nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,306 +0,0 @@
|
|
|
1
|
-
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
-
|
|
3
|
-
import time
|
|
4
|
-
from typing import Optional, Tuple
|
|
5
|
-
|
|
6
|
-
import mlx.core as mx
|
|
7
|
-
|
|
8
|
-
from .model_io import (
|
|
9
|
-
_DEFAULT_MODEL,
|
|
10
|
-
load_autoencoder,
|
|
11
|
-
load_diffusion_config,
|
|
12
|
-
load_text_encoder,
|
|
13
|
-
load_tokenizer,
|
|
14
|
-
load_unet,
|
|
15
|
-
)
|
|
16
|
-
from .sampler import SimpleEulerAncestralSampler, SimpleEulerSampler
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
class StableDiffusion:
|
|
20
|
-
def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
|
|
21
|
-
self.dtype = mx.float16 if float16 else mx.float32
|
|
22
|
-
self.diffusion_config = load_diffusion_config(model)
|
|
23
|
-
self.unet = load_unet(model, float16)
|
|
24
|
-
self.text_encoder = load_text_encoder(model, float16)
|
|
25
|
-
self.autoencoder = load_autoencoder(model, False)
|
|
26
|
-
self.sampler = SimpleEulerSampler(self.diffusion_config)
|
|
27
|
-
self.tokenizer = load_tokenizer(model)
|
|
28
|
-
|
|
29
|
-
def ensure_models_are_loaded(self):
|
|
30
|
-
mx.eval(self.unet.parameters())
|
|
31
|
-
mx.eval(self.text_encoder.parameters())
|
|
32
|
-
mx.eval(self.autoencoder.parameters())
|
|
33
|
-
|
|
34
|
-
def _tokenize(self, tokenizer, text: str, negative_text: Optional[str] = None):
|
|
35
|
-
# Tokenize the text
|
|
36
|
-
tokens = [tokenizer.tokenize(text)]
|
|
37
|
-
if negative_text is not None:
|
|
38
|
-
tokens += [tokenizer.tokenize(negative_text)]
|
|
39
|
-
lengths = [len(t) for t in tokens]
|
|
40
|
-
N = max(lengths)
|
|
41
|
-
tokens = [t + [0] * (N - len(t)) for t in tokens]
|
|
42
|
-
tokens = mx.array(tokens)
|
|
43
|
-
|
|
44
|
-
return tokens
|
|
45
|
-
|
|
46
|
-
def _get_text_conditioning(
|
|
47
|
-
self,
|
|
48
|
-
text: str,
|
|
49
|
-
n_images: int = 1,
|
|
50
|
-
cfg_weight: float = 7.5,
|
|
51
|
-
negative_text: str = "",
|
|
52
|
-
):
|
|
53
|
-
# Tokenize the text
|
|
54
|
-
tokens = self._tokenize(
|
|
55
|
-
self.tokenizer, text, (negative_text if cfg_weight > 1 else None)
|
|
56
|
-
)
|
|
57
|
-
|
|
58
|
-
# Compute the features
|
|
59
|
-
conditioning = self.text_encoder(tokens).last_hidden_state
|
|
60
|
-
|
|
61
|
-
# Repeat the conditioning for each of the generated images
|
|
62
|
-
if n_images > 1:
|
|
63
|
-
conditioning = mx.repeat(conditioning, n_images, axis=0)
|
|
64
|
-
|
|
65
|
-
return conditioning
|
|
66
|
-
|
|
67
|
-
def _denoising_step(
|
|
68
|
-
self, x_t, t, t_prev, conditioning, cfg_weight: float = 7.5, text_time=None
|
|
69
|
-
):
|
|
70
|
-
x_t_unet = mx.concatenate([x_t] * 2, axis=0) if cfg_weight > 1 else x_t
