nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,522 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import List, Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..kernels import bicubic_interpolate
9
-
10
-
11
- @dataclass
12
- class VisionConfig:
13
- model_type: str = "moonvit"
14
- depth: int = 27
15
- embed_dim: int = 1152
16
- hidden_size: int = 1152
17
- num_heads: int = 16
18
- image_size: int = 384
19
- patch_size: int = 14
20
- vocab_size: int = 32000
21
- mlp_ratio: float = 4.0
22
- num_channels: int = 3
23
- layer_norm_eps: float = 1e-6
24
- intermediate_size: int = 4304
25
- init_pos_emb_height: int = 64
26
- init_pos_emb_width: int = 64
27
- spatial_patch_size: int = 14
28
- spatial_merge_size: int = 2
29
- temporal_patch_size: int = 2
30
- merge_kernel_size: list[int, int] = None
31
-
32
- def __post_init__(self):
33
- if self.merge_kernel_size is None:
34
- self.merge_kernel_size = (self.spatial_merge_size, self.spatial_merge_size)
35
-
36
- @classmethod
37
- def from_dict(cls, params):
38
- return cls(
39
- **{
40
- k: v
41
- for k, v in params.items()
42
- if k in inspect.signature(cls).parameters
43
- }
44
- )
45
-
46
-
47
- def check_array_shape(arr):
48
- shape = arr.shape
49
-
50
- # Check if the shape has 4 dimensions
51
- if len(shape) != 4:
52
- return False
53
-
54
- out_channels, kH, KW, _ = shape
55
-
56
- # Check if out_channels is the largest, and kH and KW are the same
57
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
58
- return True
59
- else:
60
- return False
61
-
62
-
63
- def rotate_half(x):
64
- """Rotates half the hidden dims of the input."""
65
- x1 = x[..., : x.shape[-1] // 2]
66
- x2 = x[..., x.shape[-1] // 2 :]
67
- return mx.concatenate([-x2, x1], axis=-1)
68
-
69
-
70
- def apply_rotary_pos_emb_vision(tensor, freqs) -> mx.array:
71
- orig_dtype = tensor.dtype
72
-
73
- cos = mx.cos(freqs)
74
- sin = mx.sin(freqs)
75
-
76
- cos = mx.expand_dims(cos, axis=1) # Equivalent to unsqueeze(1)
77
- cos = mx.tile(cos, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
78
- cos = mx.expand_dims(cos, axis=0) # Equivalent to [None, ...]
79
-
80
- sin = mx.expand_dims(sin, axis=1) # Equivalent to unsqueeze(1)
81
- sin = mx.tile(sin, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
82
- sin = mx.expand_dims(sin, axis=0) # Equivalent to [None, ...]
83
-
84
- output = (tensor * cos) + (rotate_half(tensor) * sin)
85
- return output.astype(orig_dtype)
86
-
87
-
88
- class VisionRotaryEmbedding(nn.Module):
89
- def __init__(self, dim: int, theta: float = 10000.0) -> None:
90
- super().__init__()
91
- self.dim = dim
92
- self.theta = theta
93
-
94
- def __call__(self, seqlen: int) -> mx.array:
95
- inv_freq = 1.0 / (
96
- self.theta ** (mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim)
97
- )
98
- seq = mx.arange(seqlen.tolist(), dtype=inv_freq.dtype)
99
- freqs = mx.outer(seq, inv_freq)
100
- return freqs
101
-
102
-
103
- class Learnable2DInterpPosEmb(nn.Module):
104
- def __init__(
105
- self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
106
- ) -> None:
107
- super().__init__()
108
- self.height = height
109
- self.width = width
110
- self.interpolation_mode = interpolation_mode
111
- self.weight = mx.ones((height, width, dim))
112
-
113
- def __call__(self, x: mx.array, grid_hws: mx.array) -> mx.array:
114
- pos_embs = []
115
