nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,490 +0,0 @@
1
- from typing import Optional
2
-
3
- import mlx.core as mx
4
- import mlx.nn as nn
5
- import numpy as np
6
-
7
- from ..base import (
8
- LanguageModelOutput,
9
- create_attention_mask,
10
- scaled_dot_product_attention,
11
- )
12
- from ..cache import KVCache
13
- from .config import ModelConfig, TextConfig
14
-
15
-
16
- class Qwen2RotaryEmbedding:
17
- def __init__(self, dim, max_position_embeddings=2048, base=10000):
18
- self.dim = dim
19
- self.max_position_embeddings = max_position_embeddings
20
- self.base = base
21
-
22
- inv_freq = 1.0 / (
23
- self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)
24
- )
25
- self.inv_freq = inv_freq
26
-
27
- self._set_cos_sin_cache(seq_len=max_position_embeddings)
28
-
29
- def _set_cos_sin_cache(self, seq_len):
30
- self.max_seq_len_cached = seq_len
31
- t = mx.arange(self.max_seq_len_cached).astype(mx.float32)
32
-
33
- freqs = mx.outer(t, self.inv_freq)
34
- emb = mx.concatenate((freqs, freqs), axis=-1)
35
- self.cos_cached = mx.cos(emb)
36
- self.sin_cached = mx.sin(emb)
37
-
38
- def __call__(self, x, seq_len=None):
39
-
40
- if seq_len > self.max_seq_len_cached:
41
- self._set_cos_sin_cache(seq_len=seq_len)
42
-
43
- return (
44
- self.cos_cached[:seq_len].astype(x.dtype),
45
- self.sin_cached[:seq_len].astype(x.dtype),
46
- )
47
-
48
-
49
- def rotate_half(x):
50
- """Rotates half the hidden dims of the input."""
51
- x1 = x[..., : x.shape[-1] // 2]
52
- x2 = x[..., x.shape[-1] // 2 :]
53
- return mx.concatenate([-x2, x1], axis=-1)
54
-
55
-
56
- def apply_multimodal_rotary_pos_emb(q, k, cos, sin, position_ids, mrope_section):
57
- """
58
- Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors.
59
- Args:
60
- q (mx.array): The query tensor.
61
- k (mx.array): The key tensor.
62
- cos (mx.array): The cosine part of the rotary embedding.
63
- sin (mx.array): The sine part of the rotary embedding.
64
- mrope_section (List[int]): Multimodal rope section for channel dimension of temporal, height and width.
65
- unsqueeze_dim (int, optional): Dimension to unsqueeze. Defaults to 1.
66
- Returns:
67
- tuple(mx.array): The rotated query and key tensors.
68
- """
69
-
70
- mrope_section = np.cumsum(mrope_section * 2)[:-1].tolist()
71
- cos = cos[position_ids]
72
- sin = sin[position_ids]
73
-
74
- cos = mx.concatenate(
75
- [m[i % 3] for i, m in enumerate(mx.split(cos, mrope_section, axis=-1))], axis=-1
76
- )[
77
- :, None, :, :
78
- ] # unsqueeze dim 1
79
- sin = mx.concatenate(
80
- [m[i % 3] for i, m in enumerate(mx.split(sin, mrope_section, axis=-1))], axis=-1
81
- )[:, None, :, :]
82
-
83
- # Apply rotary embedding
84
- q_embed = (q * cos) + (rotate_half(q) * sin)
85
- k_embed = (k * cos) + (rotate_half(k) * sin)
86
-
87
- return q_embed, k_embed
88
-
89
-
90
- class Attention(nn.Module):
91
- def __init__(self, args: TextConfig):
92
- super().__init__()
93
-
94
- dim = args.hidden_size
95
- self.n_heads = n_heads = args.num_attention_heads
96
- assert args.num_key_value_heads is not None
97
- self.n_kv_heads = n_kv_heads = args.num_key_value_heads
98
-
99
- self.head_dim = head_dim = args.hidden_size // n_heads
100
- self.scale = head_dim**-0.5
101
-
102
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
103
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
104
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
105
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
106
-
107
- self.rope_scaling = args.rope_scaling
108
-
109
- self.rotary_emb = Qwen2RotaryEmbedding(
110
- head_dim,
111
- max_position_embeddings=args.max_position_embeddings,
112
- base=args.rope_theta,
