nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,356 +0,0 @@
|
|
|
1
|
-
import copy
|
|
2
|
-
import inspect
|
|
3
|
-
from dataclasses import dataclass
|
|
4
|
-
from functools import partial
|
|
5
|
-
from math import sqrt
|
|
6
|
-
from typing import Dict, Optional, Union
|
|
7
|
-
|
|
8
|
-
import mlx.core as mx
|
|
9
|
-
import mlx.nn as nn
|
|
10
|
-
import numpy as np
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
@dataclass
|
|
14
|
-
class VisionConfig:
|
|
15
|
-
model_type: str
|
|
16
|
-
layers: int = 27
|
|
17
|
-
width: int = 1152
|
|
18
|
-
intermediate_size: int = 4304
|
|
19
|
-
num_attention_heads: int = 16
|
|
20
|
-
image_size: int = 384
|
|
21
|
-
patch_size: int = 16
|
|
22
|
-
num_channels: int = 3
|
|
23
|
-
layer_norm_eps: float = 1e-6
|
|
24
|
-
mlp_ratio: float = 3.7362
|
|
25
|
-
cls: str = None
|
|
26
|
-
params: dict = None
|
|
27
|
-
|
|
28
|
-
@classmethod
|
|
29
|
-
def from_dict(cls, params):
|
|
30
|
-
return cls(
|
|
31
|
-
**{
|
|
32
|
-
k: v
|
|
33
|
-
for k, v in params.items()
|
|
34
|
-
if k in inspect.signature(cls).parameters
|
|
35
|
-
}
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
@dataclass
|
|
40
|
-
class MLPConfig:
|
|
41
|
-
width: int
|
|
42
|
-
intermediate_size: int
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
def check_array_shape(arr):
|
|
46
|
-
shape = arr.shape
|
|
47
|
-
|
|
48
|
-
# Check if the shape has 4 dimensions
|
|
49
|
-
if len(shape) != 4:
|
|
50
|
-
return False
|
|
51
|
-
|
|
52
|
-
out_channels, kH, KW, _ = shape
|
|
53
|
-
|
|
54
|
-
# Check if out_channels is the largest, and kH and KW are the same
|
|
55
|
-
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
56
|
-
return True
|
|
57
|
-
else:
|
|
58
|
-
return False
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
class AttentionPoolLatent(nn.Module):
|
|
62
|
-
"""Attention pooling w/ latent query"""
|
|
63
|
-
|
|
64
|
-
def __init__(
|
|
65
|
-
self,
|
|
66
|
-
in_features: int,
|
|
67
|
-
out_features: int = None,
|
|
68
|
-
embed_dim: int = None,
|
|
69
|
-
num_heads: int = 8,
|
|
70
|
-
mlp_ratio: float = 4.0,
|
|
71
|
-
qkv_bias: bool = True,
|
|
72
|
-
qk_norm: bool = False,
|
|
73
|
-
latent_len: int = 1,
|
|
74
|
-
latent_dim: int = None,
|
|
75
|
-
pos_embed: str = "",
|
|
76
|
-
pool_type: str = "token",
|
|
77
|
-
norm_layer: Optional[nn.Module] = None,
|
|
78
|
-
drop: float = 0.0,
|
|
79
|
-
):
|
|
80
|
-
super().__init__()
|
|
81
|
-
|
|
82
|
-
embed_dim = embed_dim or in_features
|
|
83
|
-
out_features = out_features or in_features
|
|
84
|
-
assert embed_dim % num_heads == 0
|
|
85
|
-
self.num_heads = num_heads
|
|
86
|
-
self.head_dim = embed_dim // num_heads
|
|
87
|
-
self.scale = self.head_dim**-0.5
|
|
88
|
-
self.pool = pool_type
|
|
89
|
-
|
|
90
|
-
self.latent_dim = latent_dim or embed_dim
|
|
91
|
-
self.latent_len = latent_len
|
|
92
|
-
self.latent = mx.zeros((self.latent_len, embed_dim))[None, :]
|
|
93
|
-
|
|
94
|
-
self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
|
95
|
-
self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias)
|
|
96
|
-
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
97
|
-
