nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,460 +0,0 @@
1
- # Copyright © 2023 Apple Inc.
2
-
3
- import math
4
- from typing import Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from .config import UNetConfig
10
-
11
-
12
- def upsample_nearest(x, scale: int = 2):
13
- B, H, W, C = x.shape
14
- x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
15
- x = x.reshape(B, H * scale, W * scale, C)
16
-
17
- return x
18
-
19
-
20
- class TimestepEmbedding(nn.Module):
21
- def __init__(self, in_channels: int, time_embed_dim: int):
22
- super().__init__()
23
-
24
- self.linear_1 = nn.Linear(in_channels, time_embed_dim)
25
- self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
26
-
27
- def __call__(self, x):
28
- x = self.linear_1(x)
29
- x = nn.silu(x)
30
- x = self.linear_2(x)
31
-
32
- return x
33
-
34
-
35
- class TransformerBlock(nn.Module):
36
- def __init__(
37
- self,
38
- model_dims: int,
39
- num_heads: int,
40
- hidden_dims: Optional[int] = None,
41
- memory_dims: Optional[int] = None,
42
- ):
43
- super().__init__()
44
-
45
- self.norm1 = nn.LayerNorm(model_dims)
46
- self.attn1 = nn.MultiHeadAttention(model_dims, num_heads)
47
- self.attn1.out_proj.bias = mx.zeros(model_dims)
48
-
49
- memory_dims = memory_dims or model_dims
50
- self.norm2 = nn.LayerNorm(model_dims)
51
- self.attn2 = nn.MultiHeadAttention(
52
- model_dims, num_heads, key_input_dims=memory_dims
53
- )
54
- self.attn2.out_proj.bias = mx.zeros(model_dims)
55
-
56
- hidden_dims = hidden_dims or 4 * model_dims
57
- self.norm3 = nn.LayerNorm(model_dims)
58
- self.linear1 = nn.Linear(model_dims, hidden_dims)
59
- self.linear2 = nn.Linear(model_dims, hidden_dims)
60
- self.linear3 = nn.Linear(hidden_dims, model_dims)
61
-
62
- def __call__(self, x, memory, attn_mask, memory_mask):
63
- # Self attention
64
- y = self.norm1(x)
65
- y = self.attn1(y, y, y, attn_mask)
66
- x = x + y
67
-
68
- # Cross attention
69
- y = self.norm2(x)
70
- y = self.attn2(y, memory, memory, memory_mask)
71
- x = x + y
72
-
73
- # FFN
74
- y = self.norm3(x)
75
- y_a = self.linear1(y)
76
- y_b = self.linear2(y)
77
- y = y_a * nn.gelu(y_b)
78
- y = self.linear3(y)
79
- x = x + y
80
-
81
- return x
82
-
83
-
84
- class Transformer2D(nn.Module):
85
- """A transformer model for inputs with 2 spatial dimensions."""
