nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,591 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from typing import Any, Dict, Optional, Tuple, Union
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- from mlx_lm.models.switch_layers import SwitchGLU
9
-
10
- from ..base import (
11
- LanguageModelOutput,
12
- create_attention_mask,
13
- scaled_dot_product_attention,
14
- )
15
- from ..cache import KVCache, RotatingKVCache
16
-
17
-
18
- @dataclass
19
- class TextConfig:
20
- model_type: str = "deepseek_v2"
21
- vocab_size: int = 102400
22
- hidden_size: int = 1280
23
- intermediate_size: int = 6848
24
- moe_intermediate_size: int = 896
25
- num_hidden_layers: int = 30
26
- num_attention_heads: int = 32
27
- num_key_value_heads: int = 32
28
- n_shared_experts: Optional[int] = 2
29
- n_routed_experts: Optional[int] = 64
30
- routed_scaling_factor: float = 1.0
31
- kv_lora_rank: int = 512
32
- q_lora_rank: int = 1536
33
- qk_rope_head_dim: int = 64
34
- v_head_dim: int = 128
35
- qk_nope_head_dim: int = 128
36
- topk_method: str = "greedy"
37
- n_group: Optional[int] = 1
38
- topk_group: Optional[int] = 1
39
- num_experts_per_tok: Optional[int] = 6
40
- moe_layer_freq: int = 1
41
- first_k_dense_replace: int = 0
42
- max_position_embeddings: int = 2048
43
- rms_norm_eps: float = 1e-6
44
- rope_theta: float = 10000.0
45
- rope_traditional: bool = True
46
- rope_scaling: Dict = None
47
- attention_bias: bool = False
48
- scoring_func: str = "softmax"
49
- attn_type: str = "DeepseekV2Attention"
50
-
51
- @classmethod
52
- def from_dict(cls, params):
53
- return cls(
54
- **{
55
- k: v
56
- for k, v in params.items()
57
- if k in inspect.signature(cls).parameters
58
- }
59
- )
60
-
61
- def __post_init__(self):
62
- if self.qk_nope_head_dim == 0:
63
- self.attn_type = "LlamaAttention"
64
-
65
- if self.num_key_value_heads is None:
66
- self.num_key_value_heads = self.num_attention_heads
67
-
68
-
69
- def yarn_find_correction_dim(
70
- num_rotations, dim, base=10000, max_position_embeddings=2048
71
- ):
72
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
73
- 2 * math.log(base)
74
- )
75
-
76
-
77
- def yarn_find_correction_range(
78
- low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
79
- ):
80
- low = math.floor(
81
- yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
82
- )
83
- high = math.ceil(
84
- yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
85
- )
86
- return max(low, 0), min(high, dim - 1)
87
-
88
-
89
- def yarn_get_mscale(scale=1, mscale=1):
90
- if scale <= 1:
91
- return 1.0
92
- return 0.1 * mscale * math.log(scale) + 1.0
93
-
94
-
95
- def yarn_linear_ramp_mask(min_val, max_val, dim):
96
- if min_val == max_val:
97
- max_val += 0.001 # Prevent singularity
98
-
99
- linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
100
- return mx.clip(linear_func, 0, 1)
101
-
102
-
103
- class DeepseekV2YarnRotaryEmbedding(nn.Module):
104
- def __init__(
105
- self,
106
- dim,
107
- max_position_embeddings=2048,
108
- base=10000,
109
- scaling_factor=1.0,
110
- original_max_position_embeddings=4096,
111
- beta_fast=32,
112
- beta_slow=1,
113
- mscale=1,
114
- mscale_all_dim=0,
115
- ):
116
- super().__init__()
117
- self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
118
- scaling_factor, mscale_all_dim
119
- )
120
- freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
121
- freq_inter = scaling_factor * base ** (
122
- mx.arange(0, dim, 2, dtype=mx.float32) / dim
123
- )
124
- low, high = yarn_find_correction_range(
125
- beta_fast,
126
- beta_slow,
127
- dim,
128
- base,
129
- original_max_position_embeddings,
130
- )
131
- freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
132
- self._freqs = (freq_inter * freq_extra) / (
