
- first_prediction = nn.gelu_approx(first_prediction)
371
-
372
- first_prediction = mx.multiply(first_prediction, per_layer_input)
373
-
374
- first_prediction = self.per_layer_projection(first_prediction)
375
- first_prediction = self.post_per_layer_input_norm(first_prediction)
376
-
377
- corrected_predictions[1:] = corrected_predictions[1:] + first_prediction
378
-
379
- return corrected_predictions
380
-
381
-
382
- class Gemma3Model(nn.Module):
383
- def __init__(self, config: TextConfig):
384
- super().__init__()
385
- self.config = config
386
- self.hidden_size = config.hidden_size
387
- self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
388
- self.vocab_size = config.vocab_size
389
- self.vocab_size_per_layer_input = config.vocab_size_per_layer_input
390
- self.num_hidden_layers = config.num_hidden_layers
391
- self.first_kv_shared_layer_idx = (
392
- config.num_hidden_layers - config.num_kv_shared_layers
393
- )
394
-
395
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
396
- self.layers = [
397
- Gemma3nDecoderLayer(
398
- config=config,
399
- layer_idx=layer_idx,
400
- is_kv_shared_layer=layer_idx >= self.first_kv_shared_layer_idx,
401
- )
402
- for layer_idx in range(config.num_hidden_layers)
403
- ]
404
-
405
- self.embed_tokens_per_layer = nn.Embedding(
406
- config.vocab_size_per_layer_input,
407
- config.num_hidden_layers * config.hidden_size_per_layer_input,
408
- )
409
-
410
- self.per_layer_model_projection = nn.Linear(
411
- config.hidden_size,
412
- config.num_hidden_layers * config.hidden_size_per_layer_input,
413
- bias=False,
414
- )
415
-
416
- self.per_layer_projection_norm = nn.RMSNorm(
417
- dims=config.hidden_size_per_layer_input,
418
- eps=config.rms_norm_eps,
419
- )
420
-
421
- self.altup_projections = [
422
- nn.Linear(config.hidden_size, config.hidden_size, bias=False)
423
- for _ in range(1, self.config.altup_num_inputs)
424
- ]
425
-
426
- self.altup_unembed_projections = [
427
- nn.Linear(config.hidden_size, config.hidden_size, bias=False)
428
- for _ in range(1, self.config.altup_num_inputs)
429
- ]
430
-
431
- self.norm = nn.RMSNorm(
432
- config.hidden_size,
433
- eps=config.rms_norm_eps,
434
- )
435
-
436
- self.first_sliding_idx = self.config.layer_types.index("sliding_attention")
437
- self.first_full_idx = self.config.layer_types.index("full_attention")
438
-
439
- concrete_layers = self.config.layer_types[: self.first_kv_shared_layer_idx]
440
- shared_full_idx = (
441
- len(concrete_layers) - 1 - concrete_layers[::-1].index("full_attention")
442
- )
443
- shared_sliding_idx = (
444
- len(concrete_layers) - 1 - concrete_layers[::-1].index("sliding_attention")
445
- )
446
-
447
- self.layer_idx_to_cache_idx = []
448
- for i, layer_type in enumerate(self.config.layer_types):
449
- if i < self.first_kv_shared_layer_idx:
450
- self.layer_idx_to_cache_idx.append(i)
451
- else:
452
- if layer_type == "full_attention":
453
- self.layer_idx_to_cache_idx.append(shared_full_idx)
454
- elif layer_type == "sliding_attention":
455
- self.layer_idx_to_cache_idx.append(shared_sliding_idx)
456
- else:
457
- raise NotImplementedError(f"Unknown layer type: {layer_type}")
458
-
459
- def __call__(
460
- self,
461
- inputs: mx.array = None,
462
- inputs_embeds: mx.array = None,
463
- mask: mx.array = None,
464
- cache=None,
465
- **kwargs,
466
- ):
467
- per_layer_inputs = kwargs.pop("per_layer_inputs", None)
468
-
469
- if inputs_embeds is None:
470
- h = self.embed_tokens(inputs) * (self.hidden_size**0.5)
471
- else:
472
- h = inputs_embeds
473
-
474
- if per_layer_inputs is None and inputs is not None:
475
- per_layer_inputs = self.get_per_layer_inputs(inputs)
476
-
477
- per_layer_inputs = self.project_per_layer_inputs(h, per_layer_inputs)
478
-
479
- if cache is None:
480
- cache = [None] * len(self.layers)
481
-
482
- if mask is None:
483
- full_mask = create_attention_mask(
484
- h,
485
- cache[self.first_full_idx :],
486
- )
487
- sliding_window_mask = create_attention_mask(
488
- h,
489
- cache[self.first_sliding_idx :],
490
- )
491
- h0 = h
492
-
493
- # Expand hidden_states to support per-layer inputs
494
- target_magnitude = mx.mean(h0**2, axis=-1, keepdims=True) ** 0.5
495
-
496
- h_list = [h0]
497
- h_list.extend([proj(h0) for proj in self.altup_projections])
498
- h = mx.stack(h_list, axis=0)
499
- mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
500
- h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
501
-
502
- for i, layer in enumerate(self.layers):
503
- per_layer_input = per_layer_inputs[:, :, i, :]
504
-
505
- is_global = self.config.layer_types[i] == "full_attention"
506
-
507
- local_mask = mask
508
- if mask is None and is_global:
509
- local_mask = full_mask
510
- elif mask is None:
511
- local_mask = sliding_window_mask
512
-
513
- h = layer(
514
- h,
515
- local_mask,
516
- cache[self.layer_idx_to_cache_idx[i]],
517
- per_layer_input,
518
- )
519
-
520
- # Per-layer inputs to single output
521
- target_magnitude = mx.mean(h[0] ** 2, axis=-1, keepdims=True) ** 0.5
522
- for i, proj in enumerate(self.altup_unembed_projections):
523
- h[i + 1] = proj(h[i + 1])
524
- mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
525
- h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
526
-
527
- h = mx.mean(h, axis=0)
528
-
529
- return self.norm(h)
530
-
531
- def get_per_layer_inputs(self, input_ids: mx.array) -> mx.array:
532
- per_layer_inputs_mask = input_ids < self.vocab_size_per_layer_input
533
- tokens = mx.where(per_layer_inputs_mask, input_ids, mx.zeros_like(input_ids))
534
- result = self.embed_tokens_per_layer(tokens) * (
535
- self.hidden_size_per_layer_input**0.5
536
- )
537
- return result.reshape(
538
- *input_ids.shape,
539
- self.num_hidden_layers,
540
- self.hidden_size_per_layer_input,
541
- )
542
-
543
- def project_per_layer_inputs(
544
- self,
545
- inputs_embeds: mx.array,
546
- per_layer_inputs: mx.array,
547
- ) -> mx.array:
548
- per_layer_projection = self.per_layer_model_projection(inputs_embeds) * (
549
- self.hidden_size**-0.5
550
- )
551
- per_layer_projection = per_layer_projection.reshape(
552
- *inputs_embeds.shape[:-1],
553
- self.config.num_hidden_layers,
554
- self.config.hidden_size_per_layer_input,
555
- )
556
- per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
557
- return (per_layer_projection + per_layer_inputs) * (2.0**-0.5)
558
-
559
-
560
- @partial(mx.compile, shapeless=True)
561
- def logit_softcap(softcap, x):
562
- out = mx.tanh(x / softcap)
563
- out = out * softcap
564
- return out
565
-
566
-
567
- class LanguageModel(nn.Module):
568
- def __init__(self, config: TextConfig):
569
- super().__init__()
570
- self.config = config
571
- self.model_type = config.model_type
572
- self.model = Gemma3Model(config)
573
- self.final_logit_softcapping = config.final_logit_softcapping
574
-
575
- def __call__(
576
- self,
577
- inputs: mx.array = None,
578
- inputs_embeds: Optional[mx.array] = None,
579
- mask: Optional[mx.array] = None,
580
- cache=None,
581
- **kwargs,
582
- ):
583
- out = self.model(
584
- inputs, inputs_embeds=inputs_embeds, mask=mask, cache=cache, **kwargs
585
- )
586
- out = self.model.embed_tokens.as_linear(out)
587
- if self.final_logit_softcapping is not None:
588
- out = logit_softcap(self.final_logit_softcapping, out)
589
- return LanguageModelOutput(logits=out)
590
-
591
- def sanitize(self, weights):
592
- sanitized_weights = {}
593
-
594
- for k, v in weights.items():
595
- if "language_model.model" not in k and "language_model.lm_head" not in k:
596
- new_key = k.replace("language_model", "language_model.model")
597
- sanitized_weights[new_key] = v
598
- elif "self_attn.rotary_emb.inv_freq" in k:
599
- continue
600
- else:
601
- sanitized_weights[k] = v
602
- return sanitized_weights
603
-
604
- @property
605
- def layers(self):
606
- return self.model.layers
607
-
608
- @property
609
- def head_dim(self):
610
- return self.config.head_dim
611
-
612
- @property
613
- def n_kv_heads(self):
614
- return self.config.num_key_value_heads
615
-
616
- def make_cache(self):
617
- caches = []
618
- for layer_type in self.config.layer_types[
619
- : self.model.first_kv_shared_layer_idx
620
- ]:
621
- if layer_type == "full_attention":
622
- caches.append(KVCache())
623
- elif layer_type == "sliding_attention":
624
- caches.append(
625
- RotatingKVCache(max_size=self.config.sliding_window, keep=0)
626
- )
627
- else:
628
- raise NotImplementedError(f"Unknown layer type: {layer_type}")
629
- return caches