nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,629 +0,0 @@
|
|
|
1
|
-
import math
|
|
2
|
-
from functools import partial
|
|
3
|
-
from typing import Any, Optional
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
from mlx_lm.models.cache import _BaseCache
|
|
8
|
-
|
|
9
|
-
from ..base import (
|
|
10
|
-
LanguageModelOutput,
|
|
11
|
-
create_attention_mask,
|
|
12
|
-
scaled_dot_product_attention,
|
|
13
|
-
)
|
|
14
|
-
from ..cache import KVCache, RotatingKVCache
|
|
15
|
-
from .config import TextConfig
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class Gemma3nRMSNorm(nn.Module):
|
|
19
|
-
def __init__(
|
|
20
|
-
self,
|
|
21
|
-
dim: int,
|
|
22
|
-
eps: float = 1e-6,
|
|
23
|
-
scale_shift: float = 0.0,
|
|
24
|
-
with_scale: bool = True,
|
|
25
|
-
):
|
|
26
|
-
super().__init__()
|
|
27
|
-
self.eps = eps
|
|
28
|
-
self.scale_shift = scale_shift
|
|
29
|
-
self.with_scale = with_scale
|
|
30
|
-
|
|
31
|
-
if self.with_scale:
|
|
32
|
-
# Make weight a proper parameter
|
|
33
|
-
self.weight = mx.ones(dim)
|
|
34
|
-
else:
|
|
35
|
-
self.weight = None
|
|
36
|
-
|
|
37
|
-
def _norm(self, x):
|
|
38
|
-
# Match PyTorch's normalization exactly
|
|
39
|
-
return x * mx.rsqrt(x.square().mean(axis=-1, keepdims=True) + self.eps)
|
|
40
|
-
|
|
41
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
42
|
-
# Match PyTorch implementation
|
|
43
|
-
output = self._norm(x.astype(mx.float32))
|
|
44
|
-
|
|
45
|
-
if self.with_scale:
|
|
46
|
-
output = output * (self.weight + self.scale_shift)
|
|
47
|
-
|
|
48
|
-
return output.astype(x.dtype)
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
class RMSNoScale(nn.Module):
|
|
52
|
-
def __init__(self, eps: float = 1e-5):
|
|
53
|
-
super().__init__()
|
|
54
|
-
self.eps = eps
|
|
55
|
-
|
|
56
|
-
def __call__(self, x):
|
|
57
|
-
return mx.fast.rms_norm(x, None, self.eps)
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
class Gemma3nLaurelBlock(nn.Module):
|
|
61
|
-
"""Learned Augmented Residual Layer"""
|
|
62
|
-
|
|
63
|
-
def __init__(self, config: TextConfig):
|
|
64
|
-
super().__init__()
|
|
65
|
-
self.config = config
|
|
66
|
-
|
|
67
|
-
self.linear_left = nn.Linear(
|
|
68
|
-
self.config.hidden_size, self.config.laurel_rank, bias=False
|
|
69
|
-
)
|
|
70
|
-
self.linear_right = nn.Linear(
|
|
71
|
-
self.config.laurel_rank, self.config.hidden_size, bias=False
|
|
72
|
-
)
|
|
73
|
-
self.post_laurel_norm = nn.RMSNorm(
|
|
74
|
-
dims=self.config.hidden_size,
|
|
75
|
-
eps=self.config.rms_norm_eps,
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
79
|
-
laurel_x = self.linear_left(x)
|
|
80
|
-
laurel_x = self.linear_right(laurel_x)
|
|
81
|
-
normed_laurel_x = self.post_laurel_norm(laurel_x)
|
|
82
|
-
return x + normed_laurel_x
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
class Gemma3nAttention(nn.Module):
|
|
86
|
-
def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
|
|
87
|
-
super().__init__()
|
|
88
|
-
self.is_sliding = config.layer_types[layer_idx] == "sliding_attention"