133
- freq_inter * freq_mask + freq_extra * (1 - freq_mask)
134
- )
135
-
136
- def __call__(self, x, offset=0):
137
- if self.mscale != 1.0:
138
- x = self.mscale * x
139
- return mx.fast.rope(
140
- x,
141
- x.shape[-1],
142
- traditional=True,
143
- base=None,
144
- scale=1.0,
145
- offset=offset,
146
- freqs=self._freqs,
147
- )
148
-
149
-
150
- class DeepseekV2Attention(nn.Module):
151
- def __init__(self, config: TextConfig):
152
- super().__init__()
153
- self.config = config
154
- self.hidden_size = config.hidden_size
155
- self.num_heads = config.num_attention_heads
156
- self.max_position_embeddings = config.max_position_embeddings
157
- self.rope_theta = config.rope_theta
158
- self.q_lora_rank = config.q_lora_rank
159
- self.qk_rope_head_dim = config.qk_rope_head_dim
160
- self.kv_lora_rank = config.kv_lora_rank
161
- self.v_head_dim = config.v_head_dim
162
- self.qk_nope_head_dim = config.qk_nope_head_dim
163
- self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
164
-
165
- self.scale = self.q_head_dim**-0.5
166
-
167
- if self.q_lora_rank is None:
168
- self.q_proj = nn.Linear(
169
- self.hidden_size, self.num_heads * self.q_head_dim, bias=False
170
- )
171
- else:
172
- self.q_a_proj = nn.Linear(
173
- self.hidden_size, self.q_lora_rank, bias=config.attention_bias
174
- )
175
- self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank)
176
- self.q_b_proj = nn.Linear(
177
- self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
178
- )
179
-
180
- self.kv_a_proj_with_mqa = nn.Linear(
181
- self.hidden_size,
182
- self.kv_lora_rank + self.qk_rope_head_dim,
183
- bias=config.attention_bias,
184
- )
185
- self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank)
186
- self.kv_b_proj = nn.Linear(
187
- self.kv_lora_rank,
188
- self.num_heads
189
- * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
190
- bias=False,
191
- )
192
-
193
- self.o_proj = nn.Linear(
194
- self.num_heads * self.v_head_dim,
195
- self.hidden_size,
196
- bias=config.attention_bias,
197
- )
198
-
199
- if self.config.rope_scaling is None:
200
- self.rope = nn.RoPE(
201
- self.qk_rope_head_dim,
202
- traditional=self.config.rope_traditional,
203
- base=self.rope_theta,
204
- )
205
- else:
206
- mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
207
- scaling_factor = self.config.rope_scaling.get("factor", 1)
208
- if mscale_all_dim:
209
- mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
210
- self.scale = self.scale * mscale * mscale
211
-
212
- rope_kwargs = {
213
- key: self.config.rope_scaling[key]
214
- for key in [
215
- "original_max_position_embeddings",
216
- "beta_fast",
217
- "beta_slow",
218
- "mscale",
219
- "mscale_all_dim",
220
- ]
221
- if key in self.config.rope_scaling
222
- }
223
- self.rope = DeepseekV2YarnRotaryEmbedding(
224
- dim=self.qk_rope_head_dim,
225
- max_position_embeddings=self.max_position_embeddings,
226
- scaling_factor=scaling_factor,
227
- base=self.rope_theta,
228
- **rope_kwargs,
229
- )
230
-
231
- def __call__(
232
- self,
233
- x: mx.array,
234
- mask: Optional[mx.array] = None,
235
- cache: Optional[Any] = None,
236
- ) -> mx.array:
237
- B, L, D = x.shape
238
-
239
- if self.q_lora_rank is None:
240
- q = self.q_proj(x)
241
- else:
242
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
243
-
244
- q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
245
- q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
246
- compressed_kv = self.kv_a_proj_with_mqa(x)
247
- compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
248
- k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
249
- kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
250
- kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
251
-
252