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
98
|
-
self.proj = nn.Linear(embed_dim, embed_dim)
|
|
99
|
-
self.proj_drop = nn.Dropout(drop)
|
|
100
|
-
|
|
101
|
-
if pos_embed == "abs":
|
|
102
|
-
spatial_len = self.feat_size
|
|
103
|
-
self.pos_embed = mx.zeros((spatial_len, in_features))
|
|
104
|
-
else:
|
|
105
|
-
self.pos_embed = None
|
|
106
|
-
|
|
107
|
-
self.norm = nn.LayerNorm(out_features)
|
|
108
|
-
config = MLPConfig(
|
|
109
|
-
width=embed_dim, intermediate_size=int(embed_dim * mlp_ratio)
|
|
110
|
-
)
|
|
111
|
-
self.mlp = MLP(config)
|
|
112
|
-
|
|
113
|
-
def __call__(self, x: mx.array):
|
|
114
|
-
B, N, C = x.shape
|
|
115
|
-
|
|
116
|
-
if self.pos_embed is not None:
|
|
117
|
-
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
|
|
118
|
-
|
|
119
|
-
q_latent = mx.array(self.latent)
|
|
120
|
-
|
|
121
|
-
q = (
|
|
122
|
-
self.q(q_latent)
|
|
123
|
-
.reshape(B, self.latent_len, self.num_heads, self.head_dim)
|
|
124
|
-
.transpose(0, 2, 1, 3)
|
|
125
|
-
)
|
|
126
|
-
|
|
127
|
-
kv = (
|
|
128
|
-
self.kv(x)
|
|
129
|
-
.reshape(B, N, 2, self.num_heads, self.head_dim)
|
|
130
|
-
.transpose(2, 0, 3, 1, 4)
|
|
131
|
-
)
|
|
132
|
-
k, v = mx.split(kv, 2, axis=0)
|
|
133
|
-
|
|
134
|
-
q, k = self.q_norm(q), self.k_norm(k)
|
|
135
|
-
|
|
136
|
-
x = mx.fast.scaled_dot_product_attention(
|
|
137
|
-
q, k[0], v[0], scale=(1.0 / sqrt(q.shape[-1])), mask=None
|
|
138
|
-
)
|
|
139
|
-
|
|
140
|
-
x = x.transpose(0, 2, 1, 3).reshape(B, self.latent_len, C)
|
|
141
|
-
x = self.proj(x)
|
|
142
|
-
x = self.proj_drop(x)
|
|
143
|
-
|
|
144
|
-
x = x + self.mlp(self.norm(x))
|
|
145
|
-
|
|
146
|
-
# optional pool if latent seq_len > 1 and pooled output is desired
|
|
147
|
-
if self.pool == "token":
|
|
148
|
-
x = x[:, 0]
|
|
149
|
-
elif self.pool == "avg":
|
|
150
|
-
x = x.mean(1)
|
|
151
|
-
return x
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
class Attention(nn.Module):
|
|
155
|
-
def __init__(
|
|
156
|
-
self,
|
|
157
|
-
dims: int,
|
|
158
|
-
num_heads: int,
|
|
159
|
-
qkv_bias: bool = True,
|
|
160
|
-
):
|
|
161
|
-
super().__init__()
|
|
162
|
-
|
|
163
|
-
if (dims % num_heads) != 0:
|
|
164
|
-
raise ValueError(
|
|
165
|
-
"The input feature dimensions should be divisible by the "
|
|
166
|
-
f"number of heads ({dims} % {num_heads}) != 0"
|
|
167
|
-
)
|
|
168
|
-
|
|
169
|
-
self.num_heads = num_heads = num_heads
|
|
170
|
-
head_dim = dims // num_heads
|
|
171
|
-
self.scale = head_dim**-0.5
|
|
172
|
-
|
|
173
|
-
self.qkv = nn.Linear(dims, dims * 3, bias=qkv_bias)
|
|
174
|
-
self.proj = nn.Linear(dims, dims, bias=True)
|
|
175
|
-
|
|
176
|
-
def __call__(self, x, mask=None):
|
|
177
|
-
qkv = self.qkv(x)
|
|
178
|
-
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
179
|
-
|
|
180
|
-
num_heads = self.num_heads
|
|
181
|
-
B, L, D = queries.shape
|
|
182
|
-
_, S, _ = keys.shape
|
|
183
|
-
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
184
|
-
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
185
|
-
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
186
|
-
|
|
187
|
-
output = mx.fast.scaled_dot_product_attention(
|
|
188
|
-
queries, keys, values, scale=self.scale, mask=mask
|
|
189
|
-
)
|
|
190
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
191
|
-
|
|
192
|
-
return self.proj(output)
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
class MLP(nn.Module):
|
|
196
|
-
def __init__(self, config: Union[VisionConfig, Dict], bias: bool = True):
|
|
197
|
-
super().__init__()
|
|
198
|
-
self.activation_fn = nn.GELU(approx="precise")
|
|
199
|
-
self.fc1 = nn.Linear(config.width, config.intermediate_size, bias=bias)
|
|
200
|
-
self.fc2 = nn.Linear(config.intermediate_size, config.width, bias=bias)
|
|
201
|
-
|
|
202
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
203
|
-
x = self.activation_fn(self.fc1(x))
|
|
204
|
-
x = self.fc2(x)
|
|
205
|
-
return x
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
class EncoderLayer(nn.Module):
|
|
209
|
-
def __init__(self, config: VisionConfig):
|
|
210
|
-
super().__init__()
|
|
211
|
-
self.embed_dim = config.width
|
|
212
|
-
self.attn = Attention(config.width, config.num_attention_heads, qkv_bias=True)
|
|
213
|
-
self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
214
|
-
self.mlp = MLP(config)
|
|
215
|
-
self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
216
|
-
|
|
217
|
-
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
218
|
-
y = self.norm1(x)
|
|
219
|
-
y = self.attn(y, mask)
|
|
220
|
-
x = x + y
|
|
221
|
-
y = self.norm2(x)
|
|
222
|
-
y = self.mlp(y)
|
|
223
|
-
return x + y
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
class VisionEmbeddings(nn.Module):
|
|
227
|
-
def __init__(self, config: VisionConfig, norm_layer: bool = False):
|
|
228
|
-
super().__init__()
|
|
229
|
-
self.config = config
|
|
230
|
-
self.embed_dim = config.width
|
|
231
|
-
self.image_size = config.image_size
|
|
232
|
-
self.patch_size = config.patch_size
|
|
233
|
-
|
|
234
|
-
self.proj = nn.Conv2d(
|
|
235
|
-
in_channels=config.num_channels,
|
|
236
|
-
out_channels=self.embed_dim,
|
|
237
|
-
kernel_size=self.patch_size,
|
|
238
|
-
stride=self.patch_size,
|
|
239
|
-
)
|
|
240
|
-
|
|
241
|
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
242
|
-
self.num_positions = self.num_patches
|
|
243
|
-
|
|
244
|
-
self.norm = (
|
|
245
|
-
nn.LayerNorm(config.width, eps=config.layer_norm_eps)
|
|
246
|
-
if norm_layer
|
|
247
|
-
else nn.Identity()
|
|
248
|
-
)
|
|
249
|
-
|
|
250
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
251
|
-
patch_embeddings = self.proj(x)
|
|
252
|
-
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
|
253
|
-
return self.norm(patch_embeddings)
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
class SigLipVisionModel(nn.Module):
|
|
257
|
-
def __init__(
|
|
258
|
-
self,
|
|
259
|
-
config: VisionConfig,
|
|
260
|
-
ignore_head: bool,
|
|
261
|
-
pre_norm: bool = False,
|
|
262
|
-
no_embed_class: bool = True,
|
|
263
|
-
):
|
|
264
|
-
super().__init__()
|
|
265
|
-
self.num_prefix_tokens = 1
|
|
266
|
-
self.no_embed_class = False
|
|
267
|
-
self.dynamic_img_size = False
|
|
268
|
-
self.ignore_head = ignore_head
|
|
269
|
-
self.cls_token = None
|
|
270
|
-
self.reg_token = None
|
|
271
|
-
self.patch_embed = VisionEmbeddings(config)
|
|
272
|
-