|
|
89
|
-
|
|
90
|
-
dim = config.hidden_size
|
|
91
|
-
self.n_heads = n_heads = config.num_attention_heads
|
|
92
|
-
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
93
|
-
self.repeats = n_heads // n_kv_heads
|
|
94
|
-
self.head_dim = head_dim = config.head_dim
|
|
95
|
-
self.layer_idx = layer_idx
|
|
96
|
-
|
|
97
|
-
self.scale = 1.0
|
|
98
|
-
|
|
99
|
-
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
100
|
-
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
101
|
-
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
102
|
-
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
103
|
-
|
|
104
|
-
self.q_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
|
|
105
|
-
self.k_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
|
|
106
|
-
self.v_norm = RMSNoScale(eps=config.rms_norm_eps)
|
|
107
|
-
|
|
108
|
-
self.is_kv_shared_layer = is_kv_shared_layer
|
|
109
|
-
|
|
110
|
-
self.rope = nn.RoPE(
|
|
111
|
-
head_dim,
|
|
112
|
-
traditional=False,
|
|
113
|
-
base=(
|
|
114
|
-
config.rope_local_base_freq if self.is_sliding else config.rope_theta
|
|
115
|
-
),
|
|
116
|
-
)
|
|
117
|
-
|
|
118
|
-
def __call__(
|
|
119
|
-
self,
|
|
120
|
-
x: mx.array,
|
|
121
|
-
mask: Optional[mx.array] = None,
|
|
122
|
-
cache: Optional[Any] = None,
|
|
123
|
-
) -> mx.array:
|
|
124
|
-
B, L, _ = x.shape
|
|
125
|
-
|
|
126
|
-
queries = self.q_proj(x)
|
|
127
|
-
queries = queries.reshape(B, L, -1, self.head_dim)
|
|
128
|
-
queries = self.q_norm(queries)
|
|
129
|
-
|
|
130
|
-
offset = 0
|
|
131
|
-
if self.is_kv_shared_layer and cache is not None:
|
|
132
|
-
# For shared layers, retrieve KV from the designated cache layer
|
|
133
|
-
keys, values = cache.state
|
|
134
|
-
offset = cache.offset
|
|
135
|
-
|
|
136
|
-
else:
|
|
137
|
-
|
|
138
|
-
if cache is not None:
|
|
139
|
-
offset = cache.offset
|
|
140
|
-
|
|
141
|
-
keys = self.k_proj(x).reshape(B, L, -1, self.head_dim)
|
|
142
|
-
keys = self.k_norm(keys)
|
|
143
|
-
keys = keys.transpose(0, 2, 1, 3)
|
|
144
|
-
keys = self.rope(keys, offset=offset)
|
|
145
|
-
|
|
146
|
-
values = self.v_proj(x).reshape(B, L, -1, self.head_dim)
|
|
147
|
-
values = self.v_norm(values)
|
|
148
|
-
values = values.transpose(0, 2, 1, 3)
|
|
149
|
-
|
|
150
|
-
if cache is not None:
|
|
151
|
-
keys, values = cache.update_and_fetch(keys, values)
|
|
152
|
-
|
|
153
|
-
queries = queries.transpose(0, 2, 1, 3)
|
|
154
|
-
queries = self.rope(queries, offset=offset)
|
|
155
|
-
|
|
156
|
-
if isinstance(mask, mx.array) and mask.shape[-1] != keys.shape[-2]:
|
|
157
|
-
mask = mask[:, : keys.shape[-2]]
|
|
158
|
-
|
|
159
|
-
output = scaled_dot_product_attention(
|
|
160
|
-
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
164
|
-
|
|
165
|
-
return self.o_proj(output)
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
@partial(mx.compile, shapeless=True)
|
|
169
|
-
def gelu_topk(inputs, std_multiplier):
|
|
170
|
-
inputs_mean = mx.mean(inputs, axis=-1, keepdims=True)
|
|
171
|
-
