nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,509 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
import math
|
|
3
|
-
import re
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from functools import partial
|
|
6
|
-
from typing import Any, Dict, Optional, Tuple
|
|
7
|
-
|
|
8
|
-
import mlx.core as mx
|
|
9
|
-
import mlx.nn as nn
|
|
10
|
-
from mlx_lm.models.switch_layers import SwitchGLU
|
|
11
|
-
|
|
12
|
-
from ..base import (
|
|
13
|
-
LanguageModelOutput,
|
|
14
|
-
create_attention_mask,
|
|
15
|
-
scaled_dot_product_attention,
|
|
16
|
-
)
|
|
17
|
-
from ..cache import KVCache
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
@dataclass
|
|
21
|
-
class TextConfig:
|
|
22
|
-
model_type: str = "deepseek_v3"
|
|
23
|
-
vocab_size: int = 102400
|
|
24
|
-
hidden_size: int = 4096
|
|
25
|
-
intermediate_size: int = 11008
|
|
26
|
-
moe_intermediate_size: int = 1407
|
|
27
|
-
num_hidden_layers: int = 30
|
|
28
|
-
num_attention_heads: int = 32
|
|
29
|
-
num_key_value_heads: int = 32
|
|
30
|
-
n_shared_experts: Optional[int] = None
|
|
31
|
-
n_routed_experts: Optional[int] = None
|
|
32
|
-
routed_scaling_factor: float = 1.0
|
|
33
|
-
kv_lora_rank: int = 512
|
|
34
|
-
q_lora_rank: int = 1536
|
|
35
|
-
qk_rope_head_dim: int = 64
|
|
36
|
-
v_head_dim: int = 128
|
|
37
|
-
qk_nope_head_dim: int = 128
|
|
38
|
-
topk_method: str = "noaux_tc"
|
|
39
|
-
scoring_func: str = "sigmoid"
|
|
40
|
-
norm_topk_prob: bool = True
|
|
41
|
-
n_group: Optional[int] = None
|
|
42
|
-
topk_group: Optional[int] = None
|
|
43
|
-
num_experts_per_tok: Optional[int] = None
|
|
44
|
-
moe_layer_freq: int = 1
|
|
45
|
-
first_k_dense_replace: int = 0
|
|
46
|
-
max_position_embeddings: int = 2048
|
|
47
|
-
rms_norm_eps: float = 1e-6
|
|
48
|
-
rope_theta: float = 10000.0
|
|
49
|
-
rope_scaling: Dict = None
|
|
50
|
-
attention_bias: bool = False
|
|
51
|
-
|
|
52
|
-
@classmethod
|
|
53
|
-
def from_dict(cls, params):
|
|
54
|
-
return cls(
|
|
55
|
-
**{
|
|
56
|
-
k: v
|
|
57
|
-
for k, v in params.items()
|
|
58
|
-
if k in inspect.signature(cls).parameters
|
|
59
|
-
}
|
|
60
|
-
)
|
|
61
|
-
|
|
62
|
-
def __post_init__(self):
|
|
63
|
-
if self.num_key_value_heads is None:
|
|
64
|
-
self.num_key_value_heads = self.num_attention_heads
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
def yarn_find_correction_dim(
|
|
68
|
-
num_rotations, dim, base=10000, max_position_embeddings=2048
|
|
69
|
-
):
|
|
70
|
-
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
|
71
|
-
2 * math.log(base)
|
|
72
|
-
)
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
def yarn_find_correction_range(
|
|
76
|
-
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
|
77
|
-
):
|
|
78
|
-
low = math.floor(
|
|
79
|
-
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
|
80
|
-
)
|
|
81
|
-
high = math.ceil(
|
|
82
|
-
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
|
83
|
-
)
|
|
84
|
-
return max(low, 0), min(high, dim - 1)
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
def yarn_get_mscale(scale=1, mscale=1):
|
|
88
|
-
if scale <= 1:
|
|
89
|
-
return 1.0
|
|
90
|
-
return 0.1 * mscale * math.log(scale) + 1.0
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