86
-
87
- def __init__(
88
- self,
89
- in_channels: int,
90
- model_dims: int,
91
- encoder_dims: int,
92
- num_heads: int,
93
- num_layers: int = 1,
94
- norm_num_groups: int = 32,
95
- ):
96
- super().__init__()
97
-
98
- self.norm = nn.GroupNorm(norm_num_groups, in_channels, pytorch_compatible=True)
99
- self.proj_in = nn.Linear(in_channels, model_dims)
100
- self.transformer_blocks = [
101
- TransformerBlock(model_dims, num_heads, memory_dims=encoder_dims)
102
- for i in range(num_layers)
103
- ]
104
- self.proj_out = nn.Linear(model_dims, in_channels)
105
-
106
- def __call__(self, x, encoder_x, attn_mask, encoder_attn_mask):
107
- # Save the input to add to the output
108
- input_x = x
109
- dtype = x.dtype
110
-
111
- # Perform the input norm and projection
112
- B, H, W, C = x.shape
113
- x = self.norm(x).reshape(B, -1, C)
114
- x = self.proj_in(x)
115
-
116
- # Apply the transformer
117
- for block in self.transformer_blocks:
118
- x = block(x, encoder_x, attn_mask, encoder_attn_mask)
119
-
120
- # Apply the output projection and reshape
121
- x = self.proj_out(x)
122
- x = x.reshape(B, H, W, C)
123
-
124
- return x + input_x
125
-
126
-
127
- class ResnetBlock2D(nn.Module):
128
- def __init__(
129
- self,
130
- in_channels: int,
131
- out_channels: Optional[int] = None,
132
- groups: int = 32,
133
- temb_channels: Optional[int] = None,
134
- ):
135
- super().__init__()
136
-
137
- out_channels = out_channels or in_channels
138
-
139
- self.norm1 = nn.GroupNorm(groups, in_channels, pytorch_compatible=True)
140
- self.conv1 = nn.Conv2d(
141
- in_channels, out_channels, kernel_size=3, stride=1, padding=1
142
- )
143
- if temb_channels is not None:
144
- self.time_emb_proj = nn.Linear(temb_channels, out_channels)
145
- self.norm2 = nn.GroupNorm(groups, out_channels, pytorch_compatible=True)
146
- self.conv2 = nn.Conv2d(
147
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
148
- )
149
-
150
- if in_channels != out_channels:
151
- self.conv_shortcut = nn.Linear(in_channels, out_channels)
152
-
153
- def __call__(self, x, temb=None):
154
- dtype = x.dtype
155
-
156
- if temb is not None:
157
- temb = self.time_emb_proj(nn.silu(temb))
158
-
159
- y = self.norm1(x)
160
- y = nn.silu(y)
161
- y = self.conv1(y)
162
- if temb is not None:
163
- y = y + temb[:, None, None, :]
164
- y = self.norm2(y)
165
- y = nn.silu(y)
166
- y = self.conv2(y)
167
-
168
- x = y + (x if "conv_shortcut" not in self else self.conv_shortcut(x))
169
-
170
- return x
171
-
172
-
173
- class UNetBlock2D(nn.Module):
174
- def __init__(
175
- self,
176
- in_channels: int,
177
- out_channels: int,
178
- temb_channels: int,
179
- prev_out_channels: Optional[int] = None,
180
- num_layers: int = 1,
181
- transformer_layers_per_block: int = 1,
182
- num_attention_heads: int = 8,
183
- cross_attention_dim=1280,
184
- resnet_groups: int = 32,
185
- add_downsample=True,
186
- add_upsample=True,
187
- add_cross_attention=True,
188
- ):
189
- super().__init__()
190
-
191
- # Prepare the in channels list for the resnets
192
- if prev_out_channels is None:
193
- in_channels_list = [in_channels] + [out_channels] * (num_layers - 1)
194
- else:
195
- in_channels_list = [prev_out_channels] + [out_channels] * (num_layers - 1)
196
- res_channels_list = [out_channels] * (num_layers - 1) + [in_channels]
197
- in_channels_list = [
198
- a + b for a, b in zip(in_channels_list, res_channels_list)
199
- ]
200
-
201
- # Add resnet blocks that also process the time embedding
202
- self.resnets = [
203
- ResnetBlock2D(
204
- in_channels=ic,
205
- out_channels=out_channels,
206
- temb_channels=temb_channels,
207
- groups=resnet_groups,
208
- )
209
- for ic in in_channels_list
210
- ]
211
-
212
- # Add optional cross attention layers
213
- if add_cross_attention:
214
- self.attentions = [
215
- Transformer2D(
216
- in_channels=out_channels,
217
- model_dims=out_channels,
218
- num_heads=num_attention_heads,
219
- num_layers=transformer_layers_per_block,
220
- encoder_dims=cross_attention_dim,
221
- )
222
- for i in range(num_layers)
223
- ]
224
-
225
- # Add an optional downsampling layer
226
- if add_downsample:
227
- self.downsample = nn.Conv2d(
228
- out_channels, out_channels, kernel_size=3, stride=2, padding=1
229
- )
230
-
231
- # or upsampling layer
232
- if add_upsample:
233
- self.upsample = nn.Conv2d(
234
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
235
- )
236
-
237
- def __call__(
238
- self,
239
- x,
240
- encoder_x=None,
241
- temb=None,
242
- attn_mask=None,
243
- encoder_attn_mask=None,
244
- residual_hidden_states=None,
245
- ):
246
- output_states = []
247
-
248
- for i in range(len(self.resnets)):
249
- if residual_hidden_states is not None:
250
- x = mx.concatenate([x, residual_hidden_states.pop()], axis=-1)
251
-
252
- x = self.resnets[i](x, temb)
253
-
254
- if "attentions" in self:
255
- x = self.attentions[i](x, encoder_x, attn_mask, encoder_attn_mask)
256
-
257
- output_states.append(x)
258
-
259
- if "downsample" in self:
260
- x = self.downsample(x)
261
- output_states.append(x)
262
-
263
- if "upsample" in self:
264
- x = self.upsample(upsample_nearest(x))
265
- output_states.append(x)
266
-
267
- return x, output_states
268
-
269
-
270
- class UNetModel(nn.Module):
271
- """The conditional 2D UNet model that actually performs the denoising."""