- k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
253
-
254
- if cache is not None:
255
- q_pe = self.rope(q_pe, cache.offset)
256
- k_pe = self.rope(k_pe, cache.offset)
257
- k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
258
- keys, values = cache.update_and_fetch(
259
- mx.concatenate([k_nope, k_pe], axis=-1), values
260
- )
261
- else:
262
- q_pe = self.rope(q_pe)
263
- k_pe = self.rope(k_pe)
264
- k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
265
- keys = mx.concatenate([k_nope, k_pe], axis=-1)
266
-
267
- queries = mx.concatenate([q_nope, q_pe], axis=-1)
268
-
269
- output = scaled_dot_product_attention(
270
- queries, keys, values, cache, scale=self.scale, mask=mask
271
- )
272
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
273
- return self.o_proj(output)
274
-
275
-
276
- class LlamaAttention(nn.Module):
277
- def __init__(self, config: TextConfig):
278
- super().__init__()
279
-
280
- dim = config.hidden_size
281
- self.n_heads = n_heads = config.num_attention_heads
282
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
283
-
284
- self.head_dim = head_dim = config.hidden_size // n_heads
285
-
286
- self.scale = head_dim**-0.5
287
- if config.attention_bias:
288
- attention_bias = config.attention_bias
289
- else:
290
- attention_bias = False
291
-
292
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
293
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
294
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
295
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
296
-
297
- rope_scale = (
298
- 1 / config.rope_scaling["factor"]
299
- if config.rope_scaling is not None
300
- and config.rope_scaling["type"] == "linear"
301
- else 1
302
- )
303
- self.rope = nn.RoPE(
304
- head_dim,
305
- traditional=config.rope_traditional,
306
- base=config.rope_theta,
307
- scale=rope_scale,
308
- )
309
-
310
- def __call__(
311
- self,
312
- x: mx.array,
313
- mask: Optional[mx.array] = None,
314
- cache: Optional[Any] = None,
315
- ) -> mx.array:
316
- B, L, D = x.shape
317
-
318
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
319
-
320
- # Prepare the queries, keys and values for the attention computation
321
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
322
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
323
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
324
-
325
- if cache is not None:
326
- queries = self.rope(queries, offset=cache.offset)
327
- keys = self.rope(keys, offset=cache.offset)
328
- keys, values = cache.update_and_fetch(keys, values)
329
- else:
330
- queries = self.rope(queries)
331
- keys = self.rope(keys)
332
-
333
- output = scaled_dot_product_attention(
334
- queries, keys, values, cache, scale=self.scale, mask=mask
335
- )
336
-
337
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
338
- return self.o_proj(output)
339
-
340
-
341
- class DeepseekV2MLP(nn.Module):
342
- def __init__(
343
- self, config: TextConfig, hidden_size: int = None, intermediate_size: int = None
344
- ):
345
- super().__init__()
346
- self.config = config
347
- self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
348
- self.intermediate_size = (
349
- config.intermediate_size if intermediate_size is None else intermediate_size
350
- )
351
-
352
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
353
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
354
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
355
-
356
- def __call__(self, x):
357
- down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
358
- return down_proj
359
-
360
-
361
- class MoEGate(nn.Module):
362
- def __init__(self, config: TextConfig):
363
- super().__init__()
364
- self.config = config
365
- self.scoring_func = config.scoring_func
366
- self.top_k = config.num_experts_per_tok
367
- self.n_routed_experts = config.n_routed_experts
368
- self.routed_scaling_factor = config.routed_scaling_factor
369
- self.topk_method = config.topk_method
370
- self.n_group = config.n_group
371
- self.topk_group = config.topk_group
372
- if self.topk_method == "noaux_tc":
373
- self.e_score_correction_bias = mx.zeros((self.n_routed_experts))
374
- self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
375
-
376
- def __call__(self, x):
377
- gates = x @ self.weight.T
378
-
379
- if self.scoring_func == "softmax":
380
- scores = mx.softmax(gates, axis=-1, precise=True)
381
- elif self.scoring_func == "sigmoid":
382
- scores = mx.sigmoid(gates)
383
- else:
384
- raise ValueError(f"Unknown scoring function: {self.scoring_func}")
385
-
386
- if self.topk_method == "greedy":
387
- bsz, seq_len = x.shape[:2]
388
- scores = scores.reshape(bsz, seq_len, self.n_group, -1)
389
- group_scores = scores.max(axis=-1)
390
-
391
- # Get top-k groups
392
- k = self.n_group - self.topk_group
393
- group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
394
- batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
395
- seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
396
-
397
- # Mask out top-k groups
398
- scores[batch_idx, seq_idx, group_idx] = 0.0
399
- scores = scores.reshape(bsz, seq_len, -1)
400
-
401
- # Get top-k indices and weights
402
- k = self.top_k
403
- inds = mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]
404
- scores = mx.take_along_axis(scores, inds, axis=-1)
405
-
406
- elif self.topk_method == "noaux_tc":
407
- bsz, seq_len = x.shape[:2]
408
-
409
- # Add bias correction
410
- scores_for_choice = scores.reshape(bsz * seq_len, -1) + mx.expand_dims(
411
- self.e_score_correction_bias, 0
412
- )
413
-
414
- # Calculate group scores using top-2 sum per group
415
- scores_reshaped = scores_for_choice.reshape(bsz * seq_len, self.n_group, -1)
416
-
417
- # Get top 2 scores per group
418
- group_scores = mx.topk(scores_reshaped, 2, axis=-1).sum(axis=-1)
419
-
420
- # Get top groups
421
- k = self.n_group - self.topk_group
422
-
423
- # Create mask for selected groups
424
- group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
425
- batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
426
-
427
- seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
428
- scores[batch_idx, seq_idx, group_idx] = 0.0
429
-
430
- # Get top-k indices and weights
431
- k = self.top_k
432
- inds = mx.argpartition(scores, kth=-k, axis=-1)[..., -k:]
433
-
434
- # Gather original scores for the selected indices
435
- scores_flat = scores.reshape(bsz * seq_len, -1)
436
- batch_idx = mx.expand_dims(mx.arange(bsz * seq_len), 1)
437
- scores = mx.take(scores_flat, inds + batch_idx * scores_flat.shape[1])
438
- else:
439
- raise ValueError(f"Unknown topk method: {self.topk_method}")
440
-
441
- scores = scores * self.routed_scaling_factor
442
- return inds, scores
443
-
444
-
445
- class DeepseekV2MoE(nn.Module):
446
- def __init__(self, config: TextConfig):
447
- super().__init__()
448
- self.config = config
449
- self.num_experts_per_tok = config.num_experts_per_tok
450
- self.switch_mlp = SwitchGLU(
451
- config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
452
- )
453
-
454
- self.gate = MoEGate(config)
455
- if config.n_shared_experts is not None:
456
- intermediate_size = config.moe_intermediate_size * config.n_shared_experts
457
- self.shared_experts = DeepseekV2MLP(
458
- config=config, intermediate_size=intermediate_size
459
- )
460
-
461
- def __call__(self, x):
462
- inds, scores = self.gate(x)
463
- y = self.switch_mlp(x, inds)
464
- y = (y * scores[..., None]).sum(axis=-2)
465
- if self.config.n_shared_experts is not None:
466
- y = y + self.shared_experts(x)
467
-
468
- return y
469
-
470
-
471
- class DeepseekV2DecoderLayer(nn.Module):
472
- def __init__(self, config: TextConfig, layer_idx: int):
473
- super().__init__()
474
- self.attn_type = config.attn_type
475
- self.self_attn = (
476
- DeepseekV2Attention(config)
477
- if self.attn_type == "DeepseekV2Attention"
478
- else LlamaAttention(config)
479
- )
480
- self.mlp = (
481
- DeepseekV2MoE(config)
482
- if (
483
- config.n_routed_experts is not None
484
- and layer_idx >= config.first_k_dense_replace
485
- and layer_idx % config.moe_layer_freq == 0
486
- )
487
- else DeepseekV2MLP(config)
488
- )
489
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
490
- self.post_attention_layernorm = nn.RMSNorm(
491
- config.hidden_size, eps=config.rms_norm_eps
492
- )
493
-
494
- def __call__(
495
- self,
496
- x: mx.array,
497
- mask: Optional[mx.array] = None,
498
- cache: Optional[Any] = None,
499
- ) -> mx.array:
500
- r = self.self_attn(self.input_layernorm(x), mask, cache)
501
- h = x + r
502
- r = self.mlp(self.post_attention_layernorm(h))
503
- out = h + r
504
- return out
505
-
506
-
507
- class DeepseekV2Model(nn.Module):
508
- def __init__(self, config: TextConfig):
509
- super().__init__()
510
- self.vocab_size = config.vocab_size
511
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
512
- self.layers = [
513
- DeepseekV2DecoderLayer(config, idx)
514
- for idx in range(config.num_hidden_layers)
515
- ]
516
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
517
-
518
- def __call__(
519
- self,
520
- x: mx.array,
521
- mask: Optional[mx.array] = None,
522
- inputs_embeds: Optional[mx.array] = None,
523
- cache: Optional[Any] = None,
524
- ) -> mx.array:
525
-
526
- if inputs_embeds is None:
527
- h = self.embed_tokens(x)
528
- else:
529
- h = inputs_embeds
530
-
531
- if cache is None:
532
- cache = [None] * len(self.layers)
533
-
534
- if mask is None:
535
- mask = create_attention_mask(h, cache)
536
-
537
- for layer, c in zip(self.layers, cache):
538
- h = layer(h, mask, c)
539
-
540
- return self.norm(h)
541
-
542
-
543
- class LanguageModel(nn.Module):
544
- def __init__(self, config: TextConfig):
545
- super().__init__()
546
- self.config = config
547
- self.model_type = config.model_type
548
- self.model = DeepseekV2Model(config)
549
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
550
-
551
- def __call__(
552
- self,
553
- inputs: mx.array,
554
- inputs_embeds: Optional[mx.array] = None,
555
- mask: Optional[mx.array] = None,
556
- cache: Optional[Any] = None,
557
- ):
558
- out = self.model(inputs, mask=mask, inputs_embeds=inputs_embeds, cache=cache)
559
- out = self.lm_head(out)
560
- return LanguageModelOutput(logits=out)
561
-
562
- def sanitize(self, weights):
563
- for l in range(self.config.num_hidden_layers):
564
- prefix = f"language_model.model.layers.{l}"
565
- for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
566
- for k in ["weight", "scales", "biases"]:
567
- if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
568
- to_join = [
569
- weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
570
- for e in range(self.config.n_routed_experts)
571
- ]
572
- weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
573
- return weights
574
-
575
- @property
576
- def layers(self):
577
- return self.model.layers
578
-
579
- @property
580
- def head_dim(self):
581
- if self.config.attn_type == "DeepseekV2Attention":
582
- return (
583
- self.config.qk_nope_head_dim + self.config.qk_rope_head_dim,
584
- self.config.v_head_dim,
585
- )
586
- else:
587
- return self.config.hidden_size // self.config.num_key_value_heads
588
-
589
- @property
590
- def n_kv_heads(self):
591
- return self.config.num_key_value_heads