nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,356 +0,0 @@
1
- import copy
2
- import inspect
3
- from dataclasses import dataclass
4
- from functools import partial
5
- from math import sqrt
6
- from typing import Dict, Optional, Union
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
-
12
-
13
- @dataclass
14
- class VisionConfig:
15
- model_type: str
16
- layers: int = 27
17
- width: int = 1152
18
- intermediate_size: int = 4304
19
- num_attention_heads: int = 16
20
- image_size: int = 384
21
- patch_size: int = 16
22
- num_channels: int = 3
23
- layer_norm_eps: float = 1e-6
24
- mlp_ratio: float = 3.7362
25
- cls: str = None
26
- params: dict = None
27
-
28
- @classmethod
29
- def from_dict(cls, params):
30
- return cls(
31
- **{
32
- k: v
33
- for k, v in params.items()
34
- if k in inspect.signature(cls).parameters
35
- }
36
- )
37
-
38
-
39
- @dataclass
40
- class MLPConfig:
41
- width: int
42
- intermediate_size: int
43
-
44
-
45
- def check_array_shape(arr):
46
- shape = arr.shape
47
-
48
- # Check if the shape has 4 dimensions
49
- if len(shape) != 4:
50
- return False
51
-
52
- out_channels, kH, KW, _ = shape
53
-
54
- # Check if out_channels is the largest, and kH and KW are the same
55
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
56
- return True
57
- else:
58
- return False
59
-
60
-
61
- class AttentionPoolLatent(nn.Module):
62
- """Attention pooling w/ latent query"""
63
-
64
- def __init__(
65
- self,
66
- in_features: int,
67
- out_features: int = None,
68
- embed_dim: int = None,
69
- num_heads: int = 8,
70
- mlp_ratio: float = 4.0,
71
- qkv_bias: bool = True,
72
- qk_norm: bool = False,
73
- latent_len: int = 1,
74
- latent_dim: int = None,
75
- pos_embed: str = "",
76
- pool_type: str = "token",
77
- norm_layer: Optional[nn.Module] = None,
78
- drop: float = 0.0,
79
- ):
80
- super().__init__()
81
-
82
- embed_dim = embed_dim or in_features
83
- out_features = out_features or in_features
84
- assert embed_dim % num_heads == 0
85
- self.num_heads = num_heads
86
- self.head_dim = embed_dim // num_heads
87
- self.scale = self.head_dim**-0.5
88
- self.pool = pool_type
89
-
90
- self.latent_dim = latent_dim or embed_dim
91
- self.latent_len = latent_len
92
- self.latent = mx.zeros((self.latent_len, embed_dim))[None, :]
93
-
94
- self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
95
- self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias)
96
- self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
97
- self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
98
- self.proj = nn.Linear(embed_dim, embed_dim)
99
- self.proj_drop = nn.Dropout(drop)
100
-
101
- if pos_embed == "abs":
102
- spatial_len = self.feat_size
103
- self.pos_embed = mx.zeros((spatial_len, in_features))
104
- else:
105
- self.pos_embed = None
106
-
107
- self.norm = nn.LayerNorm(out_features)
108
- config = MLPConfig(
109
- width=embed_dim, intermediate_size=int(embed_dim * mlp_ratio)
110
- )
111
- self.mlp = MLP(config)
112
-
113
- def __call__(self, x: mx.array):
114
- B, N, C = x.shape
115
-
116
- if self.pos_embed is not None:
117
- x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
118
-
119
- q_latent = mx.array(self.latent)
120
-
121
- q = (
122
- self.q(q_latent)
123
- .reshape(B, self.latent_len, self.num_heads, self.head_dim)
124
- .transpose(0, 2, 1, 3)
125
- )
126
-
127
- kv = (
128
- self.kv(x)
129
- .reshape(B, N, 2, self.num_heads, self.head_dim)
130
- .transpose(2, 0, 3, 1, 4)
131
- )
132
- k, v = mx.split(kv, 2, axis=0)