113
- )
114
-
115
- def __call__(
116
- self,
117
- x: mx.array,
118
- mask: Optional[mx.array] = None,
119
- cache: Optional[KVCache] = None,
120
- position_ids: Optional[mx.array] = None,
121
- ) -> mx.array:
122
- B, L, D = x.shape
123
-
124
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
125
-
126
- # Prepare the queries, keys and values for the attention computation
127
- queries = queries.reshape(B, L, self.n_heads, self.head_dim).transpose(
128
- 0, 2, 1, 3
129
- )
130
- keys = keys.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
131
- values = values.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(
132
- 0, 2, 1, 3
133
- )
134
-
135
- kv_seq_len = keys.shape[-2]
136
-
137
- if position_ids is None:
138
- kv_seq_len += cache.offset + 1
139
- position_ids = mx.arange(cache.offset, cache.offset + L)
140
- position_ids = mx.expand_dims(position_ids, axis=0)
141
- position_ids = mx.tile(position_ids, (3, 1, 1))
142
- else:
143
- kv_seq_len += cache.offset + 1 if cache is not None else 0
144
-
145
- cos, sin = self.rotary_emb(values, kv_seq_len)
146
-
147
- if mask is not None and isinstance(mask, mx.array):
148
- mask = mask[..., : keys.shape[-2]]
149
- queries, keys = apply_multimodal_rotary_pos_emb(
150
- queries, keys, cos, sin, position_ids, self.rope_scaling["mrope_section"]
151
- )
152
-
153
- if cache is not None:
154
- keys, values = cache.update_and_fetch(keys, values)
155
-
156
- output = scaled_dot_product_attention(
157
- queries, keys, values, cache, scale=self.scale, mask=mask
158
- )
159
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
160
- return self.o_proj(output)
161
-
162
-
163
- class MLP(nn.Module):
164
- def __init__(self, dim, hidden_dim):
165
- super().__init__()
166
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
167
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
168
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
169
-
170
- def __call__(self, x) -> mx.array:
171
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
172
-
173
-
174
- class Qwen2VLDecoderLayer(nn.Module):
175
- def __init__(self, args: TextConfig):
176
- super().__init__()
177
- self.num_attention_heads = args.num_attention_heads
178
- self.hidden_size = args.hidden_size
179
- self.self_attn = Attention(args)
180
- self.mlp = MLP(args.hidden_size, args.intermediate_size)
181
- self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
182
- self.post_attention_layernorm = nn.RMSNorm(
183
- args.hidden_size, eps=args.rms_norm_eps
184
- )
185
- self.args = args
186
-
187
- def __call__(
188
- self,
189
- x: mx.array,
190
- mask: Optional[mx.array] = None,
191
- cache: Optional[KVCache] = None,
192
- position_ids: Optional[mx.array] = None,
193
- ) -> mx.array:
194
- r = self.self_attn(self.input_layernorm(x), mask, cache, position_ids)
195
- h = x + r
196
- r = self.mlp(self.post_attention_layernorm(h))
197
- out = h + r
198
- return out
199
-
200
-
201
- class Qwen2Model(nn.Module):
202
- def __init__(self, args: TextConfig):
203
- super().__init__()
204
- self.args = args
205
- self.vocab_size = args.vocab_size
206
- self.num_hidden_layers = args.num_hidden_layers
207
- assert self.vocab_size > 0
208
- self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
209
- self.layers = [
210
- Qwen2VLDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
211
- ]
212
- self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
213
-
214
- def __call__(
215
- self,
216
- inputs: mx.array,
217
- inputs_embeds: Optional[mx.array] = None,
218
- mask: Optional[mx.array] = None,
219
- cache=None,
220
- position_ids: Optional[mx.array] = None,
221
- ):
222