272
-
273
- def __init__(self, config: UNetConfig):
274
- super().__init__()
275
-
276
- self.conv_in = nn.Conv2d(
277
- config.in_channels,
278
- config.block_out_channels[0],
279
- config.conv_in_kernel,
280
- padding=(config.conv_in_kernel - 1) // 2,
281
- )
282
-
283
- self.timesteps = nn.SinusoidalPositionalEncoding(
284
- config.block_out_channels[0],
285
- max_freq=1,
286
- min_freq=math.exp(
287
- -math.log(10000) + 2 * math.log(10000) / config.block_out_channels[0]
288
- ),
289
- scale=1.0,
290
- cos_first=True,
291
- full_turns=False,
292
- )
293
- self.time_embedding = TimestepEmbedding(
294
- config.block_out_channels[0],
295
- config.block_out_channels[0] * 4,
296
- )
297
-
298
- if config.addition_embed_type == "text_time":
299
- self.add_time_proj = nn.SinusoidalPositionalEncoding(
300
- config.addition_time_embed_dim,
301
- max_freq=1,
302
- min_freq=math.exp(
303
- -math.log(10000)
304
- + 2 * math.log(10000) / config.addition_time_embed_dim
305
- ),
306
- scale=1.0,
307
- cos_first=True,
308
- full_turns=False,
309
- )
310
- self.add_embedding = TimestepEmbedding(
311
- config.projection_class_embeddings_input_dim,
312
- config.block_out_channels[0] * 4,
313
- )
314
-
315
- # Make the downsampling blocks
316
- block_channels = [config.block_out_channels[0]] + list(
317
- config.block_out_channels
318
- )
319
- self.down_blocks = [
320
- UNetBlock2D(
321
- in_channels=in_channels,
322
- out_channels=out_channels,
323
- temb_channels=config.block_out_channels[0] * 4,
324
- num_layers=config.layers_per_block[i],
325
- transformer_layers_per_block=config.transformer_layers_per_block[i],
326
- num_attention_heads=config.num_attention_heads[i],
327
- cross_attention_dim=config.cross_attention_dim[i],
328
- resnet_groups=config.norm_num_groups,
329
- add_downsample=(i < len(config.block_out_channels) - 1),
330
- add_upsample=False,
331
- add_cross_attention="CrossAttn" in config.down_block_types[i],
332
- )
333
- for i, (in_channels, out_channels) in enumerate(
334
- zip(block_channels, block_channels[1:])
335
- )
336
- ]
337
-
338
- # Make the middle block
339
- self.mid_blocks = [
340
- ResnetBlock2D(
341
- in_channels=config.block_out_channels[-1],
342
- out_channels=config.block_out_channels[-1],
343
- temb_channels=config.block_out_channels[0] * 4,
344
- groups=config.norm_num_groups,
345
- ),
346
- Transformer2D(
347
- in_channels=config.block_out_channels[-1],
348
- model_dims=config.block_out_channels[-1],
349
- num_heads=config.num_attention_heads[-1],
350
- num_layers=config.transformer_layers_per_block[-1],
351
- encoder_dims=config.cross_attention_dim[-1],
352
- ),
353
- ResnetBlock2D(
354
- in_channels=config.block_out_channels[-1],
355
- out_channels=config.block_out_channels[-1],
356
- temb_channels=config.block_out_channels[0] * 4,
357
- groups=config.norm_num_groups,
358
- ),
359
- ]
360
-
361