- for shape in grid_hws.tolist():
116
- if shape == self.weight.shape[:-1]:
117
- pos_embs.append(self.weight.flatten(end_axis=1))
118
- else:
119
- result = (
120
- bicubic_interpolate(
121
- mx.expand_dims(self.weight.transpose(2, 0, 1), axis=0),
122
- size=shape,
123
- )
124
- .squeeze(0)
125
- .transpose(1, 2, 0)
126
- .flatten(end_axis=1)
127
- )
128
-
129
- pos_embs.append(result)
130
-
131
- out = x + mx.concatenate(pos_embs).astype(x.dtype)
132
- return out
133
-
134
-
135
- class PatchEmbed(nn.Module):
136
- def __init__(
137
- self,
138
- patch_size: int = 14,
139
- num_channels: int = 3,
140
- embed_dim: int = 1152,
141
- init_pos_emb_height: int = 64,
142
- ) -> None:
143
- super().__init__()
144
- self.patch_size = patch_size
145
- self.num_channels = num_channels
146
- self.embed_dim = embed_dim
147
- self.init_pos_emb_height = init_pos_emb_height
148
-
149
- self.proj = nn.Conv2d(
150
- num_channels,
151
- embed_dim,
152
- kernel_size=patch_size,
153
- stride=patch_size,
154
- bias=True,
155
- )
156
- self.pos_emb = Learnable2DInterpPosEmb(
157
- height=init_pos_emb_height, width=init_pos_emb_height, dim=embed_dim
158
- )
159
-
160
- def __call__(self, hidden_states: mx.array, grid_thw: mx.array) -> mx.array:
161
- hidden_states = self.proj(hidden_states).swapaxes(1, 3)
162
- hidden_states = hidden_states.reshape(hidden_states.shape[0], -1)
163
- hidden_states = self.pos_emb(hidden_states, grid_thw)
164
- return hidden_states
165
-
166
-
167
- def _apply_rope_input_validation(x, freqs_cis):
168
- assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
169
- assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
170
- assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
171
- assert freqs_cis.dtype == mx.complex64, freqs_cis.dtype
172
-
173
-
174
- def view_as_complex(x):
175
- """
176
- Convert a tensor with shape (..., 2) to a complex tensor with shape (...).
177
- """
178
- # Get real and imaginary parts
179
- real, imag = x[..., 0], x[..., 1]
180
- # Create complex tensor
181
- return real + 1j * imag
182
-
183
-
184
- def view_as_real(x):
185
- """
186
- Convert a complex tensor with shape (...) to a real tensor with shape (..., 2).
187
- """
188
- # Get real and imaginary parts
189
- real = mx.real(x)
190
- imag = mx.imag(x)
191
- # Combine into a tensor with last dimension 2
192
- return mx.stack([real, imag], axis=-1)
193
-
194
-
195
- def apply_rope(
196
- q: mx.array, k: mx.array, freqs_cis: mx.array
197
- ) -> tuple[mx.array, mx.array]:
198
- """
199
- Args: (The leading dimensions of all inputs should be the same)
200
- q: query, array of shape (..., num_heads, head_dim)
201
- k: key, array of shape (..., num_heads, head_dim)
202
- freqs_cis: array of shape (..., head_dim/2), dtype=mx.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
203
- Returns:
204
- xq_out, xk_out: arrays of shape (..., num_heads, head_dim)
205
- """
206
- _apply_rope_input_validation(q, freqs_cis)
207
- _apply_rope_input_validation(k, freqs_cis)
208
-
209
- freqs_cis = mx.expand_dims(freqs_cis, axis=-2) # ..., 1, head_dim/2
210
- # ..., num_heads, head_dim/2
211
- q_ = view_as_complex(q.astype(mx.float32).reshape(*q.shape[:-1], -1, 2))
212
- k_ = view_as_complex(k.astype(mx.float32).reshape(*k.shape[:-1], -1, 2))
213
- q_out = view_as_real(q_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
214