133
-
134
- q, k = self.q_norm(q), self.k_norm(k)
135
-
136
- x = mx.fast.scaled_dot_product_attention(
137
- q, k[0], v[0], scale=(1.0 / sqrt(q.shape[-1])), mask=None
138
- )
139
-
140
- x = x.transpose(0, 2, 1, 3).reshape(B, self.latent_len, C)
141
- x = self.proj(x)
142
- x = self.proj_drop(x)
143
-
144
- x = x + self.mlp(self.norm(x))
145
-
146
- # optional pool if latent seq_len > 1 and pooled output is desired
147
- if self.pool == "token":
148
- x = x[:, 0]
149
- elif self.pool == "avg":
150
- x = x.mean(1)
151
- return x
152
-
153
-
154
- class Attention(nn.Module):
155
- def __init__(
156
- self,
157
- dims: int,
158
- num_heads: int,
159
- qkv_bias: bool = True,
160
- ):
161
- super().__init__()
162
-
163
- if (dims % num_heads) != 0:
164
- raise ValueError(
165
- "The input feature dimensions should be divisible by the "
166
- f"number of heads ({dims} % {num_heads}) != 0"
167
- )
168
-
169
- self.num_heads = num_heads = num_heads
170
- head_dim = dims // num_heads
171
- self.scale = head_dim**-0.5
172
-
173
- self.qkv = nn.Linear(dims, dims * 3, bias=qkv_bias)
174
- self.proj = nn.Linear(dims, dims, bias=True)
175
-
176
- def __call__(self, x, mask=None):
177
- qkv = self.qkv(x)
178
- queries, keys, values = mx.split(qkv, 3, axis=-1)
179
-
180
- num_heads = self.num_heads
181
- B, L, D = queries.shape
182
- _, S, _ = keys.shape
183
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
184
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
185
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
186
-
187
- output = mx.fast.scaled_dot_product_attention(
188
- queries, keys, values, scale=self.scale, mask=mask
189
- )
190
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
191
-
192
- return self.proj(output)
193
-
194
-
195
- class MLP(nn.Module):
196
- def __init__(self, config: Union[VisionConfig, Dict], bias: bool = True):
197
- super().__init__()
198
- self.activation_fn = nn.GELU(approx="precise")
199
- self.fc1 = nn.Linear(config.width, config.intermediate_size, bias=bias)
200
- self.fc2 = nn.Linear(config.intermediate_size, config.width, bias=bias)
201
-
202
- def __call__(self, x: mx.array) -> mx.array:
203
- x = self.activation_fn(self.fc1(x))
204
- x = self.fc2(x)
205
- return x
206
-
207
-
208
- class EncoderLayer(nn.Module):
209
- def __init__(self, config: VisionConfig):
210
- super().__init__()
211
- self.embed_dim = config.width
212
- self.attn = Attention(config.width, config.num_attention_heads, qkv_bias=True)
213
- self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
214
- self.mlp = MLP(config)
215
- self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
216
-
217
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
218
- y = self.norm1(x)
219
- y = self.attn(y, mask)
220
- x = x + y
221
- y = self.norm2(x)
222
- y = self.mlp(y)
223
- return x + y
224
-
225
-
226
- class VisionEmbeddings(nn.Module):
227
- def __init__(self, config: VisionConfig, norm_layer: bool = False):
228
- super().__init__()
229
- self.config = config
230
- self.embed_dim = config.width
231
- self.image_size = config.image_size
232
- self.patch_size = config.patch_size
233
-
234
- self.proj = nn.Conv2d(
235
- in_channels=config.num_channels,
236
- out_channels=self.embed_dim,
237
- kernel_size=self.patch_size,
238
- stride=self.patch_size,
239
- )
240
-
241
- self.num_patches = (self.image_size // self.patch_size) ** 2
242
- self.num_positions = self.num_patches
243
-
244
- self.norm = (
245
- nn.LayerNorm(config.width, eps=config.layer_norm_eps)