- if inputs_embeds is None:
223
- h = self.embed_tokens(inputs)
224
- else:
225
- h = inputs_embeds
226
-
227
- if cache is None:
228
- cache = [None] * len(self.layers)
229
-
230
- if mask is None:
231
- mask = create_attention_mask(h, cache)
232
-
233
- for layer, c in zip(self.layers, cache):
234
- h = layer(h, mask, c, position_ids)
235
-
236
- return self.norm(h)
237
-
238
-
239
- class LanguageModel(nn.Module):
240
- def __init__(self, args: TextConfig, config: ModelConfig):
241
- super().__init__()
242
- self.args = args
243
- self.config = config
244
- self.model_type = args.model_type
245
- self.model = Qwen2Model(args)
246
- self.rope_deltas = None
247
-
248
- if not args.tie_word_embeddings:
249
- self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
250
-
251
- def get_rope_index(
252
- self,
253
- input_ids: mx.array,
254
- image_grid_thw: Optional[mx.array] = None,
255
- video_grid_thw: Optional[mx.array] = None,
256
- attention_mask: Optional[mx.array] = None,
257
- ):
258
- # Calculate RoPE index for image/video tokens
259
- batch_size, seq_length = input_ids.shape
260
- position_ids = mx.arange(seq_length, dtype=mx.int32)
261
- position_ids = mx.broadcast_to(position_ids[None, :], (batch_size, seq_length))
262
- spatial_merge_size = self.config.vision_config.spatial_merge_size
263
- image_token_id = self.config.image_token_id
264
- video_token_id = self.config.video_token_id
265
- vision_start_token_id = self.config.vision_start_token_id
266
- mrope_position_deltas = []
267
- if input_ids is not None and (
268
- image_grid_thw is not None or video_grid_thw is not None
269
- ):
270
- total_input_ids = input_ids
271
- if attention_mask is None:
272
- attention_mask = mx.ones_like(input_ids)
273
- position_ids = mx.ones(
274
- (3, input_ids.shape[0], input_ids.shape[1]), dtype=input_ids.dtype
275
- )
276
- image_index, video_index = 0, 0
277
- for i, input_ids in enumerate(total_input_ids):
278
- input_ids = mx.where(
279
- attention_mask[i] == 1, input_ids, mx.zeros_like(input_ids)
280
- )
281
- image_nums, video_nums = 0, 0
282
- vision_start_indices = mx.sum(
283
- mx.where(
284
- input_ids == vision_start_token_id,
285
- mx.arange(input_ids.shape[0]),
286
- mx.zeros_like(input_ids),
287
- )
288
- )
289
- vision_tokens = input_ids[vision_start_indices + 1]
290
- image_nums = (vision_tokens == image_token_id).sum().item()
291
- video_nums = (vision_tokens == video_token_id).sum().item()
292
- input_tokens = input_ids.tolist()
293
- llm_pos_ids_list: list = []
294
- st = 0
295
- remain_images, remain_videos = image_nums, video_nums
296
- for _ in range(image_nums + video_nums):
297
- if image_token_id in input_tokens and remain_images > 0:
298
- ed_image = input_tokens.index(image_token_id, st)
299
- else:
300
- ed_image = len(input_tokens) + 1
301
- if video_token_id in input_tokens and remain_videos > 0:
302
- ed_video = input_tokens.index(video_token_id, st)
303
- else:
304
- ed_video = len(input_tokens) + 1
305
- if ed_image < ed_video:
306
- t, h, w = (
307
- image_grid_thw[image_index][0],
308
- image_grid_thw[image_index][1],
309
- image_grid_thw[image_index][2],
310
- )
311
- image_index += 1
312
- remain_images -= 1
313
- ed = ed_image
314
- else:
315
- t, h, w = (
316
- video_grid_thw[video_index][0],
317
- video_grid_thw[video_index][1],
318
- video_grid_thw[video_index][2],
319
- )
320
- video_index += 1
321
- remain_videos -= 1
322
- ed = ed_video
323
- llm_grid_t, llm_grid_h, llm_grid_w = (
324
- t.item(),
325
- h.item() // spatial_merge_size,
326
- w.item() // spatial_merge_size,
327
- )
328
- text_len = ed - st
329
- st_idx = (
330
- llm_pos_ids_list[-1].max() + 1
331
- if len(llm_pos_ids_list) > 0
332
- else 0
333
- )
334
- index = mx.arange(text_len).reshape(1, text_len)
335
- index = mx.broadcast_to(index, (3, text_len))
336
- index = index + st_idx
337
- llm_pos_ids_list.append(index)
338
- t_index = mx.arange(llm_grid_t).reshape(
339
- llm_grid_t, 1
340
- ) # Equivalent to .view(-1, 1)
341
- t_index = mx.broadcast_to(
342
- t_index, (llm_grid_t, llm_grid_h * llm_grid_w)
343
- ) # Equivalent to expand()
344
- t_index = t_index.flatten() # Flattens to 1D
345
-
346
- h_index = mx.arange(llm_grid_h).reshape(
347
- 1, llm_grid_h, 1
348
- ) # Equivalent to .view(1, -1)
349
- h_index = mx.broadcast_to(
350
- h_index, (llm_grid_t, llm_grid_h, llm_grid_w)
351
- ) # Equivalent to expand()
352
- h_index = h_index.flatten() # Flattens to 1D
353
-
354
- w_index = mx.arange(llm_grid_w).reshape(
355
- 1, 1, llm_grid_w
356
- ) # Equivalent to .view(1, -1)
357
- w_index = mx.broadcast_to(
358
- w_index, (llm_grid_t, llm_grid_h, llm_grid_w)
359
- ) # Equivalent to expand()
360
- w_index = w_index.flatten() # Flattens to 1D
361
-
362
- llm_pos_ids_list.append(
363
- mx.stack([t_index, h_index, w_index]) + text_len + st_idx
364
- )
365
- st = ed + llm_grid_t * llm_grid_h * llm_grid_w
366
- if st < len(input_tokens):
367
- st_idx = (
368
- llm_pos_ids_list[-1].max() + 1
369
- if len(llm_pos_ids_list) > 0
370
- else 0
371
- )
372
- text_len = len(input_tokens) - st
373
-
374
- t_index = mx.arange(text_len).reshape(
375
- 1, text_len
376
- ) # Equivalent to .view(-1, 1)
377
- t_index = mx.broadcast_to(
378
- t_index, (3, text_len)
379
- ) # Equivalent to expand(3, -1)
380
-
381
- llm_pos_ids_list.append(t_index + st_idx)
382
-
383
- llm_positions = mx.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
384
- mask = mx.array(attention_mask[i] == 1)
385
- expanded_mask = mx.expand_dims(mask, axis=0)
386
- expanded_mask = mx.broadcast_to(expanded_mask, (3, 1, mask.shape[0]))
387
- expanded_positions = mx.expand_dims(llm_positions, axis=1)
388
- new_positions = mx.where(
389
- expanded_mask, expanded_positions, position_ids[:, i : i + 1, :]
390
- )
391
- updated_position_ids = mx.concatenate(
392
- [
393
- position_ids[:, :i, :],
394
- new_positions,
395
- position_ids[:, i + 1 :, :],
396
- ],
397
- axis=1,
398
- )
399
- position_ids = updated_position_ids
400
- mrope_position_deltas.append(
401
- llm_positions.max() + 1 - len(total_input_ids[i])
402
- )
403
- mrope_position_deltas = mx.array(mrope_position_deltas)[0]
404
- return position_ids, mrope_position_deltas
405
- else:
406
- if attention_mask is not None:
407
- position_ids = mx.cumsum(attention_mask.astype(mx.int64), axis=-1) - 1
408
- position_ids = mx.where(
409
- attention_mask == 0, mx.ones_like(position_ids), position_ids
410
- )
411
- position_ids = mx.expand_dims(position_ids[0], axis=0)
412
- position_ids = mx.tile(position_ids, (3, 1, 1))
413
- max_position_ids = position_ids.max(0, keepdims=False)[0].max(
414
- -1, keepdims=True
415
- )[0]
416
- mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
417
- else:
418
- position_ids = mx.arange(input_ids.shape[1]).reshape(1, -1)
419
- position_ids = mx.broadcast_to(
420
- position_ids, (3, input_ids.shape[0], input_ids.shape[1])
421
- )
422
- mrope_position_deltas = mx.zeros(
423
- [input_ids.shape[0], 1],
424
- dtype=input_ids.dtype,
425
- )
426
- return position_ids, mrope_position_deltas
427
-
428
- def __call__(
429
- self,
430
- inputs: mx.array,
431
- inputs_embeds: Optional[mx.array] = None,
432
- mask: Optional[mx.array] = None,
433
- cache=None,
434
- **kwargs,
435
- ):
436
-
437
- position_ids = kwargs.pop("position_ids", None)
438
- pixel_values = kwargs.pop("pixel_values", None)
439
- image_grid_thw = kwargs.pop("image_grid_thw", None)
440
- video_grid_thw = kwargs.pop("video_grid_thw", None)
441
- # reset rope_deltas when processing a new image/video
442
- if pixel_values is not None:
443
- self.rope_deltas = None
444
-
445
- if position_ids is None and (mask is None or mask.ndim == 2):
446
- # Calculate RoPE index once per generation in the pre-fill stage only
447
- if (
448
- (cache is not None and cache[0] is not None and cache[0].offset == 0)
449
- or self.rope_deltas is None
450
- or cache is None
451
- ):
452
- position_ids, rope_deltas = self.get_rope_index(
453
- inputs, image_grid_thw, video_grid_thw, mask
454
- )
455
- self.rope_deltas = rope_deltas
456
- else:
457
- # Use the prev pre-calculated rope-deltas to get the correct position ids
458
- batch_size, seq_length = inputs.shape
459
- delta = cache[-1].offset + self.rope_deltas if cache is not None else 0
460
- delta = delta[None][None]
461
- position_ids = mx.arange(seq_length).reshape(1, seq_length)
462
- position_ids = mx.broadcast_to(position_ids, (batch_size, seq_length))
463
- if cache is not None:
464
- # Repeat delta for each batch
465
- delta = mx.repeat(delta, batch_size // delta.shape[0], axis=0)
466
- position_ids = mx.add(position_ids, delta).reshape(position_ids.shape)
467
- position_ids = mx.broadcast_to(
468
- position_ids, (3, batch_size, seq_length)
469
- )
470
-
471
- out = self.model(
472
- inputs, cache=cache, inputs_embeds=inputs_embeds, position_ids=position_ids
473
- )
474
- if self.args.tie_word_embeddings:
475
- out = self.model.embed_tokens.as_linear(out)
476
- else:
477
- out = self.lm_head(out)
478
- return LanguageModelOutput(logits=out)
479
-
480
- @property
481
- def layers(self):
482
- return self.model.layers
483
-
484
- @property
485
- def head_dim(self):
486
- return self.args.hidden_size // self.args.num_attention_heads
487
-
488
- @property
489
- def n_kv_heads(self):
490
- return self.args.num_key_value_heads
@@ -1,167 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .config import ModelConfig, TextConfig, VisionConfig
14
- from .language import LanguageModel
15
- from .vision import VisionModel
16
-
17
-
18
- class Model(nn.Module):
19
- def __init__(self, config: ModelConfig):
20
- super().__init__()
21
- self.config = config
22
- self.vision_tower = VisionModel(config.vision_config)
23
- self.language_model = LanguageModel(config.text_config, config)
24
-
25
- def get_input_embeddings(
26
- self,
27
- input_ids: Optional[mx.array] = None,
28
- pixel_values: Optional[mx.array] = None,
29
- grid_thw: Optional[mx.array] = None,
30
- ):
31
-
32
- if pixel_values is None:
33
- return self.language_model.model.embed_tokens(input_ids)
34
-
35
- dtype = self.vision_tower.patch_embed.proj.weight.dtype
36
- pixel_values = pixel_values.astype(dtype)
37
-
38
- # Get the input embeddings from the language model
39
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
40
-
41
- # Get the ouptut hidden states from the vision model
42
- hidden_states = self.vision_tower(
43
- pixel_values, grid_thw, output_hidden_states=False
44
- )
45
-
46
- # Insert special image tokens in the input_ids
47
- final_inputs_embeds = self.merge_input_ids_with_image_features(
48
- self.config.image_token_id,
49
- self.config.video_token_id,
50
- hidden_states,
51
- inputs_embeds,
52
- input_ids,
53
- )
54
- return final_inputs_embeds
55
-
56
- @staticmethod
57
- def merge_input_ids_with_image_features(
58
- image_token_id,
59
- video_token_id,
60
- image_features,
61
- inputs_embeds,
62
- input_ids,
63
- ):
64
- """Merge image features into input embeddings at image token positions.
65
-
66
- Args:
67
- image_features: Vision features from the vision tower [num_features, hidden_dim]
68
- inputs_embeds: Input embeddings [batch_size, seq_len, hidden_dim]
69
- input_ids: Input token IDs [batch_size, seq_len]
70
-
71
- Returns:
72
- Updated input embeddings with image features inserted
73
- """
74
-
75
- # Positions of <image> tokens in input_ids
76
- image_positions = input_ids == image_token_id
77
- if mx.sum(image_positions) == 0:
78
- image_positions = input_ids == video_token_id
79
-
80
- # Get dimensions
81
- batch_size, seq_len = input_ids.shape
82
-
83
- # Process each batch item
84
- batch_outputs = []
85
- feature_start_idx = 0
86
-
87
- for batch_idx in range(batch_size):
88
- # Get mask for this batch
89
- image_mask = image_positions[batch_idx]
90
- num_positions = mx.sum(image_mask).item()
91
-
92
- if num_positions > 0:
93
- # Extract features for this batch
94
- batch_features = image_features[
95
- feature_start_idx : feature_start_idx + num_positions
96
- ]
97
-
98
- # Validate we have the right number of features
99
- if batch_features.shape[0] != num_positions:
100
- raise ValueError(
101
- f"Number of image token positions ({num_positions}) does not match "
102
- f"number of image features ({batch_features.shape[0]}) for batch {batch_idx}"
103
- )
104
-
105
- # Create indices for gathering
106
- cumsum = mx.cumsum(image_mask.astype(mx.int32))
107
- feature_indices = mx.where(image_mask, cumsum - 1, 0)
108
-
109
- # Gather features
110
- gathered_features = batch_features[feature_indices]
111
-
112
- # Combine with original embeddings
113
- image_mask_expanded = mx.expand_dims(image_mask, axis=-1)
114
- batch_output = mx.where(
115
- image_mask_expanded, gathered_features, inputs_embeds[batch_idx]
116
- )
117
-
118
- feature_start_idx += num_positions
119
- else:
120
- # No image tokens in this batch item
121
- batch_output = inputs_embeds[batch_idx]
122
-
123
- batch_outputs.append(batch_output)
124
-
125
- # Stack all batch outputs
126
- return mx.stack(batch_outputs, axis=0)
127
-
128
- @property
129
- def layers(self):
130
- return self.language_model.model.layers
131
-
132
- def __call__(
133
- self,
134
- input_ids: mx.array,
135
- pixel_values: Optional[mx.array] = None,
136
- mask: Optional[mx.array] = None,
137
- cache=None,
138
- **kwargs,
139
- ):
140
-
141
- image_grid_thw = kwargs.pop("image_grid_thw", None)
142
- video_grid_thw = kwargs.pop("video_grid_thw", None)
143
- grid_thw = image_grid_thw if image_grid_thw is not None else video_grid_thw
144
- input_embddings = self.get_input_embeddings(input_ids, pixel_values, grid_thw)
145
- kwargs = {
146
- "pixel_values": pixel_values,
147
- "image_grid_thw": image_grid_thw,
148
- "video_grid_thw": video_grid_thw,
149
- **kwargs,
150
- }
151
- logits = self.language_model(
152
- input_ids, input_embddings, mask=mask, cache=cache, **kwargs
153
- )
154
- return logits
155
-
156
- def sanitize(self, weights):
157
- def transform_key(key):
158
- if "vision_tower" not in key:
159
- key = key.replace("visual", "vision_tower")
160
- if "language_model" not in key:
161
- if "model" in key:
162
- key = key.replace("model", "language_model.model")
163
- elif "lm_head" in key:
164
- key = key.replace("lm_head", "language_model.lm_head")
165
- return key
166
-
167
- return {transform_key(k): v for k, v in weights.items()}