- k_out = view_as_real(k_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
215
- return q_out.astype(q.dtype), k_out.astype(k.dtype)
216
-
217
-
218
- class Attention(nn.Module):
219
- def __init__(self, dim: int, num_heads: int = 16) -> None:
220
- super().__init__()
221
- self.num_heads = num_heads
222
- self.head_dim = head_dim = dim // num_heads
223
- self.scale = head_dim**-0.5
224
- self.wqkv = nn.Linear(dim, dim * 3, bias=True)
225
- self.wo = nn.Linear(dim, dim, bias=True)
226
-
227
- def __call__(
228
- self, x: mx.array, cu_seqlens: mx.array, rotary_pos_emb: mx.array = None
229
- ) -> mx.array:
230
- seq_length = x.shape[0]
231
- qkv = self.wqkv(x)
232
-
233
- qkv_shape = qkv.shape[:-1] + (
234
- 3,
235
- self.num_heads,
236
- self.head_dim,
237
- )
238
- # xqkv: (batch_size, seqlen, 3, nheads, headdim)
239
- qkv = qkv.reshape(*qkv_shape)
240
-
241
- q, k, v = mx.split(qkv, 3, axis=1)
242
- q = q.squeeze(1)
243
- k = k.squeeze(1)
244
- v = v.squeeze(1)
245
-
246
- q, k = apply_rope(q, k, rotary_pos_emb)
247
-
248
- attention_mask = mx.zeros((1, seq_length, seq_length), dtype=x.dtype)
249
-
250
- # Create attention mask for each sequence in the batch
251
- for i in range(1, len(cu_seqlens)):
252
- start = int(cu_seqlens[i - 1])
253
- end = int(cu_seqlens[i])
254
- attention_mask[..., start:end, start:end] = 1
255
-
256
- q = q.transpose(1, 0, 2)
257
- k = k.transpose(1, 0, 2)
258
- v = v.transpose(1, 0, 2)
259
-
260
- attn_weight = q @ k.swapaxes(-2, -1) / mx.sqrt(q.shape[-1])
261
- attn_weight += attention_mask
262
- attn_weight = mx.softmax(attn_weight, axis=-1).astype(q.dtype)
263
-
264
- attn_output = attn_weight @ v
265
- attn_output = attn_output.transpose(1, 0, 2)
266
- attn_output = attn_output.reshape(seq_length, -1)
267
- return self.wo(attn_output)
268
-
269
-
270
- class MLP(nn.Module):
271
- def __init__(self, dim, hidden_dim):
272
- super().__init__()
273
- self.activation_fn = nn.GELU()
274
- self.fc0 = nn.Linear(dim, hidden_dim)
275
- self.fc1 = nn.Linear(hidden_dim, dim)
276
-
277
- def __call__(self, x: mx.array) -> mx.array:
278
- x = self.activation_fn(self.fc0(x))
279
- x = self.fc1(x)
280
- return x
281
-
282
-
283
- class Qwen2VLVisionBlock(nn.Module):
284
- def __init__(self, config: VisionConfig) -> None:
285
- super().__init__()
286
- self.norm0 = nn.LayerNorm(config.embed_dim, eps=1e-6)
287
- self.norm1 = nn.LayerNorm(config.embed_dim, eps=1e-6)
288
-
289
- self.attn = Attention(dim=config.embed_dim, num_heads=config.num_heads)
290
- self.mlp = MLP(dim=config.embed_dim, hidden_dim=config.intermediate_size)
291
-
292
- def __call__(self, hidden_states, cu_seqlens, rotary_pos_emb) -> mx.array:
293
- hidden_states = hidden_states + self.attn(
294
- self.norm0(hidden_states),
295
- cu_seqlens=cu_seqlens,
296
- rotary_pos_emb=rotary_pos_emb,
297
- )
298
- hidden_states = hidden_states + self.mlp(self.norm1(hidden_states))
299
- return hidden_states
300
-
301
-
302
- class Rope2DPosEmb(nn.Module):
303
- """2D rotary position embedding with multi-resolution support.
304
-
305
- This class is intended to be used in the following way:
306
- 1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
307
- 2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
308
- 3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
309
- The rope is shared across all attention layers and all heads.
