nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,215 +0,0 @@
1
- # Copied from transformers. Removed video-related code.
2
- """
3
- Processor class for Qwen2-VL.
4
- """
5
-
6
- from typing import Optional, Union
7
-
8
- import numpy as np
9
-
10
- from transformers.feature_extraction_utils import BatchFeature
11
- from transformers.image_utils import ImageInput
12
- from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
13
- from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
14
- from transformers.utils import logging
15
-
16
-
17
- logger = logging.get_logger(__name__)
18
-
19
-
20
- class Qwen2VLImagesKwargs(ImagesKwargs):
21
- min_pixels: Optional[int]
22
- max_pixels: Optional[int]
23
- patch_size: Optional[int]
24
- temporal_patch_size: Optional[int]
25
- merge_size: Optional[int]
26
-
27
-
28
- class Qwen2VLProcessorKwargs(ProcessingKwargs, total=False):
29
- images_kwargs: Qwen2VLImagesKwargs
30
- _defaults = {
31
- "text_kwargs": {
32
- "padding": False,
33
- "return_mm_token_type_ids": False,
34
- },
35
- }
36
-
37
-
38
- class Qwen2VLProcessor(ProcessorMixin):
39
- r"""
40
- Constructs a Qwen2-VL processor which wraps a Qwen2-VL image processor and a Qwen2 tokenizer into a single processor.
41
- [`Qwen2VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
42
- [`~Qwen2VLProcessor.__call__`] and [`~Qwen2VLProcessor.decode`] for more information.
43
- Args:
44
- image_processor ([`Qwen2VLImageProcessor`], *optional*):
45
- The image processor is a required input.
46
- tokenizer ([`Qwen2TokenizerFast`], *optional*):
47
- The tokenizer is a required input.
48
- chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
49
- in a chat into a tokenizable string.
50
- """
51
-
52
- attributes = ["image_processor", "tokenizer"]
53
- image_processor_class = "AutoImageProcessor"
54
- tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
55
-
56
- def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
57
- self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
58
- self.image_token_id = (
59
- tokenizer.image_token_id
60
- if getattr(tokenizer, "image_token_id", None)
61
- else tokenizer.convert_tokens_to_ids(self.image_token)
62
- )
63
- super().__init__(image_processor, tokenizer, chat_template=chat_template)
64
-
65
- def __call__(
66
- self,
67
- images: ImageInput = None,
68
- text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
69
- **kwargs: Unpack[Qwen2VLProcessorKwargs],
70
- ) -> BatchFeature:
71
- """
72
- Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
73
- and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
74
- the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
75
- Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
76
-
77
- Args:
78
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
79
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
80
- tensor. Both channels-first and channels-last formats are supported.
81
- text (`str`, `list[str]`, `list[list[str]]`):
82
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
83
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
84
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
85
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
86
- If set, will return tensors of a particular framework. Acceptable values are:
87
- - `'tf'`: Return TensorFlow `tf.constant` objects.
88
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
89
- - `'np'`: Return NumPy `np.ndarray` objects.
90
- - `'jax'`: Return JAX `jnp.ndarray` objects.
91
-
92
- Returns:
93
- [`BatchFeature`]: A [`BatchFeature`] with the following fields:
94
-
95
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
96
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
97
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
98
- `None`).
99
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
100
- - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
101
- """
102
- output_kwargs = self._merge_kwargs(
103
- Qwen2VLProcessorKwargs,
104
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
105
- **kwargs,
106
- )
107
-
108
- image_inputs = {}
109
- if images is not None:
110
- image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
111
- image_grid_thw = image_inputs["image_grid_thw"]
112
-
113
- if not isinstance(text, list):
114
- text = [text]
115
-
116
- text = text.copy() # below lines change text in-place
117
-
118
- if images is not None:
119
- merge_length = self.image_processor.merge_size**2
120
- index = 0
121
- for i in range(len(text)):
122
- while self.image_token in text[i]:
123
- num_image_tokens = image_grid_thw[index].prod() // merge_length
124
- text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
125
- index += 1
126
- text[i] = text[i].replace("<|placeholder|>", self.image_token)
127
-
128
- return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
129
- return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
130
- text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None)
131
- self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
132
-
133
- if return_mm_token_type_ids:
134
- array_ids = np.array(text_inputs["input_ids"])
135
- mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
136
- mm_token_type_ids[array_ids == self.image_token_id] = 1
137
- text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
138
-
139
- return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
140
-
141
- def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
142
- """
143
- Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
144
- Args:
145
- image_sizes (`list[list[int]]`, *optional*):
146
- The input sizes formatted as (height, width) per each image.
