nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,286 +0,0 @@
1
- from interface import ImageGen, ImageGenerationConfig, ImageSamplerConfig, Image
2
- import numpy as np
3
- from PIL import Image as PILImage
4
- import mlx.core as mx
5
-
6
-
7
- def test_txt2image(
8
- prompt="A photo of an astronaut riding a horse on Mars.",
9
- model="sdxl",
10
- local_model_path="",
11
- n_images=1,
12
- steps=None,
13
- cfg=None,
14
- negative_prompt="",
15
- n_rows=1,
16
- decoding_batch_size=1,
17
- float16=True,
18
- quantize=False,
19
- preload_models=False,
20
- output="out_txt2img.png",
21
- seed=None,
22
- verbose=False,
23
- width=512,
24
- height=512,
25
- ):
26
- """Generate images from text prompt using high-level interface"""
27
-
28
- # Determine model path based on model type
29
- if model == "sdxl":
30
- model_path = local_model_path or "stabilityai/sdxl-turbo"
31
- default_cfg = 0.0
32
- default_steps = 2
33
- else:
34
- model_path = local_model_path or "stabilityai/stable-diffusion-2-1-base"
35
- default_cfg = 7.5
36
- default_steps = 50
37
-
38
- # Use provided values or defaults
39
- cfg = cfg or default_cfg
40
- steps = steps or default_steps
41
-
42
- # Create ImageGen instance with proper parameters
43
- image_gen = ImageGen(model_path, "", device=None, float16=float16, quantize=quantize)
44
-
45
- # Load the model
46
- if not image_gen.load_model(model_path):
47
- print(f"Failed to load model: {model_path}")
48
- return None
49
-
50
- # Create sampler configuration
51
- sampler_config = ImageSamplerConfig(
52
- method="ddim",
53
- steps=steps,
54
- guidance_scale=cfg,
55
- seed=seed if seed is not None else -1,
56
- )
57
-
58
- # Create generation configuration with all parameters
59
- gen_config = ImageGenerationConfig(
60
- prompts=prompt,
61
- negative_prompts=negative_prompt,
62
- height=height,
63
- width=width,
64
- sampler_config=sampler_config,
65
- n_images=n_images,
66
- n_rows=n_rows,
67
- decoding_batch_size=decoding_batch_size,
68
- )
69
-
70
- if verbose:
71
- print(f"Generating {n_images} image(s) with prompt: '{prompt}'")
72
- print(f"Model: {model_path}, Steps: {steps}, CFG: {cfg}")
73
- print(f"Float16: {float16}, Quantize: {quantize}")
74
-
75
- # Generate image using txt2img
76
- result_image = image_gen.txt2img(prompt, gen_config)
77
-
78
- # Free memory by deleting model components (following main_duplicate.py pattern)
79
- if image_gen.model:
80
- if model == "sdxl":
81
- if hasattr(image_gen.model, "text_encoder_1"):
82
- del image_gen.model.text_encoder_1
83
- if hasattr(image_gen.model, "text_encoder_2"):
84
- del image_gen.model.text_encoder_2
85
- else:
86
- if hasattr(image_gen.model, "text_encoder"):
87
- del image_gen.model.text_encoder
88
-
89
- if hasattr(image_gen.model, "unet"):
90
- del image_gen.model.unet
91
- if hasattr(image_gen.model, "sampler"):
92
- del image_gen.model.sampler
93
-
94
- # Get peak memory usage
95
- peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
96
-
97
- # Convert to PIL and save
98
- image_np = result_image.to_numpy()
99
- image_pil = PILImage.fromarray((image_np * 255).astype(np.uint8))
100
- image_pil.save(output)
101
-
102
- print(f"Text-to-image output saved to: {output}")
103
-
104
- # Get final peak memory usage
105
- peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
106
-
107
- # Report memory usage
108
- if verbose:
109
- print(f"Peak memory used for unet: {peak_mem_unet:.3f}GB")
110
- print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")
111
-
112
- # Clean up
113
- image_gen.close()
114
-
115
- return output
116
-
117
-
118
- def test_image2image(
119
- prompt="A lit fireplace",
120
- model="sdxl",
121
- strength=0.5,
122
- local_model_path="",
123
- n_images=1,
124
- steps=None,
125
- cfg=None,
126
- negative_prompt="",
127
- n_rows=1,
128
- decoding_batch_size=1,
129
- quantize=False,
130
- float16=True,
131
- preload_models=False,
132
- init_image_path="out_txt2img.png",
133
- output="out_img2img.png",
134
- verbose=False,
135
- seed=None,
136
- width=256,
137
- height=256,
138
- ):
139
- """Generate images from image and text prompt using high-level interface"""
140
-
141
- # Determine model path based on model type
142
- if model == "sdxl":
143
- model_path = local_model_path or "stabilityai/sdxl-turbo"
144
- default_cfg = 0.0
145
- default_steps = 2
146
- else:
147
- model_path = local_model_path or "stabilityai/stable-diffusion-2-1-base"
148
- default_cfg = 7.5
149
- default_steps = 50
150
-
151
- # Use provided values or defaults
152
- cfg = cfg or default_cfg
153
- steps = steps or default_steps
154
-
155
- # Load and process input image
156
- try:
157
- pil_img = PILImage.open(init_image_path)
158
- # Ensure RGB format
159
- if pil_img.mode != "RGB":
160
- pil_img = pil_img.convert("RGB")
161
-
162
- # Convert to numpy array and then to our Image class
163
- img_np = np.array(pil_img).astype(np.float32) / 255.0 # Normalize to [0,1]
164
- init_image = Image.from_numpy(img_np)
165
-
166
- except FileNotFoundError:
167
- print(f"Error: Image file '{init_image_path}' not found.")
168
- return None
169
- except Exception as e:
170
- print(f"Error loading image: {e}")
171
- return None
172
-
173
- # Create ImageGen instance
174
- image_gen = ImageGen(model_path, "", device=None)
175
-
176
- # Load the model
177
- if not image_gen.load_model(model_path):
178
- print(f"Failed to load model: {model_path}")
179
- return None
180
-
181
- # Create sampler configuration
182
- sampler_config = ImageSamplerConfig(
183
- method="ddim",
184
- steps=steps,
185
- guidance_scale=cfg,
186
- seed=seed if seed is not None else -1,
187
- )
188
-
189
- # Create generation configuration
190
- gen_config = ImageGenerationConfig(
191
- prompts=prompt,
192
- negative_prompts=negative_prompt,
193
- height=height,
194
- width=width,
195
- sampler_config=sampler_config,
196
- init_image=init_image,
197
- strength=strength,
198
- )
199
-
200
- if verbose:
201
- print(f"Generating image with prompt: '{prompt}' and strength: {strength}")
202
- print(f"Model: {model_path}, Steps: {steps}, CFG: {cfg}")
203
-
204
- # Generate image using img2img
205
- result_image = image_gen.img2img(init_image, prompt, gen_config)
206
-
207
- # Free memory by deleting model components (following main_duplicate.py pattern)
208
- if image_gen.model:
209
- if model == "sdxl":
210
- if hasattr(image_gen.model, "text_encoder_1"):
211
- del image_gen.model.text_encoder_1
212
- if hasattr(image_gen.model, "text_encoder_2"):
213
- del image_gen.model.text_encoder_2
214
- else:
215
- if hasattr(image_gen.model, "text_encoder"):
216
- del image_gen.model.text_encoder
217
-
218
- if hasattr(image_gen.model, "unet"):
219
- del image_gen.model.unet
220
- if hasattr(image_gen.model, "sampler"):
221
- del image_gen.model.sampler
222
-
223
- # Get peak memory usage
224
- peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
225
-
226
- # Convert to PIL and save
227
- image_np = result_image.to_numpy()
228
- image_pil = PILImage.fromarray((image_np * 255).astype(np.uint8))
229
- image_pil.save(output)
230
-
231
- print(f"Image-to-image output saved to: {output}")
232
-
233
- # Get final peak memory usage
234
- peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
235
-
236
- # Report memory usage
237
- if verbose:
238
- print(f"Peak memory used for unet: {peak_mem_unet:.3f}GB")
239
- print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")
240
-
241
- # Clean up
242
- image_gen.close()
243
-
244
- return output
245
-
246
-
247
- if __name__ == "__main__":
248
- # Text-to-image parameters
249
- txt2img_params = {
250
- "prompt": "A photo of an astronaut riding a horse on Mars.",
251
- "model": "sdxl",
252
- "n_images": 1,
253
- "n_rows": 1,
254
- "output": "out_txt2img.png",
255
- "verbose": True,
256
- "width": 256,
257
- "height": 256,
258
- }
259
-
260
- # Image-to-image parameters
261
- img2img_params = {
262
- "prompt": "A lit fireplace",
263
- "model": "sdxl",
264
- "strength": 0.5,
265
- "n_images": 1,
266
- "n_rows": 1,
267
- "init_image_path": "out_txt2img.png",
268
- "output": "out_img2img.png",
269
- "verbose": True,
270
- "width": 512,
271
- "height": 512,
272
- }
273
-
274
- print("Running text-to-image generation...")
275
- generated_image = test_txt2image(**txt2img_params)
276
-
277
- if generated_image:
278
- print(f"\nRunning image-to-image generation using: {generated_image}")
279
- img2img_params["init_image_path"] = generated_image
280
- test_image2image(**img2img_params)
281
-
282
- print(f"\nPipeline complete!")
283
- print(f"Text-to-image result: {txt2img_params['output']}")
284
- print(f"Image-to-image result: {img2img_params['output']}")
285
- else:
286
- print("Failed to generate initial image, skipping img2img test")
@@ -1,306 +0,0 @@
1
- # Copyright © 2023-2024 Apple Inc.
2
-
3
- import time
4
- from typing import Optional, Tuple
5
-
6
- import mlx.core as mx
7
-
8
- from .model_io import (
9
- _DEFAULT_MODEL,
10
- load_autoencoder,
11
- load_diffusion_config,
12
- load_text_encoder,
13
- load_tokenizer,
14
- load_unet,
15
- )
16
- from .sampler import SimpleEulerAncestralSampler, SimpleEulerSampler
17
-
18
-
19
- class StableDiffusion:
20
- def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
21
- self.dtype = mx.float16 if float16 else mx.float32
22
- self.diffusion_config = load_diffusion_config(model)
23
- self.unet = load_unet(model, float16)
24
- self.text_encoder = load_text_encoder(model, float16)
25
- self.autoencoder = load_autoencoder(model, False)
26
- self.sampler = SimpleEulerSampler(self.diffusion_config)
27
- self.tokenizer = load_tokenizer(model)
28
-
29
- def ensure_models_are_loaded(self):
30
- mx.eval(self.unet.parameters())
31
- mx.eval(self.text_encoder.parameters())
32
- mx.eval(self.autoencoder.parameters())
33
-
34
- def _tokenize(self, tokenizer, text: str, negative_text: Optional[str] = None):
35
- # Tokenize the text
36
- tokens = [tokenizer.tokenize(text)]
37
- if negative_text is not None:
38
- tokens += [tokenizer.tokenize(negative_text)]
39
- lengths = [len(t) for t in tokens]
40
- N = max(lengths)
41
- tokens = [t + [0] * (N - len(t)) for t in tokens]
42
- tokens = mx.array(tokens)
43
-
44
- return tokens
45
-
46
- def _get_text_conditioning(
47
- self,
48
- text: str,
49
- n_images: int = 1,
50
- cfg_weight: float = 7.5,
51
- negative_text: str = "",
52
- ):
53
- # Tokenize the text
54
- tokens = self._tokenize(
55
- self.tokenizer, text, (negative_text if cfg_weight > 1 else None)
56
- )
57
-
58
- # Compute the features
59
- conditioning = self.text_encoder(tokens).last_hidden_state
60
-
61
- # Repeat the conditioning for each of the generated images
62
- if n_images > 1:
63
- conditioning = mx.repeat(conditioning, n_images, axis=0)
64
-
65
- return conditioning
66
-
67
- def _denoising_step(
68
- self, x_t, t, t_prev, conditioning, cfg_weight: float = 7.5, text_time=None
69
- ):
70
- x_t_unet = mx.concatenate([x_t] * 2, axis=0) if cfg_weight > 1 else x_t
71
- t_unet = mx.broadcast_to(t, [len(x_t_unet)])
72
- eps_pred = self.unet(
73
- x_t_unet, t_unet, encoder_x=conditioning, text_time=text_time
74
- )
75
-
76
- if cfg_weight > 1:
77
- eps_text, eps_neg = eps_pred.split(2)
78
- eps_pred = eps_neg + cfg_weight * (eps_text - eps_neg)
79
-
80
- x_t_prev = self.sampler.step(eps_pred, x_t, t, t_prev)
81
-
82
- return x_t_prev
83
-
84
- def _denoising_loop(
85
- self,
86
- x_T,
87
- T,
88
- conditioning,
89
- num_steps: int = 50,
90
- cfg_weight: float = 7.5,
91
- text_time=None,
92
- ):
93
- x_t = x_T
94
- for t, t_prev in self.sampler.timesteps(
95
- num_steps, start_time=T, dtype=self.dtype
96
- ):
97
- x_t = self._denoising_step(
98
- x_t, t, t_prev, conditioning, cfg_weight, text_time
99
- )
100
- yield x_t
101
-
102
- def generate_latents(
103
- self,
104
- text: str,
105
- n_images: int = 1,
106
- num_steps: int = 50,
107
- cfg_weight: float = 7.5,
108
- negative_text: str = "",
109
- latent_size: Tuple[int] = (64, 64),
110
- seed=None,
111
- ):
112
- # Set the PRNG state
113
- seed = int(time.time()) if seed is None else seed
114
- mx.random.seed(seed)
115
-
116
- # Get the text conditioning
117
- conditioning = self._get_text_conditioning(
118
- text, n_images, cfg_weight, negative_text
119
- )
120
-
121
- # Create the latent variables
122
- x_T = self.sampler.sample_prior(
123
- (n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
124
- )
125
-
126
- # Perform the denoising loop
127
- yield from self._denoising_loop(
128
- x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight
129
- )
130
-
131
- def generate_latents_from_image(
132
- self,
133
- image,
134
- text: str,
135
- n_images: int = 1,
136
- strength: float = 0.8,
137
- num_steps: int = 50,
138
- cfg_weight: float = 7.5,
139
- negative_text: str = "",
140
- seed=None,
141
- ):
142
- # Set the PRNG state
143
- seed = int(time.time()) if seed is None else seed
144
- mx.random.seed(seed)
145
-
146
- # Define the num steps and start step
147
- start_step = self.sampler.max_time * strength
148
- num_steps = int(num_steps * strength)
149
-
150
- # Get the text conditioning
151
- conditioning = self._get_text_conditioning(
152
- text, n_images, cfg_weight, negative_text
153
- )
154
-
155
- # Get the latents from the input image and add noise according to the
156
- # start time.
157
- x_0, _ = self.autoencoder.encode(image[None])
158
- x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
159
- x_T = self.sampler.add_noise(x_0, mx.array(start_step))
160
-
161
- # Perform the denoising loop
162
- yield from self._denoising_loop(
163
- x_T, start_step, conditioning, num_steps, cfg_weight
164
- )
165
-
166
- def decode(self, x_t):
167
- x = self.autoencoder.decode(x_t)
168
- x = mx.clip(x / 2 + 0.5, 0, 1)
169
- return x
170
-
171
-
172
- class StableDiffusionXL(StableDiffusion):
173
- def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
174
- super().__init__(model, float16)
175
-
176
- self.sampler = SimpleEulerAncestralSampler(self.diffusion_config)
177
-
178
- self.text_encoder_1 = self.text_encoder
179
- self.tokenizer_1 = self.tokenizer
180
- del self.tokenizer, self.text_encoder
181
-
182
- self.text_encoder_2 = load_text_encoder(
183
- model,
184
- float16,
185
- model_key="text_encoder_2",
186
- )
187
- self.tokenizer_2 = load_tokenizer(
188
- model,
189
- merges_key="tokenizer_2_merges",
190
- vocab_key="tokenizer_2_vocab",
191
- )
192
-
193
- def ensure_models_are_loaded(self):
194
- mx.eval(self.unet.parameters())
195
- mx.eval(self.text_encoder_1.parameters())
196
- mx.eval(self.text_encoder_2.parameters())
197
- mx.eval(self.autoencoder.parameters())
198
-
199
- def _get_text_conditioning(
200
- self,
201
- text: str,
202
- n_images: int = 1,
203
- cfg_weight: float = 7.5,
204
- negative_text: str = "",
205
- ):
206
- tokens_1 = self._tokenize(
207
- self.tokenizer_1,
208
- text,
209
- (negative_text if cfg_weight > 1 else None),
210
- )
211
- tokens_2 = self._tokenize(
212
- self.tokenizer_2,
213
- text,
214
- (negative_text if cfg_weight > 1 else None),
215
- )
216
-
217
- conditioning_1 = self.text_encoder_1(tokens_1)
218
- conditioning_2 = self.text_encoder_2(tokens_2)
219
- conditioning = mx.concatenate(
220
- [conditioning_1.hidden_states[-2], conditioning_2.hidden_states[-2]],
221
- axis=-1,
222
- )
223
- pooled_conditioning = conditioning_2.pooled_output
224
-
225
- if n_images > 1:
226
- conditioning = mx.repeat(conditioning, n_images, axis=0)
227
- pooled_conditioning = mx.repeat(pooled_conditioning, n_images, axis=0)
228
-
229
- return conditioning, pooled_conditioning
230
-
231
- def generate_latents(
232
- self,
233
- text: str,
234
- n_images: int = 1,
235
- num_steps: int = 2,
236
- cfg_weight: float = 0.0,
237
- negative_text: str = "",
238
- latent_size: Tuple[int] = (64, 64),
239
- seed=None,
240
- ):
241
- # Set the PRNG state
242
- seed = int(time.time()) if seed is None else seed
243
- mx.random.seed(seed)
244
-
245
- # Get the text conditioning
246
- conditioning, pooled_conditioning = self._get_text_conditioning(
247
- text, n_images, cfg_weight, negative_text
248
- )
249
- text_time = (
250
- pooled_conditioning,
251
- mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
252
- )
253
-
254
- # Create the latent variables
255
- x_T = self.sampler.sample_prior(
256
- (n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
257
- )
258
-
259
- # Perform the denoising loop
260
- yield from self._denoising_loop(
261
- x_T,
262
- self.sampler.max_time,
263
- conditioning,
264
- num_steps,
265
- cfg_weight,
266
- text_time=text_time,
267
- )
268
-
269
- def generate_latents_from_image(
270
- self,
271
- image,
272
- text: str,
273
- n_images: int = 1,
274
- strength: float = 0.8,
275
- num_steps: int = 2,
276
- cfg_weight: float = 0.0,
277
- negative_text: str = "",
278
- seed=None,
279
- ):
280
- # Set the PRNG state
281
- seed = seed or int(time.time())
282
- mx.random.seed(seed)
283
-
284
- # Define the num steps and start step
285
- start_step = self.sampler.max_time * strength
286
- num_steps = int(num_steps * strength)
287
-
288
- # Get the text conditioning
289
- conditioning, pooled_conditioning = self._get_text_conditioning(
290
- text, n_images, cfg_weight, negative_text
291
- )
292
- text_time = (
293
- pooled_conditioning,
294
- mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
295
- )
296
-
297
- # Get the latents from the input image and add noise according to the
298
- # start time.
299
- x_0, _ = self.autoencoder.encode(image[None])
300
- x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
301
- x_T = self.sampler.add_noise(x_0, mx.array(start_step))
302
-
303
- # Perform the denoising loop
304
- yield from self._denoising_loop(
305
- x_T, start_step, conditioning, num_steps, cfg_weight, text_time=text_time
306
- )
@@ -1,116 +0,0 @@
1
- # Copyright © 2023-2024 Apple Inc.
2
-
3
- from dataclasses import dataclass
4
- from typing import List, Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from .config import CLIPTextModelConfig
10
-
11
- _ACTIVATIONS = {"quick_gelu": nn.gelu_fast_approx, "gelu": nn.gelu}
12
-
13
-
14
- @dataclass
15
- class CLIPOutput:
16
- # The last_hidden_state indexed at the EOS token and possibly projected if
17
- # the model has a projection layer
18
- pooled_output: Optional[mx.array] = None
19
-
20
- # The full sequence output of the transformer after the final layernorm
21
- last_hidden_state: Optional[mx.array] = None
22
-
23
- # A list of hidden states corresponding to the outputs of the transformer layers
24
- hidden_states: Optional[List[mx.array]] = None
25
-
26
-
27
- class CLIPEncoderLayer(nn.Module):
28
- """The transformer encoder layer from CLIP."""
29
-
30
- def __init__(self, model_dims: int, num_heads: int, activation: str):
31
- super().__init__()
32
-
33
- self.layer_norm1 = nn.LayerNorm(model_dims)
34
- self.layer_norm2 = nn.LayerNorm(model_dims)
35
-
36
- self.attention = nn.MultiHeadAttention(model_dims, num_heads)
37
- # Add biases to the attention projections to match CLIP
38
- self.attention.query_proj.bias = mx.zeros(model_dims)
39
- self.attention.key_proj.bias = mx.zeros(model_dims)
40
- self.attention.value_proj.bias = mx.zeros(model_dims)
41
- self.attention.out_proj.bias = mx.zeros(model_dims)
42
-
43
- self.linear1 = nn.Linear(model_dims, 4 * model_dims)
44
- self.linear2 = nn.Linear(4 * model_dims, model_dims)
45
-
46
- self.act = _ACTIVATIONS[activation]
47
-
48
- def __call__(self, x, attn_mask=None):
49
- y = self.layer_norm1(x)
50
- y = self.attention(y, y, y, attn_mask)
51
- x = y + x
52
-
53
- y = self.layer_norm2(x)
54
- y = self.linear1(y)
55
- y = self.act(y)
56
- y = self.linear2(y)
57
- x = y + x
58
-
59
- return x
60
-
61
-
62
- class CLIPTextModel(nn.Module):
63
- """Implements the text encoder transformer from CLIP."""
64
-
65
- def __init__(self, config: CLIPTextModelConfig):
66
- super().__init__()
67
-
68
- self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
69
- self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
70
- self.layers = [
71
- CLIPEncoderLayer(config.model_dims, config.num_heads, config.hidden_act)
72
- for i in range(config.num_layers)
73
- ]
74
- self.final_layer_norm = nn.LayerNorm(config.model_dims)
75
-
76
- if config.projection_dim is not None:
77
- self.text_projection = nn.Linear(
78
- config.model_dims, config.projection_dim, bias=False
79
- )
80
-
81
- def _get_mask(self, N, dtype):
82
- indices = mx.arange(N)
83
- mask = indices[:, None] < indices[None]
84
- mask = mask.astype(dtype) * (-6e4 if dtype == mx.float16 else -1e9)
85
- return mask
86
-
87
- def __call__(self, x):
88
- # Extract some shapes
89
- B, N = x.shape
90
- eos_tokens = x.argmax(-1)
91
-
92
- # Compute the embeddings
93
- x = self.token_embedding(x)
94
- x = x + self.position_embedding.weight[:N]
95
-
96
- # Compute the features from the transformer
97
- mask = self._get_mask(N, x.dtype)
98
- hidden_states = []
99
- for l in self.layers:
100
- x = l(x, mask)
101
- hidden_states.append(x)
102
-
103
- # Apply the final layernorm and return
104
- x = self.final_layer_norm(x)
105
- last_hidden_state = x
106
-
107
- # Select the EOS token
108
- pooled_output = x[mx.arange(len(x)), eos_tokens]
109
- if "text_projection" in self:
110
- pooled_output = self.text_projection(pooled_output)
111
-
112
- return CLIPOutput(
113
- pooled_output=pooled_output,
114
- last_hidden_state=last_hidden_state,
115
- hidden_states=hidden_states,
116
- )