310
-
311
- Refs:
312
- - RoFormer: https://arxiv.org/abs/2104.09864
313
- - VisionLLaMA: https://arxiv.org/abs/2403.00522
314
- - https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py
315
-
316
- Args:
317
- dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
318
- max_height (int): the maximum height of the 2D grid
319
- max_width (int): the maximum width of the 2D grid
320
- theta_base (float): the base of the theta
321
- """
322
-
323
- def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000):
324
- super().__init__()
325
- self.dim = dim
326
- assert self.dim % 4 == 0, "dim must be divisible by 4"
327
- self.max_height = max_height
328
- self.max_width = max_width
329
- self.theta_base = theta_base
330
-
331
- self._freqs_cis = None
332
-
333
- def extra_repr(self):
334
- return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"
335
-
336
- def _precompute_freqs_cis(self) -> mx.array:
337
- """Calculate the cis(freqs) for each position in the 2D grid.
338
-
339
- Return: complex array of shape (max_height, max_width, dim//2) and value:
340
- height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
341
- weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4))
342
- note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
343
- """
344
- N = self.max_height * self.max_width
345
- flat_pos = mx.arange(0, N, dtype=mx.float32)
346
- x_pos = flat_pos % self.max_width
347
- y_pos = flat_pos // self.max_width
348
- dim_range = mx.arange(0, self.dim, 4)[: (self.dim // 4)].astype(
349
- mx.float32
350
- ) # C/4
351
- freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
352
- x_freqs = mx.outer(x_pos, freqs) # N, C/4
353
- y_freqs = mx.outer(y_pos, freqs) # N, C/4
354
-
355
- # Create complex numbers using cos and sin
356
- x_cos = mx.cos(x_freqs)
357
- x_sin = mx.sin(x_freqs)
358
- y_cos = mx.cos(y_freqs)
359
- y_sin = mx.sin(y_freqs)
360
-
361
- # Create complex numbers
362
- x_cis = x_cos + 1j * x_sin # N, C/4
363
- y_cis = y_cos + 1j * y_sin # N, C/4
364
-
365
- # N, C/4, 2
366
- freqs_cis = mx.stack([x_cis, y_cis], axis=-1)
367
-
368
- # max_height, max_width, C/2
369
- freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
370
- return freqs_cis
371
-
372
- def get_freqs_cis(self, grid_hws: mx.array) -> mx.array:
373
- """
374
- Args:
375
- grid_hws (mx.array): grid height and width
376
-
377
- Returns:
378
- freqs_cis: array of shape (sum(t * height * width), dim//2)
379
- """
380
- if self._freqs_cis is None:
381
- self._freqs_cis = self._precompute_freqs_cis()
382
-
383
- shapes = grid_hws.tolist()
384
- assert all(
385
- 1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
386
- ), (
387
- shapes,
388
- self.max_height,
389
- self.max_width,
390
- )
391
-
392
- freqs_cis_list = []
393
- for h, w in shapes:
394
- # Get the slice of precomputed frequencies for this shape
395
- shape_freqs = self._freqs_cis[:h, :w]
396
- # Reshape to flatten the spatial dimensions
397
- shape_freqs = shape_freqs.reshape(-1, self.dim // 2)
398
- freqs_cis_list.append(shape_freqs)
399
-
400
- freqs_cis = mx.concatenate(freqs_cis_list, axis=0)
401
- return freqs_cis
402
-
403
-
404
- def patch_merger(
405
- x: mx.array,
406
- grid_hws: mx.array,
407
- merge_kernel_size: list[int, int] = (2, 2),
408
- ) -> List[mx.array]:
409
- d_model = x.shape[-1]
410
-
411
- outputs = []
412
- pre_sum = 0
413
- for x_shape in grid_hws.tolist():
414
- height, width = x_shape[0], x_shape[1]
415
- # Get the current sequence
416
- seq = x[pre_sum : pre_sum + height * width]
417
- # Reshape along self.merge_kernel_size and concat to the last dimension
418