147
- Returns:
148
- `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
149
- input modalities, along with other useful data.
150
- """
151
-
152
- vision_data = {}
153
- if image_sizes is not None:
154
- images_kwargs = Qwen2VLProcessorKwargs._defaults.get("images_kwargs", {})
155
- images_kwargs.update(kwargs)
156
- merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
157
-
158
- num_image_patches = [
159
- self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
160
- for image_size in image_sizes
161
- ]
162
- num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
163
- vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
164
-
165
- return MultiModalData(**vision_data)
166
-
167
- def batch_decode(self, *args, **kwargs):
168
- """
169
- This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
170
- refer to the docstring of this method for more information.
171
- """
172
- return self.tokenizer.batch_decode(*args, **kwargs)
173
-
174
- def decode(self, *args, **kwargs):
175
- """
176
- This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
177
- the docstring of this method for more information.
178
- """
179
- return self.tokenizer.decode(*args, **kwargs)
180
-
181
- def post_process_image_text_to_text(
182
- self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
183
- ):
184
- """
185
- Post-process the output of the model to decode the text.
186
-
187
- Args:
188
- generated_outputs (`torch.Tensor` or `np.ndarray`):
189
- The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
190
- or `(sequence_length,)`.
191
- skip_special_tokens (`bool`, *optional*, defaults to `True`):
192
- Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
193
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
194
- Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
195
- **kwargs:
196
- Additional arguments to be passed to the tokenizer's `batch_decode method`.
197
-
198
- Returns:
199
- `list[str]`: The decoded text.
200
- """
201
- return self.tokenizer.batch_decode(
202
- generated_outputs,
203
- skip_special_tokens=skip_special_tokens,
204
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
205
- **kwargs,
206
- )
207
-
208
- @property
209
- def model_input_names(self):
210
- tokenizer_input_names = self.tokenizer.model_input_names
211
- image_processor_input_names = self.image_processor.model_input_names
212
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
213
-
214
-
215
- __all__ = ["Qwen2VLProcessor"]
@@ -1,474 +0,0 @@
1
- from enum import Enum
2
- from functools import partial
3
- from typing import Any, Dict, List, Optional, Union
4
-
5
-
6
- class MessageFormat(Enum):
7
- """Enum for different message format types."""