def yarn_linear_ramp_mask(min_val, max_val, dim):
|
|
94
|
-
if min_val == max_val:
|
|
95
|
-
max_val += 0.001 # Prevent singularity
|
|
96
|
-
|
|
97
|
-
linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
|
|
98
|
-
return mx.clip(linear_func, 0, 1)
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
class DeepseekV3YarnRotaryEmbedding(nn.Module):
|
|
102
|
-
def __init__(
|
|
103
|
-
self,
|
|
104
|
-
dim,
|
|
105
|
-
max_position_embeddings=2048,
|
|
106
|
-
base=10000,
|
|
107
|
-
scaling_factor=1.0,
|
|
108
|
-
original_max_position_embeddings=4096,
|
|
109
|
-
beta_fast=32,
|
|
110
|
-
beta_slow=1,
|
|
111
|
-
mscale=1,
|
|
112
|
-
mscale_all_dim=0,
|
|
113
|
-
):
|
|
114
|
-
super().__init__()
|
|
115
|
-
self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
|
|
116
|
-
scaling_factor, mscale_all_dim
|
|
117
|
-
)
|
|
118
|
-
freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
|
|
119
|
-
freq_inter = scaling_factor * freq_extra
|
|
120
|
-
low, high = yarn_find_correction_range(
|
|
121
|
-
beta_fast,
|
|
122
|
-
beta_slow,
|
|
123
|
-
dim,
|
|
124
|
-
base,
|
|
125
|
-
original_max_position_embeddings,
|
|
126
|
-
)
|
|
127
|
-
freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
|
|
128
|
-
self._freqs = (freq_inter * freq_extra) / (
|
|
129
|
-
freq_inter * freq_mask + freq_extra * (1 - freq_mask)
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
def __call__(self, x, offset=0):
|
|
133
|
-
if self.mscale != 1.0:
|
|
134
|
-
x = self.mscale * x
|
|
135
|
-
return mx.fast.rope(
|
|
136
|
-
x,
|
|
137
|
-
x.shape[-1],
|
|
138
|
-
traditional=True,
|
|
139
|
-
base=None,
|
|
140
|
-
scale=1.0,
|
|
141
|
-
offset=offset,
|
|
142
|
-
freqs=self._freqs,
|
|
143
|
-
)
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
# A clipped silu to prevent fp16 from overflowing
|
|
147
|
-
@partial(mx.compile, shapeless=True)
|
|
148
|
-
def clipped_silu(x):
|
|
149
|
-
return mx.clip(x * mx.sigmoid(x), a_min=-100, a_max=100)
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
class DeepseekV3Attention(nn.Module):
|
|
153
|
-
def __init__(self, config: TextConfig):
|
|
154
|
-
super().__init__()
|
|
155
|
-
self.config = config
|
|
156
|
-
self.hidden_size = config.hidden_size
|
|
157
|
-
self.num_heads = config.num_attention_heads
|
|
158
|
-
self.max_position_embeddings = config.max_position_embeddings
|
|
159
|
-
self.rope_theta = config.rope_theta
|
|
160
|
-
self.q_lora_rank = config.q_lora_rank
|
|
161
|
-
self.qk_rope_head_dim = config.qk_rope_head_dim
|
|
162
|
-
self.kv_lora_rank = config.kv_lora_rank
|
|
163
|
-
self.v_head_dim = config.v_head_dim
|
|
164
|
-
self.qk_nope_head_dim = config.qk_nope_head_dim
|
|
165
|
-
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
|
166
|
-
|
|
167
|
-
self.scale = self.q_head_dim**-0.5
|
|
168
|
-
|
|
169
|
-
if self.q_lora_rank is None:
|
|
170
|
-
self.q_proj = nn.Linear(
|
|
171
|
-
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
|
172
|
-
)
|
|
173
|
-
else:
|
|
174
|
-
self.q_a_proj = nn.Linear(
|
|
175
|
-
self.hidden_size, self.q_lora_rank, bias=config.attention_bias
|
|
176
|
-
)
|
|
177
|
-
self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank, eps=1e-6)
|
|
178
|
-
self.q_b_proj = nn.Linear(
|
|
179
|
-
self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
|
180
|
-
)
|
|
181
|
-
|
|
182
|
-
self.kv_a_proj_with_mqa = nn.Linear(
|
|
183
|
-
self.hidden_size,
|
|
184
|
-
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
185
|
-
bias=config.attention_bias,
|
|
186
|
-
)
|
|
187
|
-
self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank, eps=1e-6)
|
|
188
|
-
self.kv_b_proj = nn.Linear(
|
|
189
|
-
self.kv_lora_rank,
|
|
190
|
-
self.num_heads
|
|
191
|
-
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
|
192
|
-
bias=False,
|
|
193
|
-
)
|
|
194
|
-
|
|
195
|
-
self.o_proj = nn.Linear(
|
|
196
|
-
self.num_heads * self.v_head_dim,
|
|
197
|
-
self.hidden_size,
|
|
198
|
-
bias=config.attention_bias,
|
|
199
|
-
)
|
|
200
|
-
|
|
201
|
-
if self.config.rope_scaling is not None:
|
|
202
|
-
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
|
203
|
-
scaling_factor = self.config.rope_scaling["factor"]
|
|
204
|
-
if mscale_all_dim:
|
|
205
|
-
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
|
206
|
-
self.scale = self.scale * mscale * mscale
|
|
207
|
-
|
|
208
|
-
rope_kwargs = {
|
|
209
|
-
key: self.config.rope_scaling[key]
|
|
210
|
-
for key in [
|
|
211
|
-
"original_max_position_embeddings",
|
|
212
|
-
"beta_fast",
|
|
213
|
-
"beta_slow",
|
|
214
|
-
"mscale",
|
|
215
|
-
"mscale_all_dim",
|
|
216
|
-
]
|
|
217
|
-
if key in self.config.rope_scaling
|
|
218
|
-
}
|
|
219
|
-
self.rope = DeepseekV3YarnRotaryEmbedding(
|
|
220
|
-
dim=self.qk_rope_head_dim,
|
|
221
|
-
max_position_embeddings=self.max_position_embeddings,
|
|
222
|
-
scaling_factor=scaling_factor,
|
|
223
|
-
base=self.rope_theta,
|
|
224
|
-
**rope_kwargs,
|
|
225
|
-
)
|
|
226
|
-
else:
|
|
227
|
-
self.rope = nn.RoPE(
|
|
228
|
-
dims=self.qk_rope_head_dim,
|
|
229
|
-
base=self.rope_theta,
|
|
230
|
-
traditional=True,
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
def __call__(
|
|
234
|
-
self,
|
|
235
|
-
x: mx.array,
|
|
236
|
-
mask: Optional[mx.array] = None,
|
|
237
|
-
cache: Optional[Any] = None,
|
|
238
|
-
) -> mx.array:
|
|
239
|
-
B, L, D = x.shape
|
|
240
|
-
|
|
241
|
-
if self.q_lora_rank is None:
|
|
242
|
-
q = self.q_proj(x)
|
|
243
|
-
else:
|
|
244
|
-
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
|
|
245
|
-
|
|
246
|
-
q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
|
|
247
|
-
q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
|
|
248
|
-
compressed_kv = self.kv_a_proj_with_mqa(x)
|
|
249
|
-
compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
|
|
250
|
-
k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
|
|
251
|
-
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
|
252
|
-
kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
|
253
|
-
|
|
254
|
-
k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
|
|
255
|
-
|
|
256
|
-
if cache is not None:
|
|
257
|
-
q_pe = self.rope(q_pe, cache.offset)
|
|
258
|
-
k_pe = self.rope(k_pe, cache.offset)
|
|
259
|
-
k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
|
|
260
|
-
keys, values = cache.update_and_fetch(
|
|
261
|
-
mx.concatenate([k_nope, k_pe], axis=-1), values
|
|
262
|
-
)
|
|
263
|
-
else:
|
|
264
|
-
q_pe = self.rope(q_pe)
|
|
265
|
-
k_pe = self.rope(k_pe)
|
|
266
|
-
k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
|
|
267
|
-
keys = mx.concatenate([k_nope, k_pe], axis=-1)
|
|
268
|
-
|
|
269
|
-
queries = mx.concatenate([q_nope, q_pe], axis=-1)
|
|
270
|
-
|
|
271
|
-
output = scaled_dot_product_attention(
|
|
272
|
-
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
273
|
-
)
|
|
274
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
275
|
-
return self.o_proj(output)
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
class DeepseekV3MLP(nn.Module):
|
|
279
|
-
def __init__(
|
|
280
|
-
self, config: TextConfig, hidden_size: int = None, intermediate_size: int = None
|
|
281
|
-
):
|
|
282
|
-
super().__init__()
|
|
283
|
-
self.config = config
|
|
284
|
-
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
|
285
|
-
self.intermediate_size = (
|
|
286
|
-
config.intermediate_size if intermediate_size is None else intermediate_size
|
|
287
|
-
)
|
|
288
|
-
|
|
289
|
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
290
|
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
291
|
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
292
|
-
|
|
293
|
-
def __call__(self, x):
|
|
294
|
-
down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
295
|
-
return down_proj
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
@mx.compile
|
|
299
|
-
def group_expert_select(
|
|
300
|
-
gates,
|
|
301
|
-
e_score_correction_bias,
|
|
302
|
-
top_k,
|
|
303
|
-
n_group,
|
|
304
|
-
topk_group,
|
|
305
|
-
routed_scaling_factor,
|
|
306
|
-
norm_topk_prob,
|
|
307
|
-
):
|
|
308
|
-
|
|
309
|
-
k = top_k
|
|
310
|
-
scores = mx.sigmoid(gates.astype(mx.float32))
|
|
311
|
-
orig_scores = scores
|
|
312
|
-
scores = scores + e_score_correction_bias
|
|
313
|
-
scores = mx.unflatten(scores, axis=-1, shape=(n_group, -1))
|
|
314
|
-
group_scores = mx.topk(scores, 2, axis=-1).sum(axis=-1, keepdims=True)
|
|
315
|
-
k = n_group - topk_group
|
|
316
|
-
group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-2)[..., :k, :]
|
|
317
|
-
scores = mx.put_along_axis(scores, group_idx, mx.array(0.0), axis=-2)
|
|
318
|
-
scores = mx.flatten(scores, -2, -1)
|
|
319
|
-
|
|
320
|
-
k = top_k
|
|
321
|
-
inds = mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]
|
|
322
|
-
scores = mx.take_along_axis(orig_scores, inds, axis=-1)
|
|
323
|
-
if top_k > 1 and norm_topk_prob:
|
|
324
|
-
denominator = scores.sum(axis=-1, keepdims=True)
|
|
325
|
-
scores = scores / denominator
|
|
326
|
-
scores = scores * routed_scaling_factor
|
|
327
|
-
|
|
328
|
-
return inds, scores
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
class MoEGate(nn.Module):
|
|
332
|
-
def __init__(self, config: TextConfig):
|
|
333
|
-
super().__init__()
|
|
334
|
-
self.config = config
|
|
335
|
-
self.top_k = config.num_experts_per_tok
|
|
336
|
-
self.norm_topk_prob = config.norm_topk_prob
|
|
337
|
-
self.n_routed_experts = config.n_routed_experts
|
|
338
|
-
self.routed_scaling_factor = config.routed_scaling_factor
|
|
339
|
-
self.n_group = config.n_group
|
|
340
|
-
self.topk_group = config.topk_group
|
|
341
|
-
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
|
|
342
|
-
self.e_score_correction_bias = mx.zeros((self.n_routed_experts,))
|
|
343
|
-
assert config.topk_method == "noaux_tc", "Unsupported topk method."
|
|
344
|
-
|
|
345
|
-
def __call__(self, x):
|
|
346
|
-
return group_expert_select(
|
|
347
|
-
x @ self.weight.T,
|
|
348
|
-
self.e_score_correction_bias,
|
|
349
|
-
self.top_k,
|
|
350
|
-
self.n_group,
|
|
351
|
-
self.topk_group,
|
|
352
|
-
self.routed_scaling_factor,
|
|
353
|
-
self.norm_topk_prob,
|
|
354
|
-
)
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
class DeepseekV3MoE(nn.Module):
|
|
358
|
-
def __init__(self, config: TextConfig):
|
|
359
|
-
super().__init__()
|
|
360
|
-
self.config = config
|
|
361
|
-
self.num_experts_per_tok = config.num_experts_per_tok
|
|
362
|
-
self.switch_mlp = SwitchGLU(
|
|
363
|
-
config.hidden_size,
|
|
364
|
-
config.moe_intermediate_size,
|
|
365
|
-
config.n_routed_experts,
|
|
366
|
-
activation=clipped_silu,
|
|
367
|
-
)
|
|
368
|
-
|
|
369
|
-
self.gate = MoEGate(config)
|
|
370
|
-
if config.n_shared_experts is not None:
|
|
371
|
-
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
372
|
-
self.shared_experts = DeepseekV3MLP(
|
|
373
|
-
config=config, intermediate_size=intermediate_size
|
|
374
|
-
)
|
|
375
|
-
|
|
376
|
-
def __call__(self, x):
|
|
377
|
-
inds, scores = self.gate(x)
|
|
378
|
-
y = self.switch_mlp(x, inds)
|
|
379
|
-
y = (y * scores[..., None]).sum(axis=-2).astype(y.dtype)
|
|
380
|
-
if self.config.n_shared_experts is not None:
|
|
381
|
-
y = y + self.shared_experts(x)
|
|
382
|
-
|
|
383
|
-
return y
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
class DeepseekV3DecoderLayer(nn.Module):
|
|
387
|
-
def __init__(self, config: TextConfig, layer_idx: int):
|
|
388
|
-
super().__init__()
|
|
389
|
-
self.self_attn = DeepseekV3Attention(config)
|
|
390
|
-
self.mlp = (
|
|
391
|
-
DeepseekV3MoE(config)
|
|
392
|
-
if (
|
|
393
|
-
config.n_routed_experts is not None
|
|
394
|
-
and layer_idx >= config.first_k_dense_replace
|
|
395
|
-
and layer_idx % config.moe_layer_freq == 0
|
|
396
|
-
)
|
|
397
|
-
else DeepseekV3MLP(config)
|
|
398
|
-
)
|
|
399
|
-
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
400
|
-
self.post_attention_layernorm = nn.RMSNorm(
|
|
401
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
402
|
-
)
|
|
403
|
-
|
|
404
|
-
def __call__(
|
|
405
|
-
self,
|
|
406
|
-
x: mx.array,
|
|
407
|
-
mask: Optional[mx.array] = None,
|
|
408
|
-
cache: Optional[Any] = None,
|
|
409
|
-
) -> mx.array:
|
|
410
|
-
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
411
|
-
h = x + r
|
|
412
|
-
r = self.mlp(self.post_attention_layernorm(h))
|
|
413
|
-
return h + r
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
class DeepseekV3Model(nn.Module):
|
|
417
|
-
def __init__(self, config: TextConfig):
|
|
418
|
-
super().__init__()
|
|
419
|
-
self.vocab_size = config.vocab_size
|
|
420
|
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
421
|
-
self.layers = [
|
|
422
|
-
DeepseekV3DecoderLayer(config, idx)
|
|
423
|
-
for idx in range(config.num_hidden_layers)
|
|
424
|
-
]
|
|
425
|
-
self.start_idx = 0
|
|
426
|
-
self.end_idx = len(self.layers)
|
|
427
|
-
self.num_layers = self.end_idx
|
|
428
|
-
|
|
429
|
-
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
430
|
-
|
|
431
|
-
def __call__(
|
|
432
|
-
self,
|
|
433
|
-
x: mx.array,
|
|
434
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
435
|
-
cache: Optional[Any] = None,
|
|
436
|
-
mask: Optional[mx.array] = None,
|
|
437
|
-
) -> mx.array:
|
|
438
|
-
|
|
439
|
-
if inputs_embeds is None:
|
|
440
|
-
h = self.embed_tokens(x)
|
|
441
|
-
else:
|
|
442
|
-
h = inputs_embeds
|
|
443
|
-
|
|
444
|
-
if mask is None:
|
|
445
|
-
mask = create_attention_mask(h, cache)
|
|
446
|
-
|
|
447
|
-
if cache is None:
|
|
448
|
-
cache = [None] * self.num_layers
|
|
449
|
-
|
|
450
|
-
for layer, c in zip(self.layers, cache):
|
|
451
|
-
h = layer(h, mask, c)
|
|
452
|
-
|
|
453
|
-
return self.norm(h)
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
class LanguageModel(nn.Module):
|
|
457
|
-
def __init__(self, config: TextConfig):
|
|
458
|
-
super().__init__()
|
|
459
|
-
self.config = config
|
|
460
|
-
self.model_type = config.model_type
|
|
461
|
-
self.model = DeepseekV3Model(config)
|
|
462
|
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
463
|
-
|
|
464
|
-
def __call__(
|
|
465
|
-
self,
|
|
466
|
-
inputs: mx.array,
|
|
467
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
468
|
-
cache: Optional[Any] = None,
|
|
469
|
-
mask: Optional[mx.array] = None,
|
|
470
|
-
):
|
|
471
|
-
out = self.model(inputs, inputs_embeds=inputs_embeds, cache=cache, mask=mask)
|
|
472
|
-
out = self.lm_head(out)
|
|
473
|
-
return LanguageModelOutput(logits=out)
|
|
474
|
-
|
|
475
|
-
def sanitize(self, weights):
|
|
476
|
-
def keep(key):
|
|
477
|
-
return "rotary_emb" not in key
|
|
478
|
-
|
|
479
|
-
weights = {k: v for k, v in weights.items() if keep(k)}
|
|
480
|
-
# Stack experts
|
|
481
|
-
for l in range(self.config.num_hidden_layers):
|
|
482
|
-
prefix = f"language_model.model.layers.{l}"
|
|
483
|
-
for m in [("gate_proj"), ("down_proj"), ("up_proj")]:
|
|
484
|
-
for k in ["weight", "scales", "biases"]:
|
|
485
|
-
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
|
|
486
|
-
to_join = [
|
|
487
|
-
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
|
|
488
|
-
for e in range(self.config.n_routed_experts)
|
|
489
|
-
]
|
|
490
|
-
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
|
491
|
-
|
|
492
|
-
return weights
|
|
493
|
-
|
|
494
|
-
def embed_tokens(self, x):
|
|
495
|
-
return self.model.embed_tokens(x)
|
|
496
|
-
|
|
497
|
-
@property
|
|
498
|
-
def layers(self):
|
|
499
|
-
return self.model.layers[self.model.start_idx : self.model.end_idx]
|
|
500
|
-
|
|
501
|
-
@property
|
|
502
|
-
def n_kv_heads(self):
|
|
503
|
-
return self.config.num_key_value_heads
|
|
504
|
-
|
|
505
|
-
def cast_predicate(self):
|
|
506
|
-
def predicate(k):
|
|
507
|
-
return "e_score_correction_bias" not in k
|
|
508
|
-
|
|
509
|
-
return predicate
|