self.norm_pre = nn.LayerNorm(config.width) if pre_norm else nn.Identity()
|
|
273
|
-
self.blocks = [EncoderLayer(config) for _ in range(config.layers)]
|
|
274
|
-
self.norm = nn.LayerNorm(config.width)
|
|
275
|
-
num_patches = self.patch_embed.num_patches
|
|
276
|
-
embed_len = (
|
|
277
|
-
num_patches if no_embed_class else num_patches + self.num_prefix_tokens
|
|
278
|
-
)
|
|
279
|
-
self.pos_embed = mx.random.normal((embed_len, config.width))[None, :]
|
|
280
|
-
|
|
281
|
-
norm_layer = partial(nn.LayerNorm, eps=1e-5)
|
|
282
|
-
self.attn_pool = AttentionPoolLatent(
|
|
283
|
-
config.width,
|
|
284
|
-
num_heads=config.num_attention_heads,
|
|
285
|
-
norm_layer=norm_layer,
|
|
286
|
-
mlp_ratio=config.mlp_ratio,
|
|
287
|
-
)
|
|
288
|
-
|
|
289
|
-
def __call__(
|
|
290
|
-
self,
|
|
291
|
-
x: mx.array,
|
|
292
|
-
output_hidden_states: Optional[bool] = None,
|
|
293
|
-
) -> mx.array:
|
|
294
|
-
x = self.patch_embed(x)
|
|
295
|
-
x += self.pos_embed
|
|
296
|
-
x = self.norm_pre(x)
|
|
297
|
-
|
|
298
|
-
encoder_states = (x,) if output_hidden_states else None
|
|
299
|
-
for l in self.blocks:
|
|
300
|
-
x = l(x, mask=None)
|
|
301
|
-
if output_hidden_states:
|
|
302
|
-
encoder_states = encoder_states + (x,)
|
|
303
|
-
|
|
304
|
-
pooler_output = self.norm(x)
|
|
305
|
-
|
|
306
|
-
if not self.ignore_head:
|
|
307
|
-
pooler_output = self.attn_pool(pooler_output)
|
|
308
|
-
return pooler_output, x, encoder_states
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
class VisionModel(nn.Module):
|
|
312
|
-
def __init__(self, config: VisionConfig, ignore_head: bool = True):
|
|
313
|
-
super().__init__()
|
|
314
|
-
|
|
315
|
-
self.model_type = config.model_type
|
|
316
|
-
self.config = config
|
|
317
|
-
if self.model_type != "vision":
|
|
318
|
-
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
319
|
-
|
|
320
|
-
self.vision_tower = SigLipVisionModel(config, ignore_head)
|
|
321
|
-
|
|
322
|
-
def __call__(
|
|
323
|
-
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
324
|
-
) -> mx.array:
|
|
325
|
-
return self.vision_tower(x, output_hidden_states)
|
|
326
|
-
|
|
327
|
-
def sanitize(self, weights):
|
|
328
|
-
sanitized_weights = {}
|
|
329
|
-
weight_keys = {
|
|
330
|
-
"neck.0.weight",
|
|
331
|
-
"neck.2.weight",
|
|
332
|
-
"neck_hd.0.weight",
|
|
333
|
-
"neck_hd.2.weight",
|
|
334
|
-
"downsamples.0.weight",
|
|
335
|
-
"downsamples.1.weight",
|
|
336
|
-
"patch_embed.proj.weight",
|
|
337
|
-
}
|
|
338
|
-
for k, v in weights.items():
|
|
339
|
-
if "position_ids" in k:
|
|
340
|
-
# Remove unused position_ids
|
|
341
|
-
continue
|
|
342
|
-
|
|
343
|
-
elif ".".join(k.split(".")[-3:]) in weight_keys:
|
|
344
|
-
# PyTorch conv2d weight tensors have shape:
|
|
345
|
-
# [out_channels, in_channels, kH, KW]
|
|
346
|
-
# MLX conv2d expects the weight be of shape:
|
|
347
|
-
# [out_channels, kH, KW, in_channels]
|
|
348
|
-
if check_array_shape(v):
|
|
349
|
-
sanitized_weights[k] = v
|
|
350
|
-
else:
|
|
351
|
-
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
352
|
-
|
|
353
|
-
else:
|
|
354
|
-
sanitized_weights[k] = v
|
|
355
|
-
|
|
356
|
-
return sanitized_weights
|