- kernel_height, kernel_width = merge_kernel_size
419
- new_height, new_width = height // kernel_height, width // kernel_width
420
- reshaped_seq = seq.reshape(
421
- new_height, kernel_height, new_width, kernel_width, d_model
422
- )
423
- reshaped_seq = mx.transpose(reshaped_seq, (0, 2, 1, 3, 4))
424
- padded_seq = reshaped_seq.reshape(
425
- new_height * new_width, kernel_height * kernel_width, -1
426
- )
427
- outputs.append(padded_seq)
428
- pre_sum += height * width
429
-
430
- return outputs
431
-
432
-
433
- class VisionModel(nn.Module):
434
-
435
- def __init__(self, config: VisionConfig) -> None:
436
- super().__init__()
437
- self.config = config
438
- self.model_type = config.model_type
439
- if self.model_type not in ["qwen2_vl", "moonvit"]:
440
- raise ValueError(f"Unsupported model type: {self.model_type}")
441
- self.spatial_merge_size = config.spatial_merge_size
442
- self.merge_kernel_size = config.merge_kernel_size
443
-
444
- self.patch_embed = PatchEmbed(
445
- patch_size=config.patch_size,
446
- num_channels=config.num_channels,
447
- embed_dim=config.embed_dim,
448
- init_pos_emb_height=config.init_pos_emb_height,
449
- )
450
-
451
- head_dim = config.embed_dim // config.num_heads
452
- self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
453
-
454
- self.blocks = [Qwen2VLVisionBlock(config) for _ in range(config.depth)]
455
- self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=1e-6)
456
- self.rope_pos_emb = Rope2DPosEmb(head_dim, 512, 512)
457
-
458
- def __call__(
459
- self,
460
- hidden_states: mx.array,
461
- grid_thw: mx.array,
462
- output_hidden_states: Optional[bool] = None,
463
- ) -> mx.array:
464
-
465
- hidden_states = self.patch_embed(hidden_states, grid_thw)
466
- rotary_pos_emb = self.rope_pos_emb.get_freqs_cis(grid_thw)
467
-
468
- # Assuming grid_thw has shape (batch_size, 3)
469
- batch_size = grid_thw.shape[0]
470
-
471
- # Calculate cu_seqlens for each item in the batch
472
- lengths = mx.concatenate(
473
- (
474
- mx.zeros((1,), dtype=grid_thw.dtype),
475
- grid_thw[:, 0] * grid_thw[:, 1],
476
- )
477
- )
478
- cu_seqlens = mx.cumsum(lengths.astype(mx.int32), axis=0)
479
-
480
- encoder_states = (hidden_states,) if output_hidden_states else None
481
-
482
- for blk in self.blocks:
483
- hidden_states = blk(
484
- hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
485
- )
486
- if output_hidden_states:
487
- encoder_states = encoder_states + (hidden_states,)
488
-
489
- hidden_states = self.final_layernorm(hidden_states)
490
-
491
- hidden_states = patch_merger(
492
- hidden_states, grid_thw, merge_kernel_size=self.merge_kernel_size
493
- )
494
-
495
- return hidden_states
496
-
497
- def sanitize(self, weights):
498
- sanitized_weights = {}
499
- for k, v in weights.items():
500
- if "position_ids" in k:
501
- # Remove unused position_ids
502
- continue
503
- elif "patch_embed.proj.weight" in k:
504
- # PyTorch conv2d weight tensors have shape:
505
- # [out_channels, in_channels, kH, KW]
506
- # MLX conv2d expects the weight be of shape:
507
- # [out_channels, kH, KW, in_channels]
508
- if check_array_shape(v):
509
- sanitized_weights[k] = v
510
- else:
511
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
512
-
513
- elif "vision_tower.blocks" in k:
514
- if "attn" not in k and ("wqkv" in k or "wo" in k):
515
- new_key = k.replace("wqkv", "attn.wqkv").replace("wo", "attn.wo")
516
- sanitized_weights[new_key] = v
517
- else:
518
- sanitized_weights[k] = v
519
- else:
520
- sanitized_weights[k] = v
521
-
522
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .llama4 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )