nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,416 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass, field
3
- from typing import Dict, List, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str = "mllama"
19
- vocab_size: int = 32000
20
- hidden_size: int = 4096
21
- intermediate_size: int = 14336
22
- num_hidden_layers: int = 40
23
- num_attention_heads: int = 32
24
- num_key_value_heads: int = 8
25
- hidden_act: str = "silu"
26
- max_position_embeddings: int = 131072
27
- initializer_range: float = 0.02
28
- rms_norm_eps: float = 1e-6
29
- tie_word_embeddings: bool = False
30
- rope_theta: float = 10000.0
31
- rope_traditional: bool = False
32
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
33
- cross_attention_layers: List[int] = field(
34
- default_factory=lambda: [3, 8, 13, 18, 23, 28, 33, 38]
35
- )
36
-
37
- def __post_init__(self):
38
- if self.num_key_value_heads is None:
39
- self.num_key_value_heads = self.num_attention_heads
40
-
41
- @classmethod
42
- def from_dict(cls, params):
43
- return cls(
44
- **{
45
- k: v
46
- for k, v in params.items()
47
- if k in inspect.signature(cls).parameters
48
- }
49
- )
50
-
51
-
52
- class MllamaTextCrossAttention(nn.Module):
53
- def __init__(self, config: TextConfig, layer_idx: Optional[int] = None):
54
- super().__init__()
55
- self.config = config
56
- self.hidden_size = config.hidden_size
57
- self.num_heads = config.num_attention_heads
58
- self.head_dim = self.hidden_size // self.num_heads
59
- self.num_key_value_heads = config.num_key_value_heads
60
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
61
- self.layer_idx = layer_idx
62
- self.scale = self.head_dim**-0.5
63
- self.q_proj = nn.Linear(
64
- self.hidden_size, self.num_heads * self.head_dim, bias=False
65
- )
66
- self.k_proj = nn.Linear(
67
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
68
- )
69
- self.v_proj = nn.Linear(
70
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
71
- )
72
- self.o_proj = nn.Linear(
73
- self.num_heads * self.head_dim, self.hidden_size, bias=False
74
- )
75
-
76
- self.q_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
77
- self.k_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
78
-
79
- def __call__(
80
- self,
81
- hidden_states: mx.array,
82
- cross_attention_states: Optional[mx.array] = None,
83
- attention_mask: Optional[mx.array] = None,
84
- cache: Optional[KVCache] = None,
85
- ) -> mx.array:
86
-
87
- bsz, q_len, _ = hidden_states.shape
88
- query = (
89
- self.q_proj(hidden_states)
90
- .reshape(bsz, q_len, self.num_heads, self.head_dim)
91
- .transpose(0, 2, 1, 3)
92
- )
93
- query_states = self.q_norm(query)
94
-
95
- if cross_attention_states is not None:
96
- key_states = (
97
- self.k_proj(cross_attention_states)
98
- .reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
99
- .transpose(0, 2, 1, 3)
100
- )
101
- value_states = (
102
- self.v_proj(cross_attention_states)
103
- .reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
104
- .transpose(0, 2, 1, 3)
105
- )
106
- key_states = self.k_norm(key_states)
107
- elif cache is not None and cache.offset > 0:
108
- key_states, value_states = cache.fetch()
109
- else:
110
- key_states, value_states = mx.split(query, 2, axis=1)
111
- key_states = self.k_norm(key_states)
112
-
113
- attn_output = scaled_dot_product_attention(
114
- query_states,
115
- key_states,
116
- value_states,
117
- cache,
118
- scale=self.scale,
119
- mask=attention_mask, # add a dim for batch processing
120
- )
121
- attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
122
- bsz, q_len, self.hidden_size
123
- )
124
- return self.o_proj(attn_output)
125
-
126
-
127
- class MllamaTextSelfAttention(nn.Module):
128
- def __init__(self, config: TextConfig, layer_idx: int):
129
- super().__init__()
130
- self.config = config
131
- self.hidden_size = config.hidden_size
132
- self.num_heads = config.num_attention_heads
133
- self.head_dim = self.hidden_size // self.num_heads
134
- self.num_key_value_heads = config.num_key_value_heads
135
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
136
- self.scale = self.head_dim**-0.5
137
- self.layer_idx = layer_idx
138
-
139
- self.q_proj = nn.Linear(
140
- self.hidden_size, self.num_heads * self.head_dim, bias=False
141
- )
142
- self.k_proj = nn.Linear(
143
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
144
- )
145
- self.v_proj = nn.Linear(
146
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
147
- )
148
- self.o_proj = nn.Linear(
149
- self.num_heads * self.head_dim, self.hidden_size, bias=False
150
- )
151
-
152
- self.rope = nn.RoPE(
153
- self.head_dim,
154
- traditional=config.rope_traditional,
155
- base=config.rope_theta,
156
- scale=1,
157
- )
158
-
159
- def __call__(
160
- self,
161
- x: mx.array,
162
- mask: Optional[mx.array] = None,
163
- cache: Optional[KVCache] = None,
164
- ) -> mx.array:
165
- bsz, q_len, _ = x.shape
166
- query_states = (
167
- self.q_proj(x).reshape(bsz, q_len, self.num_heads, -1).transpose(0, 2, 1, 3)
168
- )
169
- key_states = (
170
- self.k_proj(x)
171
- .reshape(bsz, q_len, self.num_key_value_heads, -1)
172
- .transpose(0, 2, 1, 3)
173
- )
174
- value_states = (
175
- self.v_proj(x)
176
- .reshape(bsz, q_len, self.num_key_value_heads, -1)
177
- .transpose(0, 2, 1, 3)
178
- )
179
-
180
- if cache is not None:
181
- query_states = self.rope(query_states, offset=cache.offset)
182
- key_states = self.rope(key_states, offset=cache.offset)
183
- key_states, value_states = cache.update_and_fetch(key_states, value_states)
184
- else:
185
- query_states = self.rope(query_states)
186
- key_states = self.rope(key_states)
187
-
188
- attn_output = scaled_dot_product_attention(
189
- query_states, key_states, value_states, cache, scale=self.scale, mask=mask
190
- )
191
- attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
192
- bsz, q_len, self.hidden_size
193
- )
194
- return self.o_proj(attn_output)
195
-
196
-
197
- class MllamaTextMLP(nn.Module):
198
- def __init__(self, config: TextConfig):
199
- super().__init__()
200
- self.gate_proj = nn.Linear(
201
- config.hidden_size, config.intermediate_size, bias=False
202
- )
203
- self.up_proj = nn.Linear(
204
- config.hidden_size, config.intermediate_size, bias=False
205
- )
206
- self.down_proj = nn.Linear(
207
- config.intermediate_size, config.hidden_size, bias=False
208
- )
209
- self.act_fn = lambda x: x * mx.sigmoid(x)
210
-
211
- def __call__(self, x):
212
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
213
-
214
-
215
- class MllamaSelfAttentionDecoderLayer(nn.Module):
216
- def __init__(self, config: TextConfig, layer_idx: int):
217
- super().__init__()
218
- self.hidden_size = config.hidden_size
219
- self.self_attn = MllamaTextSelfAttention(config, layer_idx=layer_idx)
220
- self.mlp = MllamaTextMLP(config)
221
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
222
- self.post_attention_layernorm = nn.RMSNorm(
223
- config.hidden_size, eps=config.rms_norm_eps
224
- )
225
-
226
- def __call__(
227
- self,
228
- hidden_states: mx.array,
229
- mask: Optional[mx.array] = None,
230
- cache: Optional[KVCache] = None,
231
- ) -> mx.array:
232
- residual = hidden_states
233
- hidden_states = self.input_layernorm(hidden_states)
234
- hidden_states = self.self_attn(
235
- x=hidden_states,
236
- mask=mask,
237
- cache=cache,
238
- )
239
- hidden_states = residual + hidden_states
240
-
241
- residual = hidden_states
242
- hidden_states = self.post_attention_layernorm(hidden_states)
243
- hidden_states = self.mlp(hidden_states)
244
- hidden_states = residual + hidden_states
245
-
246
- return hidden_states
247
-
248
-
249
- class MllamaCrossAttentionDecoderLayer(nn.Module):
250
- def __init__(self, config: TextConfig, layer_idx: int):
251
- super().__init__()
252
- self.hidden_size = config.hidden_size
253
- self.cross_attn = MllamaTextCrossAttention(config, layer_idx=layer_idx)
254
- self.mlp = MllamaTextMLP(config)
255
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
- self.post_attention_layernorm = nn.RMSNorm(
257
- config.hidden_size, eps=config.rms_norm_eps
258
- )
259
- self.cross_attn_attn_gate = mx.zeros(1)
260
- self.cross_attn_mlp_gate = mx.zeros(1)
261
-
262
- def __call__(
263
- self,
264
- hidden_states: mx.array,
265
- cross_attention_states: mx.array,
266
- attention_mask: Optional[mx.array] = None,
267
- full_text_row_masked_out_mask: Optional[mx.array] = None,
268
- cache: Optional[KVCache] = None,
269
- ) -> mx.array:
270
- residual = hidden_states
271
- hidden_states = self.input_layernorm(hidden_states)
272
- hidden_states = self.cross_attn(
273
- hidden_states=hidden_states,
274
- cross_attention_states=cross_attention_states,
275
- attention_mask=attention_mask,
276
- cache=cache,
277
- )
278
- hidden_states = residual + mx.tanh(self.cross_attn_attn_gate) * hidden_states
279
-
280
- residual = hidden_states
281
- hidden_states = self.post_attention_layernorm(hidden_states)
282
- hidden_states = self.mlp(hidden_states)
283
- if full_text_row_masked_out_mask is not None:
284
- hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states
285
- hidden_states = residual + mx.tanh(self.cross_attn_mlp_gate) * hidden_states
286
-
287
- return hidden_states
288
-
289
-
290
- class MllamaTextModel(nn.Module):
291
- def __init__(self, config: TextConfig):
292
- super().__init__()
293
- self.config = config
294
- self.vocab_size = config.vocab_size
295
- self.hidden_size = config.hidden_size
296
-
297
- self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size)
298
- self.layers = [
299
- (
300
- MllamaCrossAttentionDecoderLayer(config, layer_idx)
301
- if layer_idx in config.cross_attention_layers
302
- else MllamaSelfAttentionDecoderLayer(config, layer_idx)
303
- )
304
- for layer_idx in range(config.num_hidden_layers)
305
- ]
306
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
307
-
308
- def __call__(
309
- self,
310
- input_ids: Optional[mx.array] = None,
311
- mask: Optional[mx.array] = None,
312
- position_ids: Optional[mx.array] = None,
313
- cross_attention_states: Optional[mx.array] = None,
314
- cross_attention_mask: Optional[mx.array] = None,
315
- full_text_row_masked_out_mask: Optional[mx.array] = None,
316
- inputs_embeds: Optional[mx.array] = None,
317
- cache: Optional[KVCache] = None,
318
- ) -> mx.array:
319
- if input_ids is not None and inputs_embeds is not None:
320
- raise ValueError(
321
- "You cannot specify both input_ids and inputs_embeds at the same time"
322
- )
323
- elif input_ids is not None:
324
- batch_size, seq_length = input_ids.shape
325
- inputs_embeds = self.embed_tokens(input_ids)
326
- elif inputs_embeds is not None:
327
- batch_size, seq_length, _ = inputs_embeds.shape
328