8
-
9
- LIST_WITH_IMAGE = "list_with_image"
10
- LIST_WITH_IMAGE_FIRST = "list_with_image_first"
11
- LIST_WITH_IMAGE_TYPE = "list_with_image_type"
12
- LIST_WITH_IMAGE_TYPE_TEXT = "list_with_image_type_text"
13
- LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST = "list_with_image_type_text_image_last"
14
- IMAGE_TOKEN = "image_token"
15
- IMAGE_TOKEN_PIPE = "image_token_pipe"
16
- START_IMAGE_TOKEN = "start_image_token"
17
- IMAGE_TOKEN_NEWLINE = "image_token_newline"
18
- NUMBERED_IMAGE_TOKENS = "numbered_image_tokens"
19
- PROMPT_ONLY = "prompt_only"
20
- PROMPT_WITH_IMAGE_TOKEN = "prompt_with_image_token"
21
- PROMPT_WITH_START_IMAGE_TOKEN = "prompt_with_start_image_token"
22
- VIDEO_WITH_TEXT = "video_with_text"
23
-
24
-
25
- # Model configuration mapping
26
- MODEL_CONFIG = {
27
- # List with image format models
28
- "idefics2": MessageFormat.LIST_WITH_IMAGE,
29
- "idefics3": MessageFormat.LIST_WITH_IMAGE_FIRST,
30
- "aya_vision": MessageFormat.LIST_WITH_IMAGE,
31
- "qwen2_vl": MessageFormat.LIST_WITH_IMAGE,
32
- "qwen2_5_vl": MessageFormat.LIST_WITH_IMAGE_FIRST,
33
- "mistral3": MessageFormat.LIST_WITH_IMAGE_FIRST,
34
- "internvl_chat": MessageFormat.LIST_WITH_IMAGE_TYPE,
35
- "kimi_vl": MessageFormat.LIST_WITH_IMAGE,
36
- "gemma3": MessageFormat.START_IMAGE_TOKEN,
37
- "gemma3n": MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST,
38
- "llama4": MessageFormat.LIST_WITH_IMAGE,
39
- "smolvlm": MessageFormat.LIST_WITH_IMAGE_FIRST,
40
- "llava": MessageFormat.LIST_WITH_IMAGE,
41
- "llava_next": MessageFormat.LIST_WITH_IMAGE,
42
- "mllama": MessageFormat.LIST_WITH_IMAGE,
43
- "pixtral": MessageFormat.LIST_WITH_IMAGE_TYPE,
44
- # Token-based models
45
- "llava-qwen2": MessageFormat.IMAGE_TOKEN_NEWLINE,
46
- "bunny-llama": MessageFormat.IMAGE_TOKEN_NEWLINE,
47
- "phi3_v": MessageFormat.NUMBERED_IMAGE_TOKENS,
48
- "multi_modality": MessageFormat.IMAGE_TOKEN,
49
- "deepseek_vl_v2": MessageFormat.IMAGE_TOKEN_NEWLINE,
50
- # Prompt-only models
51
- "florence2": MessageFormat.PROMPT_ONLY,
52
- "molmo": MessageFormat.PROMPT_ONLY,
53
- "paligemma": MessageFormat.PROMPT_WITH_IMAGE_TOKEN,
54
- }
55
-
56
- # Models that don't support multi-image
57
- SINGLE_IMAGE_ONLY_MODELS = {
58
- "llava_next",
59
- "llava-qwen2",
60
- "bunny-llama",
61
- "paligemma",
62
- "multi_modality",
63
- "mllama",
64
- }
65
-
66
-
67
- class MessageBuilder:
68
- """Builder for creating messages in various formats."""
69
-
70
- @staticmethod
71
- def text_message(text: str) -> Dict[str, str]:
72
- """Create a simple text message."""
73
- return {"type": "text", "text": text}
74
-
75
- @staticmethod
76
- def content_message(content: str) -> Dict[str, str]:
77
- """Create a content-type text message."""
78
- return {"type": "text", "content": content}
79
-
80
- @staticmethod
81
- def image_message() -> Dict[str, str]:
82
- """Create an image message."""
83
- return {"type": "image"}
84
-
85
- @staticmethod
86
- def audio_message() -> Dict[str, str]:
87
- """Create an audio message."""
88
- return {"type": "audio"}
89
-
90
- @staticmethod
91
- def video_message(
92
- video_path: str, max_pixels: int = 224 * 224, fps: int = 1
93
- ) -> Dict[str, Any]:
94
- """Create a video message."""
95
- return {
96
- "type": "video",
97
- "video": video_path,
98
- "max_pixels": max_pixels,
99
- "fps": fps,
100
- }
101
-
102
-
103
- class MessageFormatter:
104
- """Handles formatting messages for different model types."""
105
-
106
- def __init__(self, model_name: str):
107
- self.model_name = model_name.lower()
108
- self.format_type = MODEL_CONFIG.get(self.model_name)
109
- if not self.format_type:
110
- raise ValueError(f"Unsupported model: {model_name}")
111
-
112
- def format_message(
113
- self,
114
- prompt: str,
115
- role: str = "user",
116
- skip_image_token: bool = False,
117
- skip_audio_token: bool = False,
118
- num_images: int = 1,
119
- num_audios: int = 1,
120
- **kwargs,
121
- ) -> Union[str, Dict[str, Any]]:
122
- """Format a message based on the model type."""
123
-
124
- # Check multi-image support
125
- if num_images > 1 and self.model_name in SINGLE_IMAGE_ONLY_MODELS:
126
- raise ValueError(
127
- f"Model {self.model_name} does not support multi-image chat. "
128
- f"Please only use 1 image."
129
- )
130
-
131
- # Handle video format for specific models
132
- if self.model_name in ["qwen2_vl", "qwen2_5_vl"] and kwargs.get("video"):
133
- return self._format_video_message(prompt, kwargs)
134
-
135
- # Route to appropriate formatter
136
- formatter_map = {
137
- MessageFormat.LIST_WITH_IMAGE: self._format_list_with_image,
138
- MessageFormat.LIST_WITH_IMAGE_FIRST: partial(
139
- self._format_list_with_image, image_first=True
140
- ),
141
- MessageFormat.LIST_WITH_IMAGE_TYPE: self._format_list_with_image_type,
142
- MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT: partial(
143
- self._format_list_with_image_type, message_type="text"
144
- ),
145
- MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST: partial(
146
- self._format_list_with_image_type,
147
- message_type="text",
148
- image_first=False,
149
- ),
150
- MessageFormat.IMAGE_TOKEN: partial(
151
- self._format_with_token, token="<image>"
152
- ),
153
- MessageFormat.IMAGE_TOKEN_PIPE: partial(
154
- self._format_with_token, token="<|image|>"
155
- ),
156
- MessageFormat.START_IMAGE_TOKEN: partial(
157
- self._format_with_token, token="<start_of_image>", image_first=False
158
- ),
159
- MessageFormat.IMAGE_TOKEN_NEWLINE: partial(
160
- self._format_with_token, token="<image>\n"
161
- ),
162
- MessageFormat.NUMBERED_IMAGE_TOKENS: self._format_numbered_tokens,
163
- MessageFormat.PROMPT_ONLY: lambda *args, **kw: prompt,
164
- MessageFormat.PROMPT_WITH_IMAGE_TOKEN: lambda *args, **kw: "<image>"
165
- * num_images
166
- + prompt,
167
- MessageFormat.PROMPT_WITH_START_IMAGE_TOKEN: lambda *args, **kw: prompt
168
- + "<start_of_image>" * num_images,
169
- MessageFormat.VIDEO_WITH_TEXT: self._format_video_message,
170
- }
171
-
172
- formatter = formatter_map.get(self.format_type)
173
- return formatter(
174
- prompt,
175
- role,
176
- skip_image_token,
177
- skip_audio_token,
178
- num_images,
179
- num_audios,
180
- **kwargs,
181
- )
182
-
183
- def _format_list_with_image(
184
- self,
185
- prompt: str,
186
- role: str,
187
- skip_image_token: bool,
188
- skip_audio_token: bool,
189
- num_images: int,
190
- num_audios: int,
191
- image_first: bool = False,
192
- **kwargs,
193
- ) -> Dict[str, Any]:
194
- """Format as a list with image tokens."""
195
- content = [MessageBuilder.text_message(prompt)]
196
-
197
- if role == "user" and not skip_image_token:
198
- image_tokens = [MessageBuilder.image_message()] * num_images
199
- content = image_tokens + content if image_first else content + image_tokens
200
-
201
- return {"role": role, "content": content}
202
-
203
- def _format_list_with_image_type(
204
- self,
205
- prompt: str,
206
- role: str,
207
- skip_image_token: bool,
208
- skip_audio_token: bool,
209
- num_images: int,
210
- num_audios: int,
211
- message_type: str = "content",
212
- image_first: bool = True,
213
- **kwargs,
214
- ) -> Dict[str, Any]:
215
- """Format as a list with typed messages."""
216
- msg_func = (
217
- MessageBuilder.content_message
218
- if message_type == "content"
219
- else MessageBuilder.text_message
220
- )
221
- message = {"role": role, "content": [msg_func(prompt)]}
222
-
223
- if role == "user":
224
- if not skip_image_token:
225
- message["content"] = (
226
- [MessageBuilder.image_message()] * num_images + message["content"]
227
- if image_first
228
- else message["content"]
229
- + [MessageBuilder.image_message()] * num_images
230
- )
231
- if not skip_audio_token:
232
- message["content"] = (
233
- message["content"] + [MessageBuilder.audio_message()] * num_audios
234
- )
235
-
236
- if role == "assistant":
237
- message["content"] = message["content"][0].get(
238
- "content", message["content"][0].get("text")
239
- )
240
-
241
- return message
242
-
243
- def _format_with_token(
244
- self,
245
- prompt: str,
246
- role: str,
247
- skip_image_token: bool,
248
- skip_audio_token: bool,
249
- num_images: int,
250
- num_audios: int,
251
- token: str,
252
- image_first: bool = True,
253
- **kwargs,
254
- ) -> Dict[str, Any]:
255
- """Format with image tokens in the text."""
256
- content = prompt
257
-
258
- if role == "user" and not skip_image_token:
259
- prefix = token * num_images
260
- content = f"{prefix}{content}" if image_first else f"{content}{prefix}"
261
-
262
- return {"role": role, "content": content}
263
-
264
- def _format_numbered_tokens(
265
- self,
266
- prompt: str,
267
- role: str,
268
- skip_image_token: bool,
269
- skip_audio_token: bool,
270
- num_images: int,
271
- num_audios: int,
272
- **kwargs,
273
- ) -> Dict[str, Any]:
274
- """Format with numbered image tokens."""
275
- content = prompt
276
-
277
- if role == "user" and not skip_image_token:
278
- # phi3_v uses single token regardless of num_images
279
- prefix = (
280
- "<|image_1|>"
281
- if self.model_name == "phi3_v"
282
- else " ".join([f"<|image_{i+1}|>" for i in range(num_images)])
283
- )
284
- content = f"{prefix}{content}"
285
-
286
- return {"role": role, "content": content}
287
-
288
- def _format_video_message(
289
- self,
290
- prompt: str,
291
- role: str = "user",
292
- skip_image_token: bool = False,
293
- skip_audio_token: bool = False,
294
- num_images: int = 0,
295
- num_audios: int = 0,
296
- **kwargs,
297
- ) -> Dict[str, Any]:
298
- """Format a video message with text."""
299
- return {
300
- "role": role,
301
- "content": [
302
- MessageBuilder.video_message(
303
- kwargs["video"],
304
- kwargs.get("max_pixels", 224 * 224),
305
- kwargs.get("fps", 1),
306
- ),
307
- MessageBuilder.text_message(prompt),
308
- ],
309
- }
310
-
311
-
312
- def get_message_json(
313
- model_name: str,
314
- prompt: str,
315
- role: str = "user",
316
- skip_image_token: bool = False,
317
- skip_audio_token: bool = False,
318
- num_images: int = 0,
319
- num_audios: int = 0,
320
- **kwargs,
321
- ) -> Union[str, Dict[str, Any]]:
322
- """
323
- Get the appropriate JSON message based on the specified model.
324
-
325
- Args:
326
- model_name: The model for which to generate the message
327
- prompt: The text prompt to be included in the message
328
- role: The role of the message (default: "user")
329
- skip_image_token: Whether to skip adding image tokens
330
- skip_audio_token: Whether to skip adding audio tokens
331
- num_images: Number of image tokens to add
332
- num_audios: Number of audio tokens to add
333
- **kwargs: Additional arguments (e.g., video path, max_pixels, fps)
334
-
335
- Returns:
336
- A dictionary or string representing the message for the specified model
337
- """
338
- formatter = MessageFormatter(model_name)
339
-
340
- return formatter.format_message(
341
- prompt,
342
- role,
343
- skip_image_token,
344
- skip_audio_token,
345
- num_images,
346
- num_audios,
347
- **kwargs,
348
- )
349
-
350
-
351
- def get_chat_template(
352
- processor,
353
- messages: List[Dict[str, Any]],
354
- add_generation_prompt: bool,
355
- tokenize: bool = False,
356
- **kwargs,
357
- ) -> Any:
358
- """Apply chat template using processor's tokenizer."""
359
- try:
360
- processor = (
361
- processor
362
- if "chat_template" in processor.__dict__.keys()
363
- else processor.tokenizer
364
- )
365
-
366
- return processor.apply_chat_template(
367
- messages,
368
- tokenize=tokenize,
369
- add_generation_prompt=add_generation_prompt,
370
- **kwargs,
371
- )
372
- except AttributeError:
373
- raise ValueError(
374
- "Error: processor does not have 'chat_template' or 'tokenizer' attribute."
375
- )
376
-
377
-
378
- def apply_chat_template(
379
- processor,
380
- config: Union[Dict[str, Any], Any],
381
- prompt: Union[str, Dict[str, Any], List[Any]],
382
- add_generation_prompt: bool = True,
383
- return_messages: bool = False,
384
- num_images: int = 0,
385
- num_audios: int = 0,
386
- **kwargs,
387
- ) -> Union[List[Dict[str, Any]], str, Any]:
388
- """
389
- Apply chat template to prompts.
390
-
391
- Args:
392
- processor: The processor with chat template functionality
393
- config: Model configuration
394
- prompt: Single prompt string, dict, or list of prompts
395
- add_generation_prompt: Whether to add generation prompt
396
- return_messages: Whether to return messages list instead of template
397
- num_images: Number of images in the input
398
- num_audios: Number of audio files in the input
399
- **kwargs: Additional arguments for message formatting
400
-
401
- Returns:
402
- Formatted messages or chat template
403
- """
404
- config = config if isinstance(config, dict) else config.__dict__
405
- model_type = config["model_type"]
406
-
407
- # Build messages from prompts
408
- messages = []
409
-
410
- if isinstance(prompt, str):
411
- # Single string prompt
412
- messages.append(
413
- get_message_json(
414
- model_type,
415
- prompt,
416
- num_images=num_images,
417
- num_audios=num_audios,
418
- **kwargs,
419
- )
420
- )
421
- elif isinstance(prompt, dict):
422
- # Single dict prompt
423
- messages.append(
424
- get_message_json(
425
- model_type,
426
- prompt["content"],
427
- prompt["role"],
428
- num_images=num_images,
429
- num_audios=num_audios,
430
- **kwargs,
431
- )
432
- )
433
- elif isinstance(prompt, list):
434
- # List of prompts
435
- for i, p in enumerate(prompt):
436
- if isinstance(p, str):
437
- is_first = i == 0
438
- messages.append(
439
- get_message_json(
440
- model_type,
441
- p,
442
- skip_image_token=not is_first,
443
- skip_audio_token=not is_first,
444
- num_images=num_images,
445
- num_audios=num_audios,
446
- **kwargs,
447
- )
448
- )
449
- elif isinstance(p, dict):
450
- role = p.get("role", "user")
451
- is_first = i == 0 or (i == 1 and role not in ["system", "assistant"])
452
- messages.append(
453
- get_message_json(
454
- model_type,
455
- p["content"],
456
- role,
457
- skip_image_token=not is_first
458
- or role in ["system", "assistant"],
459
- skip_audio_token=not is_first
460
- or role in ["system", "assistant"],
461
- num_images=num_images,
462
- num_audios=num_audios,
463
- **kwargs,
464
- )
465
- )
466
-
467
- if return_messages:
468
- return messages
469
-
470
- # Some models only need the last message
471
- if model_type in ["paligemma", "molmo", "florence2"]:
472
- return messages[-1]
473
-
474
- return get_chat_template(processor, messages, add_generation_prompt)