- # Make the upsampling blocks
362
- block_channels = (
363
- [config.block_out_channels[0]]
364
- + list(config.block_out_channels)
365
- + [config.block_out_channels[-1]]
366
- )
367
- self.up_blocks = [
368
- UNetBlock2D(
369
- in_channels=in_channels,
370
- out_channels=out_channels,
371
- temb_channels=config.block_out_channels[0] * 4,
372
- prev_out_channels=prev_out_channels,
373
- num_layers=config.layers_per_block[i] + 1,
374
- transformer_layers_per_block=config.transformer_layers_per_block[i],
375
- num_attention_heads=config.num_attention_heads[i],
376
- cross_attention_dim=config.cross_attention_dim[i],
377
- resnet_groups=config.norm_num_groups,
378
- add_downsample=False,
379
- add_upsample=(i > 0),
380
- add_cross_attention="CrossAttn" in config.up_block_types[i],
381
- )
382
- for i, (in_channels, out_channels, prev_out_channels) in reversed(
383
- list(
384
- enumerate(
385
- zip(block_channels, block_channels[1:], block_channels[2:])
386
- )
387
- )
388
- )
389
- ]
390
-
391
- self.conv_norm_out = nn.GroupNorm(
392
- config.norm_num_groups,
393
- config.block_out_channels[0],
394
- pytorch_compatible=True,
395
- )
396
- self.conv_out = nn.Conv2d(
397
- config.block_out_channels[0],
398
- config.out_channels,
399
- config.conv_out_kernel,
400
- padding=(config.conv_out_kernel - 1) // 2,
401
- )
402
-
403
- def __call__(
404
- self,
405
- x,
406
- timestep,
407
- encoder_x,
408
- attn_mask=None,
409
- encoder_attn_mask=None,
410
- text_time=None,
411
- ):
412
- # Compute the time embeddings
413
- temb = self.timesteps(timestep).astype(x.dtype)
414
- temb = self.time_embedding(temb)
415
-
416
- # Add the extra text_time conditioning
417
- if text_time is not None:
418
- text_emb, time_ids = text_time
419
- emb = self.add_time_proj(time_ids).flatten(1).astype(x.dtype)
420
- emb = mx.concatenate([text_emb, emb], axis=-1)
421
- emb = self.add_embedding(emb)
422
- temb = temb + emb
423
-
424
- # Preprocess the input
425
- x = self.conv_in(x)
426
-
427
- # Run the downsampling part of the unet
428
- residuals = [x]
429
- for block in self.down_blocks:
430
- x, res = block(
431
- x,
432
- encoder_x=encoder_x,
433
- temb=temb,
434
- attn_mask=attn_mask,
435
- encoder_attn_mask=encoder_attn_mask,
436
- )
437
- residuals.extend(res)
438
-
439
- # Run the middle part of the unet
440
- x = self.mid_blocks[0](x, temb)
441
- x = self.mid_blocks[1](x, encoder_x, attn_mask, encoder_attn_mask)
442
- x = self.mid_blocks[2](x, temb)
443
-
444
- # Run the upsampling part of the unet
445
- for block in self.up_blocks:
446
- x, _ = block(
447
- x,
448
- encoder_x=encoder_x,
449
- temb=temb,
450
- attn_mask=attn_mask,
451
- encoder_attn_mask=encoder_attn_mask,
452
- residual_hidden_states=residuals,
453
- )
454
-
455
- # Postprocess the output
456
- x = self.conv_norm_out(x)
457
- x = nn.silu(x)
458
- x = self.conv_out(x)
459
-
460
- return x