|
|
71
|
-
t_unet = mx.broadcast_to(t, [len(x_t_unet)])
|
|
72
|
-
eps_pred = self.unet(
|
|
73
|
-
x_t_unet, t_unet, encoder_x=conditioning, text_time=text_time
|
|
74
|
-
)
|
|
75
|
-
|
|
76
|
-
if cfg_weight > 1:
|
|
77
|
-
eps_text, eps_neg = eps_pred.split(2)
|
|
78
|
-
eps_pred = eps_neg + cfg_weight * (eps_text - eps_neg)
|
|
79
|
-
|
|
80
|
-
x_t_prev = self.sampler.step(eps_pred, x_t, t, t_prev)
|
|
81
|
-
|
|
82
|
-
return x_t_prev
|
|
83
|
-
|
|
84
|
-
def _denoising_loop(
|
|
85
|
-
self,
|
|
86
|
-
x_T,
|
|
87
|
-
T,
|
|
88
|
-
conditioning,
|
|
89
|
-
num_steps: int = 50,
|
|
90
|
-
cfg_weight: float = 7.5,
|
|
91
|
-
text_time=None,
|
|
92
|
-
):
|
|
93
|
-
x_t = x_T
|
|
94
|
-
for t, t_prev in self.sampler.timesteps(
|
|
95
|
-
num_steps, start_time=T, dtype=self.dtype
|
|
96
|
-
):
|
|
97
|
-
x_t = self._denoising_step(
|
|
98
|
-
x_t, t, t_prev, conditioning, cfg_weight, text_time
|
|
99
|
-
)
|
|
100
|
-
yield x_t
|
|
101
|
-
|
|
102
|
-
def generate_latents(
|
|
103
|
-
self,
|
|
104
|
-
text: str,
|
|
105
|
-
n_images: int = 1,
|
|
106
|
-
num_steps: int = 50,
|
|
107
|
-
cfg_weight: float = 7.5,
|
|
108
|
-
negative_text: str = "",
|
|
109
|
-
latent_size: Tuple[int] = (64, 64),
|
|
110
|
-
seed=None,
|
|
111
|
-
):
|
|
112
|
-
# Set the PRNG state
|
|
113
|
-
seed = int(time.time()) if seed is None else seed
|
|
114
|
-
mx.random.seed(seed)
|
|
115
|
-
|
|
116
|
-
# Get the text conditioning
|
|
117
|
-
conditioning = self._get_text_conditioning(
|
|
118
|
-
text, n_images, cfg_weight, negative_text
|
|
119
|
-
)
|
|
120
|
-
|
|
121
|
-
# Create the latent variables
|
|
122
|
-
x_T = self.sampler.sample_prior(
|
|
123
|
-
(n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
# Perform the denoising loop
|
|
127
|
-
yield from self._denoising_loop(
|
|
128
|
-
x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight
|
|
129
|
-
)
|
|
130
|
-
|
|
131
|
-
def generate_latents_from_image(
|
|
132
|
-
self,
|
|
133
|
-
image,
|
|
134
|
-
text: str,
|
|
135
|
-
n_images: int = 1,
|
|
136
|
-
strength: float = 0.8,
|
|
137
|
-
num_steps: int = 50,
|
|
138
|
-
cfg_weight: float = 7.5,
|
|
139
|
-
negative_text: str = "",
|
|
140
|
-
seed=None,
|
|
141
|
-
):
|
|
142
|
-
# Set the PRNG state
|
|
143
|
-
seed = int(time.time()) if seed is None else seed
|
|
144
|
-
mx.random.seed(seed)
|
|
145
|
-
|
|
146
|
-
# Define the num steps and start step
|
|
147
|
-
start_step = self.sampler.max_time * strength
|
|
148
|
-
num_steps = int(num_steps * strength)
|
|
149
|
-
|
|
150
|
-
# Get the text conditioning
|
|
151
|
-
conditioning = self._get_text_conditioning(
|
|
152
|
-
text, n_images, cfg_weight, negative_text
|
|
153
|
-
)
|
|
154
|
-
|
|
155
|
-
# Get the latents from the input image and add noise according to the
|
|
156
|
-
# start time.
|
|
157
|
-
x_0, _ = self.autoencoder.encode(image[None])
|
|
158
|
-
x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
|
|
159
|
-
x_T = self.sampler.add_noise(x_0, mx.array(start_step))
|
|
160
|
-
|
|
161
|
-
# Perform the denoising loop
|
|
162
|
-
yield from self._denoising_loop(
|
|
163
|
-
x_T, start_step, conditioning, num_steps, cfg_weight
|
|
164
|
-
)
|
|
165
|
-
|
|
166
|
-
def decode(self, x_t):
|
|
167
|
-
x = self.autoencoder.decode(x_t)
|
|
168
|
-
x = mx.clip(x / 2 + 0.5, 0, 1)
|
|
169
|
-
return x
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
class StableDiffusionXL(StableDiffusion):
|
|
173
|
-
def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
|
|
174
|
-
super().__init__(model, float16)
|
|
175
|
-
|
|
176
|
-
self.sampler = SimpleEulerAncestralSampler(self.diffusion_config)
|
|
177
|
-
|
|
178
|
-
self.text_encoder_1 = self.text_encoder
|
|
179
|
-
self.tokenizer_1 = self.tokenizer
|
|
180
|
-
del self.tokenizer, self.text_encoder
|
|
181
|
-
|
|
182
|
-
self.text_encoder_2 = load_text_encoder(
|
|
183
|
-
model,
|
|
184
|
-
float16,
|
|
185
|
-
model_key="text_encoder_2",
|
|
186
|
-
)
|
|
187
|
-
self.tokenizer_2 = load_tokenizer(
|
|
188
|
-
model,
|
|
189
|
-
merges_key="tokenizer_2_merges",
|
|
190
|
-
vocab_key="tokenizer_2_vocab",
|
|
191
|
-
)
|
|
192
|
-
|
|
193
|
-
def ensure_models_are_loaded(self):
|
|
194
|
-
mx.eval(self.unet.parameters())
|
|
195
|
-
mx.eval(self.text_encoder_1.parameters())
|
|
196
|
-
mx.eval(self.text_encoder_2.parameters())
|
|
197
|
-
mx.eval(self.autoencoder.parameters())
|
|
198
|
-
|
|
199
|
-
def _get_text_conditioning(
|
|
200
|
-
self,
|
|
201
|
-
text: str,
|
|
202
|
-
n_images: int = 1,
|
|
203
|
-
cfg_weight: float = 7.5,
|
|
204
|
-
negative_text: str = "",
|
|
205
|
-
):
|
|
206
|
-
tokens_1 = self._tokenize(
|
|
207
|
-
self.tokenizer_1,
|
|
208
|
-
text,
|
|
209
|
-
(negative_text if cfg_weight > 1 else None),
|
|
210
|
-
)
|
|
211
|
-
tokens_2 = self._tokenize(
|
|
212
|
-
self.tokenizer_2,
|
|
213
|
-
text,
|
|
214
|
-
(negative_text if cfg_weight > 1 else None),
|
|
215
|
-
)
|
|
216
|
-
|
|
217
|
-
conditioning_1 = self.text_encoder_1(tokens_1)
|
|
218
|
-
conditioning_2 = self.text_encoder_2(tokens_2)
|
|
219
|
-
conditioning = mx.concatenate(
|
|
220
|
-
[conditioning_1.hidden_states[-2], conditioning_2.hidden_states[-2]],
|
|
221
|
-
axis=-1,
|
|
222
|
-
)
|
|
223
|
-
pooled_conditioning = conditioning_2.pooled_output
|
|
224
|
-
|
|
225
|
-
if n_images > 1:
|
|
226
|
-
conditioning = mx.repeat(conditioning, n_images, axis=0)
|
|
227
|
-
pooled_conditioning = mx.repeat(pooled_conditioning, n_images, axis=0)
|
|
228
|
-
|
|
229
|
-
return conditioning, pooled_conditioning
|
|
230
|
-
|
|
231
|
-
def generate_latents(
|
|
232
|
-
self,
|
|
233
|
-
text: str,
|
|
234
|
-
n_images: int = 1,
|
|
235
|
-
num_steps: int = 2,
|
|
236
|
-
cfg_weight: float = 0.0,
|
|
237
|
-
negative_text: str = "",
|
|
238
|
-
latent_size: Tuple[int] = (64, 64),
|
|
239
|
-
seed=None,
|
|
240
|
-
):
|
|
241
|
-
# Set the PRNG state
|
|
242
|
-
seed = int(time.time()) if seed is None else seed
|
|
243
|
-
mx.random.seed(seed)
|
|
244
|
-
|
|
245
|
-
# Get the text conditioning
|
|
246
|
-
conditioning, pooled_conditioning = self._get_text_conditioning(
|
|
247
|
-
text, n_images, cfg_weight, negative_text
|
|
248
|
-
)
|
|
249
|
-
text_time = (
|
|
250
|
-
pooled_conditioning,
|
|
251
|
-
mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
|
|
252
|
-
)
|
|
253
|
-
|
|
254
|
-
# Create the latent variables
|
|
255
|
-
x_T = self.sampler.sample_prior(
|
|
256
|
-
(n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
|
|
257
|
-
)
|
|
258
|
-
|
|
259
|
-
# Perform the denoising loop
|
|
260
|
-
yield from self._denoising_loop(
|
|
261
|
-
x_T,
|
|
262
|
-
self.sampler.max_time,
|
|
263
|
-
conditioning,
|
|
264
|
-
num_steps,
|
|
265
|
-
cfg_weight,
|
|
266
|
-
text_time=text_time,
|
|
267
|
-
)
|
|
268
|
-
|
|
269
|
-
def generate_latents_from_image(
|
|
270
|
-
self,
|
|
271
|
-
image,
|
|
272
|
-
text: str,
|
|
273
|
-
n_images: int = 1,
|
|
274
|
-
strength: float = 0.8,
|
|
275
|
-
num_steps: int = 2,
|
|
276
|
-
cfg_weight: float = 0.0,
|
|
277
|
-
negative_text: str = "",
|
|
278
|
-
seed=None,
|
|
279
|
-
):
|
|
280
|
-
# Set the PRNG state
|
|
281
|
-
seed = seed or int(time.time())
|
|
282
|
-
mx.random.seed(seed)
|
|
283
|
-
|
|
284
|
-
# Define the num steps and start step
|
|
285
|
-
start_step = self.sampler.max_time * strength
|
|
286
|
-
num_steps = int(num_steps * strength)
|
|
287
|
-
|
|
288
|
-
# Get the text conditioning
|
|
289
|
-
conditioning, pooled_conditioning = self._get_text_conditioning(
|
|
290
|
-
text, n_images, cfg_weight, negative_text
|
|
291
|
-
)
|
|
292
|
-
text_time = (
|
|
293
|
-
pooled_conditioning,
|
|
294
|
-
mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
|
|
295
|
-
)
|
|
296
|
-
|
|
297
|
-
# Get the latents from the input image and add noise according to the
|
|
298
|
-
# start time.
|
|
299
|
-
x_0, _ = self.autoencoder.encode(image[None])
|
|
300
|
-
x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
|
|
301
|
-
x_T = self.sampler.add_noise(x_0, mx.array(start_step))
|
|
302
|
-
|
|
303
|
-
# Perform the denoising loop
|
|
304
|
-
yield from self._denoising_loop(
|
|
305
|
-
x_T, start_step, conditioning, num_steps, cfg_weight, text_time=text_time
|
|
306
|
-
)
|
|
@@ -1,116 +0,0 @@
|
|
|
1
|
-
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
-
|
|
3
|
-
from dataclasses import dataclass
|
|
4
|
-
from typing import List, Optional
|
|
5
|
-
|
|
6
|
-
import mlx.core as mx
|
|
7
|
-
import mlx.nn as nn
|
|
8
|
-
|
|
9
|
-
from .config import CLIPTextModelConfig
|
|
10
|
-
|
|
11
|
-
_ACTIVATIONS = {"quick_gelu": nn.gelu_fast_approx, "gelu": nn.gelu}
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
@dataclass
|
|
15
|
-
class CLIPOutput:
|
|
16
|
-
# The last_hidden_state indexed at the EOS token and possibly projected if
|
|
17
|
-
# the model has a projection layer
|
|
18
|
-
pooled_output: Optional[mx.array] = None
|
|
19
|
-
|
|
20
|
-
# The full sequence output of the transformer after the final layernorm
|
|
21
|
-
last_hidden_state: Optional[mx.array] = None
|
|
22
|
-
|
|
23
|
-
# A list of hidden states corresponding to the outputs of the transformer layers
|
|
24
|
-
hidden_states: Optional[List[mx.array]] = None
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
class CLIPEncoderLayer(nn.Module):
|
|
28
|
-
"""The transformer encoder layer from CLIP."""