inputs_std = mx.std(inputs, axis=-1, keepdims=True)
|
|
172
|
-
cutoff_x = inputs_mean + inputs_std * std_multiplier.astype(inputs_std.dtype)
|
|
173
|
-
return nn.gelu_approx(mx.maximum(0, inputs - cutoff_x))
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
class MLP(nn.Module):
|
|
177
|
-
def __init__(self, config: TextConfig, layer_idx: int = 0):
|
|
178
|
-
super().__init__()
|
|
179
|
-
self.config = config
|
|
180
|
-
self.hidden_size = config.hidden_size
|
|
181
|
-
self.intermediate_size = config.intermediate_size
|
|
182
|
-
self.gate_proj = nn.Linear(
|
|
183
|
-
self.hidden_size, self.intermediate_size[0], bias=False
|
|
184
|
-
)
|
|
185
|
-
self.up_proj = nn.Linear(
|
|
186
|
-
self.hidden_size, self.intermediate_size[0], bias=False
|
|
187
|
-
)
|
|
188
|
-
self.down_proj = nn.Linear(
|
|
189
|
-
self.intermediate_size[0], self.hidden_size, bias=False
|
|
190
|
-
)
|
|
191
|
-
if config.activation_sparsity_pattern is not None:
|
|
192
|
-
self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
|
|
193
|
-
else:
|
|
194
|
-
self.activation_sparsity = 0.0
|
|
195
|
-
if self.activation_sparsity > 0:
|
|
196
|
-
self._std_multiplier = math.sqrt(2.0) * mx.erfinv(
|
|
197
|
-
2 * self.activation_sparsity - 1
|
|
198
|
-
)
|
|
199
|
-
|
|
200
|
-
def __call__(self, x: mx.array):
|
|
201
|
-
gate_proj = self.gate_proj(x)
|
|
202
|
-
if self.activation_sparsity > 0.0:
|
|
203
|
-
activations = gelu_topk(gate_proj, self._std_multiplier)
|
|
204
|
-
else:
|
|
205
|
-
activations = nn.gelu_approx(gate_proj)
|
|
206
|
-
up_proj = self.up_proj(x)
|
|
207
|
-
down_proj = self.down_proj(activations * up_proj)
|
|
208
|
-
return down_proj
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
class Gemma3nAltUp(nn.Module):
|
|
212
|
-
"""Alternating Updates (AltUp)"""
|
|
213
|
-
|
|
214
|
-
def __init__(self, config: TextConfig):
|
|
215
|
-
super().__init__()
|
|
216
|
-
self.config = config
|
|
217
|
-
|
|
218
|
-
self.correct_output_scale = mx.zeros((self.config.hidden_size,))
|
|
219
|
-
self.correction_coefs = nn.Linear(
|
|
220
|
-
self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False
|
|
221
|
-
)
|
|
222
|
-
self.prediction_coefs = nn.Linear(
|
|
223
|
-
self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False
|
|
224
|
-
)
|
|
225
|
-
self.modality_router = nn.Linear(
|
|
226
|
-
self.config.hidden_size, self.config.altup_num_inputs, bias=False
|
|
227
|
-
)
|
|
228
|
-
self.router_norm = nn.RMSNorm(
|
|
229
|
-
dims=self.config.hidden_size,
|
|
230
|
-
eps=self.config.rms_norm_eps,
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
def compute_router_modalities(self, x: mx.array) -> mx.array:
|
|
234
|
-
router_inputs = self.router_norm(x) * (self.config.hidden_size**-1.0)
|
|
235
|
-
routed = self.modality_router(router_inputs).astype(mx.float32)
|
|
236
|
-
return mx.tanh(routed)
|
|
237
|
-
|
|
238
|
-
def predict(self, x: mx.array) -> mx.array:
|
|
239
|
-
modalities = self.compute_router_modalities(x[self.config.altup_active_idx])
|
|
240
|
-
|
|
241
|
-