- else:
329
- raise ValueError("You have to specify either input_ids or inputs_embeds")
330
-
331
- if position_ids is None:
332
- position_ids = mx.expand_dims(mx.arange(seq_length), 0)
333
- position_ids = mx.repeat(position_ids, batch_size, axis=0)
334
-
335
- hidden_states = inputs_embeds
336
-
337
- if cache is None:
338
- cache = [None] * len(self.layers)
339
-
340
- if mask is None:
341
- mask = create_attention_mask(hidden_states, cache)
342
-
343
- for idx, (decoder_layer, c) in enumerate(zip(self.layers, cache)):
344
- if idx in self.config.cross_attention_layers:
345
- layer_outputs = decoder_layer(
346
- hidden_states,
347
- cross_attention_states=cross_attention_states,
348
- attention_mask=cross_attention_mask,
349
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
350
- cache=c,
351
- )
352
- else:
353
- layer_outputs = decoder_layer(
354
- hidden_states,
355
- mask=mask,
356
- cache=c,
357
- )
358
- hidden_states = layer_outputs
359
-
360
- hidden_states = self.norm(hidden_states)
361
-
362
- return hidden_states
363
-
364
-
365
- class LanguageModel(nn.Module):
366
- def __init__(self, config: TextConfig):
367
- super().__init__()
368
- self.config = config
369
- self.model = MllamaTextModel(config)
370
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
371
-
372
- def __call__(
373
- self,
374
- input_ids: Optional[mx.array] = None,
375
- mask: Optional[mx.array] = None,
376
- cross_attention_states: Optional[mx.array] = None,
377
- cross_attention_mask: Optional[mx.array] = None,
378
- full_text_row_masked_out_mask: Optional[mx.array] = None,
379
- inputs_embeds: Optional[mx.array] = None,
380
- cache: Optional[KVCache] = None,
381
- ) -> Tuple[mx.array, Optional[mx.array]]:
382
-
383
- hidden_states = self.model(
384
- input_ids=input_ids,
385
- mask=mask,
386
- cross_attention_states=cross_attention_states,
387
- cross_attention_mask=cross_attention_mask,
388
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
389
- inputs_embeds=inputs_embeds,
390
- cache=cache,
391
- )
392
-
393
- logits = self.lm_head(hidden_states)
394
-
395
- return LanguageModelOutput(
396
- logits=logits, cross_attention_states=cross_attention_states
397
- )
398
-
399
- @staticmethod
400
- def sanitize(weights):
401
- # Remove unused precomputed rotary freqs
402
- return {
403
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
404
- }
405
-
406
- @property
407
- def layers(self):
408
- return self.model.layers
409
-
410
- @property
411
- def head_dim(self):
412
- return self.config.hidden_size // self.config.num_attention_heads
413
-
414
- @property
415
- def n_kv_heads(self):
416
- return self.config.num_key_value_heads
@@ -1,172 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional, Tuple
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- from huggingface_hub import snapshot_download
11
-
12
- from ..cache import KVCache
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 128256
24
- vision_feature_select_strategy: str = "default"
25
- vision_feature_layer: int = -2
26
- vocab_size: int = 32000
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class Model(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.config = config
44
- self.vision_tower = VisionModel(config.vision_config)
45
- self.language_model = LanguageModel(config.text_config)
46
- self.multi_modal_projector = nn.Linear(
47
- config.vision_config.vision_output_dim,
48
- config.text_config.hidden_size,
49
- bias=True,
50
- )
51
-
52
- @property
53
- def layers(self):
54
- return self.language_model.model.layers
55
-
56
- def __call__(