|
|
29
|
-
|
|
30
|
-
def __init__(self, model_dims: int, num_heads: int, activation: str):
|
|
31
|
-
super().__init__()
|
|
32
|
-
|
|
33
|
-
self.layer_norm1 = nn.LayerNorm(model_dims)
|
|
34
|
-
self.layer_norm2 = nn.LayerNorm(model_dims)
|
|
35
|
-
|
|
36
|
-
self.attention = nn.MultiHeadAttention(model_dims, num_heads)
|
|
37
|
-
# Add biases to the attention projections to match CLIP
|
|
38
|
-
self.attention.query_proj.bias = mx.zeros(model_dims)
|
|
39
|
-
self.attention.key_proj.bias = mx.zeros(model_dims)
|
|
40
|
-
self.attention.value_proj.bias = mx.zeros(model_dims)
|
|
41
|
-
self.attention.out_proj.bias = mx.zeros(model_dims)
|
|
42
|
-
|
|
43
|
-
self.linear1 = nn.Linear(model_dims, 4 * model_dims)
|
|
44
|
-
self.linear2 = nn.Linear(4 * model_dims, model_dims)
|
|
45
|
-
|
|
46
|
-
self.act = _ACTIVATIONS[activation]
|
|
47
|
-
|
|
48
|
-
def __call__(self, x, attn_mask=None):
|
|
49
|
-
y = self.layer_norm1(x)
|
|
50
|
-
y = self.attention(y, y, y, attn_mask)
|
|
51
|
-
x = y + x
|
|
52
|
-
|
|
53
|
-
y = self.layer_norm2(x)
|
|
54
|
-
y = self.linear1(y)
|
|
55
|
-
y = self.act(y)
|
|
56
|
-
y = self.linear2(y)
|
|
57
|
-
x = y + x
|
|
58
|
-
|
|
59
|
-
return x
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
class CLIPTextModel(nn.Module):
|
|
63
|
-
"""Implements the text encoder transformer from CLIP."""
|
|
64
|
-
|
|
65
|
-
def __init__(self, config: CLIPTextModelConfig):
|
|
66
|
-
super().__init__()
|
|
67
|
-
|
|
68
|
-
self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
|
|
69
|
-
self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
|
|
70
|
-
self.layers = [
|
|
71
|
-
CLIPEncoderLayer(config.model_dims, config.num_heads, config.hidden_act)
|
|
72
|
-
for i in range(config.num_layers)
|
|
73
|
-
]
|
|
74
|
-
self.final_layer_norm = nn.LayerNorm(config.model_dims)
|
|
75
|
-
|
|
76
|
-
if config.projection_dim is not None:
|
|
77
|
-
self.text_projection = nn.Linear(
|
|
78
|
-
config.model_dims, config.projection_dim, bias=False
|
|
79
|
-
)
|
|
80
|
-
|
|
81
|
-
def _get_mask(self, N, dtype):
|
|
82
|
-
indices = mx.arange(N)
|
|
83
|
-
mask = indices[:, None] < indices[None]
|
|
84
|
-
mask = mask.astype(dtype) * (-6e4 if dtype == mx.float16 else -1e9)
|
|
85
|
-
return mask
|
|
86
|
-
|
|
87
|
-
def __call__(self, x):
|
|
88
|
-
# Extract some shapes
|
|
89
|
-
B, N = x.shape
|
|
90
|
-
eos_tokens = x.argmax(-1)
|
|
91
|
-
|
|
92
|
-
# Compute the embeddings
|
|
93
|
-
x = self.token_embedding(x)
|
|
94
|
-
x = x + self.position_embedding.weight[:N]
|
|
95
|
-
|
|
96
|
-
# Compute the features from the transformer
|
|
97
|
-
mask = self._get_mask(N, x.dtype)
|
|
98
|
-
hidden_states = []
|
|
99
|
-
for l in self.layers:
|
|
100
|
-
x = l(x, mask)
|
|
101
|
-
hidden_states.append(x)
|
|
102
|
-
|
|
103
|
-
# Apply the final layernorm and return
|
|
104
|
-
x = self.final_layer_norm(x)
|
|
105
|
-
last_hidden_state = x
|
|
106
|
-
|
|
107
|
-
# Select the EOS token
|
|
108
|
-
pooled_output = x[mx.arange(len(x)), eos_tokens]
|
|
109
|
-
if "text_projection" in self:
|
|
110
|
-
pooled_output = self.text_projection(pooled_output)
|
|
111
|
-
|
|
112
|
-
return CLIPOutput(
|
|
113
|
-
pooled_output=pooled_output,
|
|
114
|
-
last_hidden_state=last_hidden_state,
|
|
115
|
-
hidden_states=hidden_states,
|
|
116
|
-
)
|
|
@@ -1,65 +0,0 @@
|
|
|
1
|
-
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
-
|
|
3
|
-
from dataclasses import dataclass
|
|
4
|
-
from typing import Optional, Tuple
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
@dataclass
|
|
8
|
-
class AutoencoderConfig:
|
|
9
|
-
in_channels: int = 3
|
|
10
|
-
out_channels: int = 3
|
|
11
|
-
latent_channels_out: int = 8
|
|
12
|
-
latent_channels_in: int = 4
|
|
13
|
-
block_out_channels: Tuple[int] = (128, 256, 512, 512)
|
|
14
|
-
layers_per_block: int = 2
|
|
15
|
-
norm_num_groups: int = 32
|
|
16
|
-
scaling_factor: float = 0.18215
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
@dataclass
|
|
20
|
-
class CLIPTextModelConfig:
|
|
21
|
-
num_layers: int = 23
|
|
22
|
-
model_dims: int = 1024
|
|
23
|
-
num_heads: int = 16
|
|
24
|
-
max_length: int = 77
|
|
25
|
-
vocab_size: int = 49408
|
|
26
|
-
projection_dim: Optional[int] = None
|
|
27
|
-
hidden_act: str = "quick_gelu"
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
@dataclass
|
|
31
|
-
class UNetConfig:
|
|
32
|
-
in_channels: int = 4
|
|
33
|
-
out_channels: int = 4
|
|
34
|
-
conv_in_kernel: int = 3
|
|
35
|
-
conv_out_kernel: int = 3
|
|
36
|
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
|
|
37
|
-
layers_per_block: Tuple[int] = (2, 2, 2, 2)
|
|
38
|
-
mid_block_layers: int = 2
|
|
39
|
-
transformer_layers_per_block: Tuple[int] = (1, 1, 1, 1)
|
|
40
|
-
num_attention_heads: Tuple[int] = (5, 10, 20, 20)
|
|
41
|
-
cross_attention_dim: Tuple[int] = (1024,) * 4
|
|
42
|
-
norm_num_groups: int = 32
|
|
43
|
-
down_block_types: Tuple[str] = (
|
|
44
|
-
"CrossAttnDownBlock2D",
|
|
45
|
-
"CrossAttnDownBlock2D",
|
|
46
|
-
"CrossAttnDownBlock2D",
|
|
47
|
-
"DownBlock2D",
|
|
48
|
-
)
|
|
49
|
-
up_block_types: Tuple[str] = (
|
|
50
|
-
"UpBlock2D",
|
|
51
|
-
"CrossAttnUpBlock2D",
|
|
52
|
-
"CrossAttnUpBlock2D",
|
|
53
|
-
"CrossAttnUpBlock2D",
|
|
54
|
-
)
|
|
55
|
-
addition_embed_type: Optional[str] = None
|
|
56
|
-
addition_time_embed_dim: Optional[int] = None
|
|
57
|
-
projection_class_embeddings_input_dim: Optional[int] = None
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
@dataclass
|
|
61
|
-
class DiffusionConfig:
|
|
62
|
-
beta_schedule: str = "scaled_linear"
|
|
63
|
-
beta_start: float = 0.00085
|
|
64
|
-
beta_end: float = 0.012
|
|
65
|
-
num_train_steps: int = 1000
|