self.prediction_coefs.weight = self.prediction_coefs.weight.astype(mx.float32)
|
|
242
|
-
|
|
243
|
-
if self.config.altup_coef_clip is not None:
|
|
244
|
-
self.prediction_coefs.weight = mx.clip(
|
|
245
|
-
self.prediction_coefs.weight,
|
|
246
|
-
-self.config.altup_coef_clip,
|
|
247
|
-
self.config.altup_coef_clip,
|
|
248
|
-
)
|
|
249
|
-
|
|
250
|
-
all_coefs = (
|
|
251
|
-
self.prediction_coefs(modalities)
|
|
252
|
-
.reshape(
|
|
253
|
-
*modalities.shape[:-1],
|
|
254
|
-
self.config.altup_num_inputs,
|
|
255
|
-
self.config.altup_num_inputs,
|
|
256
|
-
)
|
|
257
|
-
.transpose(0, 1, 3, 2)
|
|
258
|
-
)
|
|
259
|
-
|
|
260
|
-
x_up = x.astype(mx.float32)
|
|
261
|
-
x_permuted = x_up.transpose(1, 2, 3, 0)
|
|
262
|
-
predictions = mx.matmul(x_permuted, all_coefs)
|
|
263
|
-
predictions = predictions.transpose(3, 0, 1, 2)
|
|
264
|
-
predictions += x_up
|
|
265
|
-
return predictions.astype(x.dtype)
|
|
266
|
-
|
|
267
|
-
def correct(self, predictions: mx.array, activated: mx.array):
|
|
268
|
-
modalities = self.compute_router_modalities(activated)
|
|
269
|
-
|
|
270
|
-
self.correction_coefs.weight = self.correction_coefs.weight.astype(mx.float32)
|
|
271
|
-
|
|
272
|
-
if self.config.altup_coef_clip is not None:
|
|
273
|
-
self.correction_coefs.weight = mx.clip(
|
|
274
|
-
self.correction_coefs.weight,
|
|
275
|
-
-self.config.altup_coef_clip,
|
|
276
|
-
self.config.altup_coef_clip,
|
|
277
|
-
)
|
|
278
|
-
|
|
279
|
-
all_coefs = self.correction_coefs(modalities) + 1.0
|
|
280
|
-
|
|
281
|
-
active_x = predictions[self.config.altup_active_idx]
|
|
282
|
-
innovation = activated - active_x
|
|
283
|
-
|
|
284
|
-
all_coefs = all_coefs.transpose(2, 1, 0)
|
|
285
|
-
corrected = innovation[None] * all_coefs[:, None]
|
|
286
|
-
corrected += predictions
|
|
287
|
-
|
|
288
|
-
return corrected.astype(activated.dtype)
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
class Gemma3nDecoderLayer(nn.Module):
|
|
292
|
-
def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
|
|
293
|
-
super().__init__()
|
|
294
|
-
self.config = config
|
|
295
|
-
self.hidden_size = config.hidden_size
|
|
296
|
-
self.layer_idx = layer_idx
|
|
297
|
-
self.self_attn = Gemma3nAttention(config, layer_idx, is_kv_shared_layer)
|
|
298
|
-
self.mlp = MLP(config, layer_idx=layer_idx)
|
|
299
|
-
self.input_layernorm = nn.RMSNorm(
|
|
300
|
-
self.hidden_size,
|
|
301
|
-
eps=config.rms_norm_eps,
|
|
302
|
-
)
|
|
303
|
-
|
|
304
|
-
self.post_attention_layernorm = nn.RMSNorm(
|
|
305
|
-
self.hidden_size,
|
|
306
|
-
eps=config.rms_norm_eps,
|
|
307
|
-
)
|
|
308
|
-
self.pre_feedforward_layernorm = nn.RMSNorm(
|
|
309
|
-
self.hidden_size,
|
|
310
|
-
eps=config.rms_norm_eps,
|
|
311
|
-
)
|
|
312
|
-
self.post_feedforward_layernorm = nn.RMSNorm(
|
|
313
|
-
self.hidden_size,
|
|
314
|
-
eps=config.rms_norm_eps,
|
|
315
|
-
)
|
|
316
|
-
self.is_sliding = self.self_attn.is_sliding
|
|
317
|
-
self.sliding_window = config.sliding_window
|
|
318
|
-
|
|
319
|
-
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
|
|
320
|
-
|
|
321
|
-
self.altup = Gemma3nAltUp(config)
|
|
322
|
-
self.laurel = Gemma3nLaurelBlock(config)
|
|
323
|
-
self.per_layer_input_gate = nn.Linear(
|
|
324
|
-
self.hidden_size, self.hidden_size_per_layer_input, bias=False
|
|
325
|
-
)
|
|
326
|
-
self.per_layer_projection = nn.Linear(
|
|
327
|
-
self.hidden_size_per_layer_input, self.hidden_size, bias=False
|
|
328
|
-
)
|
|
329
|
-
self.post_per_layer_input_norm = nn.RMSNorm(
|
|
330
|
-
self.hidden_size,
|
|
331
|
-
eps=config.rms_norm_eps,
|
|
332
|
-
)
|
|
333
|
-
|
|
334
|
-
def __call__(
|
|
335
|
-
self,
|
|
336
|
-
x: mx.array,
|
|
337
|
-
mask: Optional[mx.array] = None,
|
|
338
|
-
cache: Optional[Any] = None,
|
|
339
|
-
per_layer_input: Optional[mx.array] = None,
|
|
340
|
-
):
|
|
341
|
-
predictions = self.altup.predict(x)
|
|
342
|
-
active_prediction = predictions[self.config.altup_active_idx]
|
|
343
|
-
|
|
344
|
-
active_prediction_normed = self.input_layernorm(active_prediction)
|
|
345
|
-
laurel_output = self.laurel(active_prediction_normed)
|
|
346
|
-
|
|
347
|
-
attn = self.self_attn(
|
|
348
|
-
active_prediction_normed,
|
|
349
|
-
mask,
|
|
350
|
-
cache,
|
|
351
|
-
)
|
|
352
|
-
|
|
353
|
-
attn = self.post_attention_layernorm(attn)
|
|
354
|
-
|
|
355
|
-
attn_gated = active_prediction + attn
|
|
356
|
-
attn_laurel = (attn_gated + laurel_output) * (2.0**-0.5)
|
|
357
|
-
|
|
358
|
-
attn_norm = self.pre_feedforward_layernorm(attn_laurel)
|
|
359
|
-
attn_ffw = self.mlp(attn_norm)
|
|
360
|
-
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
|
|
361
|
-
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
|
|
362
|
-
|
|
363
|
-
corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
|
|
364
|
-
|
|
365
|
-
first_prediction = corrected_predictions[self.config.altup_active_idx]
|
|
366
|
-
if self.config.altup_correct_scale:
|
|
367
|
-
first_prediction = first_prediction * self.altup.correct_output_scale
|
|
368
|
-
|
|
369
|
-
first_prediction = self.per_layer_input_gate(first_prediction)
|
|
370
|
-
first_prediction = nn.gelu_approx(first_prediction)
|
|
371
|
-
|
|
372
|
-
first_prediction = mx.multiply(first_prediction, per_layer_input)
|
|
373
|
-
|
|
374
|
-
first_prediction = self.per_layer_projection(first_prediction)
|
|
375
|
-
first_prediction = self.post_per_layer_input_norm(first_prediction)
|
|
376
|
-
|
|
377
|
-
corrected_predictions[1:] = corrected_predictions[1:] + first_prediction
|
|
378
|
-
|
|
379
|
-
return corrected_predictions
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
class Gemma3Model(nn.Module):
|
|
383
|
-
def __init__(self, config: TextConfig):
|
|
384
|
-
super().__init__()
|
|
385
|
-
self.config = config
|
|
386
|
-
self.hidden_size = config.hidden_size
|
|
387
|
-
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
|
|
388
|
-
self.vocab_size = config.vocab_size
|
|
389
|
-
self.vocab_size_per_layer_input = config.vocab_size_per_layer_input
|
|
390
|
-
self.num_hidden_layers = config.num_hidden_layers
|
|
391
|
-
self.first_kv_shared_layer_idx = (
|
|
392
|
-
config.num_hidden_layers - config.num_kv_shared_layers
|
|
393
|
-
)
|
|
394
|
-
|
|
395
|
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
396
|
-
self.layers = [
|
|
397
|
-
Gemma3nDecoderLayer(
|
|
398
|
-
config=config,
|
|
399
|
-
layer_idx=layer_idx,
|
|
400
|
-
is_kv_shared_layer=layer_idx >= self.first_kv_shared_layer_idx,
|
|
401
|
-
)
|
|
402
|
-
for layer_idx in range(config.num_hidden_layers)
|
|
403
|
-
]
|
|
404
|
-
|
|
405
|
-
self.embed_tokens_per_layer = nn.Embedding(
|
|
406
|
-
config.vocab_size_per_layer_input,
|
|
407
|
-
config.num_hidden_layers * config.hidden_size_per_layer_input,
|
|
408
|
-
)
|
|
409
|
-
|
|
410
|
-
self.per_layer_model_projection = nn.Linear(
|
|
411
|
-
config.hidden_size,
|
|
412
|
-
config.num_hidden_layers * config.hidden_size_per_layer_input,
|
|
413
|
-
bias=False,
|
|
414
|
-
)
|
|
415
|
-
|
|
416
|
-
self.per_layer_projection_norm = nn.RMSNorm(
|
|
417
|
-
dims=config.hidden_size_per_layer_input,
|
|
418
|
-
eps=config.rms_norm_eps,
|
|
419
|
-
)
|
|
420
|
-
|
|
421
|
-
self.altup_projections = [
|
|
422
|
-
nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
|
423
|
-
for _ in range(1, self.config.altup_num_inputs)
|
|
424
|
-
]
|
|
425
|
-
|
|
426
|
-
self.altup_unembed_projections = [
|
|
427
|
-
nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
|
428
|
-
for _ in range(1, self.config.altup_num_inputs)
|
|
429
|
-
]
|
|
430
|
-
|
|
431
|
-
self.norm = nn.RMSNorm(
|
|
432
|
-
config.hidden_size,
|
|
433
|
-
eps=config.rms_norm_eps,
|
|
434
|
-
)
|
|
435
|
-
|
|
436
|
-
self.first_sliding_idx = self.config.layer_types.index("sliding_attention")
|
|
437
|
-
self.first_full_idx = self.config.layer_types.index("full_attention")
|
|
438
|
-
|
|
439
|
-
concrete_layers = self.config.layer_types[: self.first_kv_shared_layer_idx]
|
|
440
|
-
shared_full_idx = (
|
|
441
|
-
len(concrete_layers) - 1 - concrete_layers[::-1].index("full_attention")
|
|
442
|
-
)
|
|
443
|
-
shared_sliding_idx = (
|
|
444
|
-
len(concrete_layers) - 1 - concrete_layers[::-1].index("sliding_attention")
|
|
445
|
-
)
|
|
446
|
-
|
|
447
|
-
self.layer_idx_to_cache_idx = []
|
|
448
|
-
for i, layer_type in enumerate(self.config.layer_types):
|
|
449
|
-
if i < self.first_kv_shared_layer_idx:
|
|
450
|
-
self.layer_idx_to_cache_idx.append(i)
|
|
451
|
-
else:
|
|
452
|
-
if layer_type == "full_attention":
|
|
453
|
-
self.layer_idx_to_cache_idx.append(shared_full_idx)
|
|
454
|
-
elif layer_type == "sliding_attention":
|
|
455
|
-
self.layer_idx_to_cache_idx.append(shared_sliding_idx)
|
|
456
|
-
else:
|
|
457
|
-
raise NotImplementedError(f"Unknown layer type: {layer_type}")
|
|
458
|
-
|
|
459
|
-
def __call__(
|
|
460
|
-
self,
|
|
461
|
-
inputs: mx.array = None,
|
|
462
|
-
inputs_embeds: mx.array = None,
|
|
463
|
-
mask: mx.array = None,
|
|
464
|
-
cache=None,
|
|
465
|
-
**kwargs,
|
|
466
|
-
):
|
|
467
|
-
per_layer_inputs = kwargs.pop("per_layer_inputs", None)
|
|
468
|
-
|
|
469
|
-
if inputs_embeds is None:
|
|
470
|
-
h = self.embed_tokens(inputs) * (self.hidden_size**0.5)
|
|
471
|
-
else:
|
|
472
|
-
h = inputs_embeds
|
|
473
|
-
|
|
474
|
-
if per_layer_inputs is None and inputs is not None:
|
|
475
|
-
per_layer_inputs = self.get_per_layer_inputs(inputs)
|
|
476
|
-
|
|
477
|
-
per_layer_inputs = self.project_per_layer_inputs(h, per_layer_inputs)
|
|
478
|
-
|
|
479
|
-
if cache is None:
|
|
480
|
-
cache = [None] * len(self.layers)
|
|
481
|
-
|
|
482
|
-
if mask is None:
|
|
483
|
-
full_mask = create_attention_mask(
|
|
484
|
-
h,
|
|
485
|
-
cache[self.first_full_idx :],
|
|
486
|
-
)
|
|
487
|
-
sliding_window_mask = create_attention_mask(
|
|
488
|
-
h,
|
|
489
|
-
cache[self.first_sliding_idx :],
|
|
490
|
-
)
|
|
491
|
-
h0 = h
|
|
492
|
-
|
|
493
|
-
# Expand hidden_states to support per-layer inputs
|
|
494
|
-
target_magnitude = mx.mean(h0**2, axis=-1, keepdims=True) ** 0.5
|
|
495
|
-
|
|
496
|
-
h_list = [h0]
|
|
497
|
-
h_list.extend([proj(h0) for proj in self.altup_projections])
|
|
498
|
-
h = mx.stack(h_list, axis=0)
|
|
499
|
-
mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
|
|
500
|
-
h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
|
|
501
|
-
|
|
502
|
-
for i, layer in enumerate(self.layers):
|
|
503
|
-
per_layer_input = per_layer_inputs[:, :, i, :]
|
|
504
|
-
|
|
505
|
-
is_global = self.config.layer_types[i] == "full_attention"
|
|
506
|
-
|
|
507
|
-
local_mask = mask
|
|
508
|
-
if mask is None and is_global:
|
|
509
|
-
local_mask = full_mask
|
|
510
|
-
elif mask is None:
|
|
511
|
-
local_mask = sliding_window_mask
|
|
512
|
-
|
|
513
|
-
h = layer(
|
|
514
|
-
h,
|
|
515
|
-
local_mask,
|
|
516
|
-
cache[self.layer_idx_to_cache_idx[i]],
|
|
517
|
-
per_layer_input,
|
|
518
|
-
)
|
|
519
|
-
|
|
520
|
-
# Per-layer inputs to single output
|
|
521
|
-
target_magnitude = mx.mean(h[0] ** 2, axis=-1, keepdims=True) ** 0.5
|
|
522
|
-
for i, proj in enumerate(self.altup_unembed_projections):
|
|
523
|
-
h[i + 1] = proj(h[i + 1])
|
|
524
|
-
mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
|
|
525
|
-
h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
|
|
526
|
-
|
|
527
|
-
h = mx.mean(h, axis=0)
|
|
528
|
-
|
|
529
|
-
return self.norm(h)
|
|
530
|
-
|
|
531
|
-
def get_per_layer_inputs(self, input_ids: mx.array) -> mx.array:
|
|
532
|
-
per_layer_inputs_mask = input_ids < self.vocab_size_per_layer_input
|
|
533
|
-
tokens = mx.where(per_layer_inputs_mask, input_ids, mx.zeros_like(input_ids))
|
|
534
|
-
result = self.embed_tokens_per_layer(tokens) * (
|
|
535
|
-
self.hidden_size_per_layer_input**0.5
|
|
536
|
-
)
|
|
537
|
-
return result.reshape(
|
|
538
|
-
*input_ids.shape,
|
|
539
|
-
self.num_hidden_layers,
|
|
540
|
-
self.hidden_size_per_layer_input,
|
|
541
|
-
)
|
|
542
|
-
|
|
543
|
-
def project_per_layer_inputs(
|
|
544
|
-
self,
|
|
545
|
-
inputs_embeds: mx.array,
|
|
546
|
-
per_layer_inputs: mx.array,
|
|
547
|
-
) -> mx.array:
|
|
548
|
-
per_layer_projection = self.per_layer_model_projection(inputs_embeds) * (
|
|
549
|
-
self.hidden_size**-0.5
|
|
550
|
-
)
|
|
551
|
-
per_layer_projection = per_layer_projection.reshape(
|
|
552
|
-
*inputs_embeds.shape[:-1],
|
|
553
|
-
self.config.num_hidden_layers,
|
|
554
|
-
self.config.hidden_size_per_layer_input,
|
|
555
|
-
)
|
|
556
|
-
per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
|
|
557
|
-
return (per_layer_projection + per_layer_inputs) * (2.0**-0.5)
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
@partial(mx.compile, shapeless=True)
|
|
561
|
-
def logit_softcap(softcap, x):
|
|
562
|
-
out = mx.tanh(x / softcap)
|
|
563
|
-
out = out * softcap
|
|
564
|
-
return out
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
class LanguageModel(nn.Module):
|
|
568
|
-
def __init__(self, config: TextConfig):
|
|
569
|
-
super().__init__()
|
|
570
|
-
self.config = config
|
|
571
|
-
self.model_type = config.model_type
|
|
572
|
-
self.model = Gemma3Model(config)
|
|
573
|
-
self.final_logit_softcapping = config.final_logit_softcapping
|
|
574
|
-
|
|
575
|
-
def __call__(
|
|
576
|
-
self,
|
|
577
|
-
inputs: mx.array = None,
|
|
578
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
579
|
-
mask: Optional[mx.array] = None,
|
|
580
|
-
cache=None,
|
|
581
|
-
**kwargs,
|
|
582
|
-
):
|
|
583
|
-
out = self.model(
|
|
584
|
-
inputs, inputs_embeds=inputs_embeds, mask=mask, cache=cache, **kwargs
|
|
585
|
-
)
|
|
586
|
-
out = self.model.embed_tokens.as_linear(out)
|
|
587
|
-
if self.final_logit_softcapping is not None:
|
|
588
|
-
out = logit_softcap(self.final_logit_softcapping, out)
|
|
589
|
-
return LanguageModelOutput(logits=out)
|
|
590
|
-
|
|
591
|
-
def sanitize(self, weights):
|
|
592
|
-
sanitized_weights = {}
|
|
593
|
-
|
|
594
|
-
for k, v in weights.items():
|
|
595
|
-
if "language_model.model" not in k and "language_model.lm_head" not in k:
|
|
596
|
-
new_key = k.replace("language_model", "language_model.model")
|
|
597
|
-
sanitized_weights[new_key] = v
|
|
598
|
-
elif "self_attn.rotary_emb.inv_freq" in k:
|
|
599
|
-
continue
|
|
600
|
-
else:
|
|
601
|
-
sanitized_weights[k] = v
|
|
602
|
-
return sanitized_weights
|
|
603
|
-
|
|
604
|
-
@property
|
|
605
|
-
def layers(self):
|
|
606
|
-
return self.model.layers
|
|
607
|
-
|
|
608
|
-
@property
|
|
609
|
-
def head_dim(self):
|
|
610
|
-
return self.config.head_dim
|
|
611
|
-
|
|
612
|
-
@property
|
|
613
|
-
def n_kv_heads(self):
|
|
614
|
-
return self.config.num_key_value_heads
|
|
615
|
-
|
|
616
|
-
def make_cache(self):
|
|
617
|
-
caches = []
|
|
618
|
-
for layer_type in self.config.layer_types[
|
|
619
|
-
: self.model.first_kv_shared_layer_idx
|
|
620
|
-
]:
|
|
621
|
-
if layer_type == "full_attention":
|
|
622
|
-
caches.append(KVCache())
|
|
623
|
-
elif layer_type == "sliding_attention":
|
|
624
|
-
caches.append(
|
|
625
|
-
RotatingKVCache(max_size=self.config.sliding_window, keep=0)
|
|
626
|
-
)
|
|
627
|
-
else:
|
|
628
|
-
raise NotImplementedError(f"Unknown layer type: {layer_type}")
|
|
629
|
-
return caches
|