57
- self,
58
- input_ids: mx.array,
59
- pixel_values: mx.array,
60
- mask: mx.array,
61
- cache: Optional[KVCache] = None,
62
- **kwargs,
63
- ) -> Tuple[mx.array, Optional[mx.array]]:
64
-
65
- aspect_ratio_ids = kwargs.pop("aspect_ratio_ids", None)
66
- aspect_ratio_mask = kwargs.pop("aspect_ratio_mask", None)
67
- cross_attention_mask = kwargs.pop("cross_attention_mask", None)
68
-
69
- inputs_embeds = None
70
-
71
- # Process vision input if provided
72
- if pixel_values is not None:
73
- if aspect_ratio_ids is None:
74
- raise ValueError(
75
- "`aspect_ratio_ids` must be provided if `pixel_values` is provided"
76
- )
77
-
78
- vision_outputs = self.vision_tower(
79
- pixel_values=pixel_values,
80
- aspect_ratio_ids=aspect_ratio_ids,
81
- aspect_ratio_mask=aspect_ratio_mask,
82
- )
83
- cross_attention_states = vision_outputs[0]
84
-
85
- cross_attention_states = self.multi_modal_projector(
86
- cross_attention_states
87
- ).reshape(
88
- -1,
89
- cross_attention_states.shape[-2],
90
- self.config.text_config.hidden_size,
91
- )
92
-
93
- else:
94
- cross_attention_states = None
95
-
96
- # Prepare cross attention mask
97
- if cross_attention_mask is not None:
98
- cross_attention_mask, full_text_row_masked_out_mask = (
99
- self._prepare_cross_attention_mask(
100
- cross_attention_mask,
101
- num_vision_tokens=(
102
- self.config.vision_config.image_size
103
- // self.config.vision_config.patch_size
104
- )
105
- ** 2
106
- + 1,
107
- )
108
- )
109
- else:
110
- full_text_row_masked_out_mask = None
111
-
112
- if cross_attention_mask is not None:
113
- cache_position = mx.arange(input_ids.shape[1], dtype=mx.int32)
114
- cross_attention_mask = cross_attention_mask[:, :, cache_position]
115
- full_text_row_masked_out_mask = full_text_row_masked_out_mask[
116
- :, :, cache_position
117
- ]
118
-
119
- # Process language input
120
- outputs = self.language_model(
121
- input_ids=input_ids,
122
- mask=mask,
123
- cross_attention_states=cross_attention_states,
124
- cross_attention_mask=cross_attention_mask,
125
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
126
- inputs_embeds=inputs_embeds,
127
- cache=cache,
128
- )
129
-
130
- return outputs
131
-
132
- def _prepare_cross_attention_mask(
133
- self,
134
- cross_attention_mask: mx.array,
135
- num_vision_tokens: int,
136
- ) -> Tuple[mx.array, mx.array]:
137
- batch_size, text_total_length, *_ = cross_attention_mask.shape
138
- cross_attention_mask = mx.repeat(
139
- cross_attention_mask, num_vision_tokens, axis=3
140
- )
141
- cross_attention_mask = cross_attention_mask.reshape(
142
- batch_size, text_total_length, -1
143
- )
144
- cross_attention_mask = mx.expand_dims(cross_attention_mask, 1)
145
-
146
- # Invert the mask
147
- inverted_cross_attn_mask = 1.0 - cross_attention_mask
148
- fill_array = mx.array(-1e9)
149
- fill_array = mx.broadcast_to(fill_array, inverted_cross_attn_mask.shape)
150
- cross_attention_mask = mx.where(
151
- inverted_cross_attn_mask,
152
- fill_array,
153
- cross_attention_mask,
154
- )
155
-
156
- # Apply full-row bias
157
- full_text_row_masked_out_mask = mx.any(
158
- cross_attention_mask != -1e9,
159
- axis=-1,
160
- keepdims=True,
161
- )
162
- cross_attention_mask *= full_text_row_masked_out_mask
163
-
164
- return cross_attention_mask, full_text_row_masked_out_mask
165
-
166
- def sanitize(self, weights):
167
- def transform_key(key):
168
- if "vision_tower" not in key:
169
- key = key.replace("vision_model", "vision_tower")
170
- return key
171
-
172
- return {transform_key(k): v for k, v in weights.items()}