246
- if norm_layer
247
- else nn.Identity()
248
- )
249
-
250
- def __call__(self, x: mx.array) -> mx.array:
251
- patch_embeddings = self.proj(x)
252
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
253
- return self.norm(patch_embeddings)
254
-
255
-
256
- class SigLipVisionModel(nn.Module):
257
- def __init__(
258
- self,
259
- config: VisionConfig,
260
- ignore_head: bool,
261
- pre_norm: bool = False,
262
- no_embed_class: bool = True,
263
- ):
264
- super().__init__()
265
- self.num_prefix_tokens = 1
266
- self.no_embed_class = False
267
- self.dynamic_img_size = False
268
- self.ignore_head = ignore_head
269
- self.cls_token = None
270
- self.reg_token = None
271
- self.patch_embed = VisionEmbeddings(config)
272
- self.norm_pre = nn.LayerNorm(config.width) if pre_norm else nn.Identity()
273
- self.blocks = [EncoderLayer(config) for _ in range(config.layers)]
274
- self.norm = nn.LayerNorm(config.width)
275
- num_patches = self.patch_embed.num_patches
276
- embed_len = (
277
- num_patches if no_embed_class else num_patches + self.num_prefix_tokens
278
- )
279
- self.pos_embed = mx.random.normal((embed_len, config.width))[None, :]
280
-
281
- norm_layer = partial(nn.LayerNorm, eps=1e-5)
282
- self.attn_pool = AttentionPoolLatent(
283
- config.width,
284
- num_heads=config.num_attention_heads,
285
- norm_layer=norm_layer,
286
- mlp_ratio=config.mlp_ratio,
287
- )
288
-
289
- def __call__(
290
- self,
291
- x: mx.array,
292
- output_hidden_states: Optional[bool] = None,
293
- ) -> mx.array:
294
- x = self.patch_embed(x)
295
- x += self.pos_embed
296
- x = self.norm_pre(x)
297
-
298
- encoder_states = (x,) if output_hidden_states else None
299
- for l in self.blocks:
300
- x = l(x, mask=None)
301
- if output_hidden_states:
302
- encoder_states = encoder_states + (x,)
303
-
304
- pooler_output = self.norm(x)
305
-
306
- if not self.ignore_head:
307
- pooler_output = self.attn_pool(pooler_output)
308
- return pooler_output, x, encoder_states
309
-
310
-
311
- class VisionModel(nn.Module):
312
- def __init__(self, config: VisionConfig, ignore_head: bool = True):
313
- super().__init__()
314
-
315
- self.model_type = config.model_type
316
- self.config = config
317
- if self.model_type != "vision":
318
- raise ValueError(f"Unsupported model type: {self.model_type}")
319
-
320
- self.vision_tower = SigLipVisionModel(config, ignore_head)
321
-
322
- def __call__(
323
- self, x: mx.array, output_hidden_states: Optional[bool] = None
324
- ) -> mx.array:
325
- return self.vision_tower(x, output_hidden_states)
326
-
327
- def sanitize(self, weights):
328
- sanitized_weights = {}
329
- weight_keys = {
330
- "neck.0.weight",
331
- "neck.2.weight",
332
- "neck_hd.0.weight",
333
- "neck_hd.2.weight",
334
- "downsamples.0.weight",
335
- "downsamples.1.weight",
336
- "patch_embed.proj.weight",
337
- }
338
- for k, v in weights.items():
339
- if "position_ids" in k:
340
- # Remove unused position_ids
341
- continue
342
-
343
- elif ".".join(k.split(".")[-3:]) in weight_keys:
344
- # PyTorch conv2d weight tensors have shape:
345
- # [out_channels, in_channels, kH, KW]
346
- # MLX conv2d expects the weight be of shape:
347
- # [out_channels, kH, KW, in_channels]
348
- if check_array_shape(v):
349
- sanitized_weights[k] = v
350
- else:
351
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
352
-
353
- else:
354
- sanitized_weights[k] = v
355
-
356
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .florence2 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )