nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,229 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 5120
20
- head_dim: int = 128
21
- num_hidden_layers: int = 40
22
- intermediate_size: int = 14336
23
- num_attention_heads: int = 32
24
- rms_norm_eps: float = 1e-06
25
- vocab_size: int = 131072
26
- num_key_value_heads: int = 8
27
- rope_theta: float = 1000000000.0
28
- rope_traditional: bool = False
29
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
30
- max_position_embeddings: int = 4096
31
-
32
- @classmethod
33
- def from_dict(cls, params):
34
- return cls(
35
- **{
36
- k: v
37
- for k, v in params.items()
38
- if k in inspect.signature(cls).parameters
39
- }
40
- )
41
-
42
- def __post_init__(self):
43
- if self.num_key_value_heads is None:
44
- self.num_key_value_heads = self.num_attention_heads
45
-
46
- if self.rope_scaling:
47
- required_keys = {"factor", "type"}
48
- if not all(key in self.rope_scaling for key in required_keys):
49
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
50
-
51
- if self.rope_scaling["type"] != "linear":
52
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
53
-
54
-
55
- class Attention(nn.Module):
56
- def __init__(self, config: TextConfig):
57
- super().__init__()
58
-
59
- dim = config.hidden_size
60
- self.n_heads = n_heads = config.num_attention_heads
61
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
62
-
63
- head_dim = config.head_dim
64
- self.scale = head_dim**-0.5
65
-
66
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
67
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
68
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
70
-
71
- rope_scale = (
72
- 1 / config.rope_scaling["factor"]
73
- if config.rope_scaling is not None
74
- and config.rope_scaling["type"] == "linear"
75
- else 1
76
- )
77
- self.rope = nn.RoPE(
78
- head_dim,
79
- traditional=config.rope_traditional,
80
- base=config.rope_theta,
81
- scale=rope_scale,
82
- )
83
-
84
- def __call__(
85
- self,
86
- x: mx.array,
87
- mask: Optional[mx.array] = None,
88
- cache: Optional[KVCache] = None,
89
- ) -> mx.array:
90
- B, L, D = x.shape
91
-
92
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
93
-
94
- # Prepare the queries, keys and values for the attention computation
95
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
96
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
97
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
-
99
- if cache is not None:
100
- queries = self.rope(queries, offset=cache.offset)
101
- keys = self.rope(keys, offset=cache.offset)
102
- keys, values = cache.update_and_fetch(keys, values)
103
- else:
104
- queries = self.rope(queries)
105
- keys = self.rope(keys)
106
-
107
- output = scaled_dot_product_attention(
108
- queries, keys, values, cache, scale=self.scale, mask=mask
109
- )
110
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
111
- return self.o_proj(output)
112
-
113
-
114
- class MLP(nn.Module):
115
- def __init__(self, dim, hidden_dim):
116
- super().__init__()
117
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
118
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
119
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
120
-
121
- def __call__(self, x) -> mx.array:
122
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
123
-
124
-
125
- class TransformerBlock(nn.Module):
126
- def __init__(self, config: TextConfig):
127
- super().__init__()
128
- self.num_attention_heads = config.num_attention_heads
129
- self.hidden_size = config.hidden_size
130
- self.self_attn = Attention(config)
131
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
132
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
133
- self.post_attention_layernorm = nn.RMSNorm(
134
- config.hidden_size, eps=config.rms_norm_eps
135
- )
136
- self.config = config
137
-
138
- def __call__(
139
- self,
140
- x: mx.array,
141
- mask: Optional[mx.array] = None,
142
- cache: Optional[KVCache] = None,
143
- ) -> mx.array:
144
- r = self.self_attn(self.input_layernorm(x), mask, cache)
145
- h = x + r
146
- r = self.mlp(self.post_attention_layernorm(h))
147
- out = h + r
148
- return out
149
-
150
-
151
- class Mistral(nn.Module):
152
- def __init__(self, config: TextConfig):
153
- super().__init__()
154
- self.config = config
155
- self.vocab_size = config.vocab_size
156
- self.num_hidden_layers = config.num_hidden_layers
157
- assert self.vocab_size > 0
158
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
159
- self.layers = [
160
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
161
- ]
162
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
163
-
164
- def __call__(
165
- self,
166
- inputs: mx.array,
167
- inputs_embeds: Optional[mx.array] = None,
168
- mask: Optional[mx.array] = None,
169
- cache=None,
170
- ):
171
- # for passing merged input embeddings
172
- if inputs_embeds is None:
173
- h = self.embed_tokens(inputs)
174
- else:
175
- h = inputs_embeds
176
-
177
- if cache is None:
178
- cache = [None] * len(self.layers)
179
-
180
- if mask is None:
181
- mask = create_attention_mask(h, cache)
182
-
183
- for layer, c in zip(self.layers, cache):
184
- h = layer(h, mask, c)
185
-
186
- return self.norm(h)
187
-
188
-
189
- class LanguageModel(nn.Module):
190
- def __init__(self, config: TextConfig):
191
- super().__init__()
192
- self.config = config
193
- self.model_type = config.model_type
194
- if self.model_type != "mistral":
195
- raise ValueError(
196
- f"Model type {self.model_type} not supported. Currently only 'mistral' is supported"
197
- )
198
- self.model = Mistral(config)
199
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
200
-
201
- def __call__(
202
- self,
203
- inputs: mx.array,
204
- inputs_embeds: Optional[mx.array] = None,
205
- mask: Optional[mx.array] = None,
206
- cache=None,
207
- ):
208
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
209
- logits = self.lm_head(out)
210
- return LanguageModelOutput(logits=logits)
211
-
212
- @staticmethod
213
- def sanitize(weights):
214
- # Remove unused precomputed rotary freqs
215
- return {
216
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
217
- }
218
-
219
- @property
220
- def layers(self):
221
- return self.model.layers
222
-
223
- @property
224
- def head_dim(self):
225
- return self.config.head_dim
226
-
227
- @property
228
- def n_kv_heads(self):
229
- return self.config.num_key_value_heads
@@ -1,161 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 10
24
- vision_feature_select_strategy: str = "full"
25
- vision_feature_layer: int = -1
26
- vocab_size: int = 32000
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class LlavaMultiModalProjector(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.linear_1 = nn.Linear(
44
- config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
45
- )
46
- self.gelu = nn.GELU()
47
- self.linear_2 = nn.Linear(
48
- config.text_config.hidden_size, config.text_config.hidden_size, bias=True
49
- )
50
-
51
- def __call__(self, x: mx.array) -> mx.array:
52
- x = self.linear_1(x)
53
- x = self.gelu(x)
54
- x = self.linear_2(x)
55
- return x
56
-
57
-
58
- class Model(nn.Module):
59
- def __init__(self, config: ModelConfig):
60
- super().__init__()
61
- self.config = config
62
- self.vision_tower = VisionModel(config.vision_config)
63
- self.language_model = LanguageModel(config.text_config)
64
- self.multi_modal_projector = LlavaMultiModalProjector(config)
65
- self.vision_feature_layer = config.vision_feature_layer
66
- self.vision_feature_select_strategy = config.vision_feature_select_strategy
67
-
68
- def get_input_embeddings(
69
- self,
70
- input_ids: Optional[mx.array] = None,
71
- pixel_values: Optional[mx.array] = None,
72
- **kwargs,
73
- ):
74
- if pixel_values is None:
75
- return self.language_model.model.embed_tokens(input_ids)
76
-
77
- # Get the input embeddings from the language model
78
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
79
-
80
- # Get the output hidden states from the vision model
81
- if isinstance(pixel_values, list):
82
- pixel_values = mx.concatenate(
83
- [mx.array(pv)[None, ...] for pv in pixel_values], axis=0
84
- )
85
- if pixel_values.ndim == 3:
86
- pixel_values = pixel_values[None, ...]
87
-
88
- # Pass pixel_values as list of images, as each image is individually run through conv2d and position encoding
89
- # Reference code from transformers: https://github.com/huggingface/transformers/blob/main/src/transformers/models/pixtral/modeling_pixtral.py#L479C9-L479C21
90
- # and mistral_inference: https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/vision_encoder.py#L85
91
- *_, hidden_states = self.vision_tower(
92
- pixel_values.transpose(0, 2, 3, 1),
93
- output_hidden_states=True,
94
- )
95
- # Select the hidden states from the desired layer
96
- selected_image_feature = hidden_states[self.vision_feature_layer]
97
-
98
- # Pass image features through the multi-modal projector
99
- image_features = self.multi_modal_projector(selected_image_feature)
100
-
101
- # Insert special image tokens in the input_ids
102
- final_inputs_embeds = self.merge_input_ids_with_image_features(
103
- self.config.image_token_index, image_features, inputs_embeds, input_ids
104
- )
105
- return final_inputs_embeds
106
-
107
- @staticmethod
108
- def merge_input_ids_with_image_features(
109
- image_token_index, image_features, inputs_embeds, input_ids
110
- ):
111
- num_images, num_image_patches, embed_dim = image_features.shape
112
-
113
- # Positions of <image> tokens in input_ids, assuming batch size is 1
114
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
115
-
116
- text_segments = []
117
- start_idx = 0
118
-
119
- for position in image_positions:
120
- text_segments.append(inputs_embeds[:, start_idx:position])
121
- start_idx = position + 1
122
-
123
- # Split image features into separate embeddings for each image
124
- image_embeddings = mx.split(image_features, num_image_patches, axis=1)
125
- final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
126
- final_embeddings += [inputs_embeds[:, start_idx:]]
127
-
128
- # Create a final embedding of shape
129
- # (1, num_image_patches*num_images + sequence_len, embed_dim)
130
- return mx.concatenate(final_embeddings, axis=1)
131
-
132
- @property
133
- def layers(self):
134
- return self.language_model.model.layers
135
-
136
- def __call__(
137
- self,
138
- input_ids: mx.array,
139
- pixel_values: mx.array,
140
- mask: mx.array,
141
- cache=None,
142
- **kwargs,
143
- ):
144
- input_embddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
145
- logits = self.language_model(
146
- input_ids, cache=cache, inputs_embeds=input_embddings
147
- )
148
- return logits
149
-
150
- def sanitize(self, weights):
151
- def transform_key(key):
152
- if "vision_tower" in key and "vision_model" not in key:
153
- if "transformer" in key:
154
- key = key.replace("vision_tower", "vision_tower.vision_model")
155
- if "patch_conv" in key:
156
- key = key.replace("vision_tower", "vision_tower.vision_model")
157
- if "ln_pre" in key:
158
- key = key.replace("vision_tower", "vision_tower.vision_model")
159
- return key
160
-
161
- return {transform_key(k): v for k, v in weights.items()}
@@ -1,320 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import List, Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
-
9
- @dataclass
10
- class VisionConfig:
11
- model_type: str
12
- num_hidden_layers: int = 24
13
- hidden_size: int = 1024
14
- head_dim: int = 64
15
- intermediate_size: int = 4096
16
- num_attention_heads: int = 16
17
- image_size: int = 336
18
- patch_size: int = 14
19
- projection_dim: int = 768
20
- vocab_size: int = 32000
21
- num_channels: int = 3
22
- rms_norm_eps: float = 1e-5
23
- rope_theta: float = 10000.0
24
-
25
- @classmethod
26
- def from_dict(cls, params):
27
- return cls(
28
- **{
29
- k: v
30
- for k, v in params.items()
31
- if k in inspect.signature(cls).parameters
32
- }
33
- )
34
-
35
-
36
- def check_array_shape(arr):
37
- shape = arr.shape
38
-
39
- # Check if the shape has 4 dimensions
40
- if len(shape) != 4:
41
- return False
42
-
43
- out_channels, kH, KW, _ = shape
44
-
45
- # Check if out_channels is the largest, and kH and KW are the same
46
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
47
- return True
48
- else:
49
- return False
50
-
51
-
52
- def position_ids_in_meshgrid(patch_embeds_list, max_width):
53
- positions = []
54
- for patch in patch_embeds_list:
55
- height, width = patch.shape[0], patch.shape[1]
56
- h_grid, v_grid = mx.meshgrid(mx.arange(height), mx.arange(width), indexing="ij")
57
- h_grid = h_grid.reshape(-1, 1)
58
- v_grid = v_grid.reshape(-1, 1)
59
- ids = h_grid * max_width + v_grid
60
- positions.append(ids.flatten())
61
- return mx.concatenate(positions)
62
-
63
-
64
- def generate_block_attention_mask(patch_embeds_list, tensor):
65
- seq_len = tensor.shape[1]
66
- d_min = -1e9 # Using a large negative value as MLX doesn't have finfo
67
-
68
- causal_mask = mx.full((seq_len, seq_len), vals=d_min)
69
-
70
- block_end_idx = mx.cumsum(mx.array(patch_embeds_list))
71
- block_start_idx = mx.concatenate([mx.array([0]), mx.array(patch_embeds_list[:-1])])
72
- block_start_idx = mx.cumsum(block_start_idx)
73
-
74
- for start, end in zip(block_start_idx, block_end_idx):
75
- start, end = int(start), int(end) # Convert to integers for indexing
76
- causal_mask[start:end, start:end] = 0
77
-
78
- causal_mask = mx.broadcast_to(
79
- causal_mask[None, None, :, :], (tensor.shape[0], 1, seq_len, seq_len)
80
- )
81
- return causal_mask
82
-
83
-
84
- def rotate_half(x):
85
- x1 = x[..., : x.shape[-1] // 2]
86
- x2 = x[..., x.shape[-1] // 2 :]
87
- return mx.concatenate((-x2, x1), axis=-1)
88
-
89
-
90
- def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
91
- cos = mx.expand_dims(cos, axis=unsqueeze_dim)
92
- sin = mx.expand_dims(sin, axis=unsqueeze_dim)
93
- q_embed = (q * cos) + (rotate_half(q) * sin)
94
- k_embed = (k * cos) + (rotate_half(k) * sin)
95
- return q_embed, k_embed
96
-
97
-
98
- class Attention(nn.Module):
99
- def __init__(
100
- self,
101
- dims: int,
102
- num_heads: int,
103
- query_input_dims: Optional[int] = None,
104
- key_input_dims: Optional[int] = None,
105
- value_input_dims: Optional[int] = None,
106
- value_dims: Optional[int] = None,
107
- value_output_dims: Optional[int] = None,
108
- bias: bool = False,
109
- ):
110
- super().__init__()
111
-
112
- if (dims % num_heads) != 0:
113
- raise ValueError(
114
- "The input feature dimensions should be divisible by the "
115
- f"number of heads ({dims} % {num_heads}) != 0"
116
- )
117
-
118
- query_input_dims = query_input_dims or dims
119
- key_input_dims = key_input_dims or dims
120
- value_input_dims = value_input_dims or key_input_dims
121
- value_dims = value_dims or dims
122
- value_output_dims = value_output_dims or dims
123
-
124
- self.embed_dim = dims
125
- self.num_heads = num_heads
126
- self.head_dim = self.embed_dim // self.num_heads
127
-
128
- self.scale = self.head_dim**-0.5
129
-
130
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
131
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
132
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
133
- self.o_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
134
-
135
- def __call__(self, queries, keys, values, position_embeddings, mask=None):
136
- queries = self.q_proj(queries)
137
- keys = self.k_proj(keys)
138
- values = self.v_proj(values)
139
-
140
- num_heads = self.num_heads
141
- B, L, D = queries.shape
142
- _, S, _ = keys.shape
143
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
144
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
145
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
146
-
147
- cos, sin = position_embeddings
148
- queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin, unsqueeze_dim=0)
149
-
150
- attn_weights = mx.matmul(queries, keys.transpose(0, 1, 3, 2)) * self.scale
151
-
152
- if mask is not None:
153
- attn_weights = attn_weights + mask
154
-
155
- attn_weights = mx.softmax(attn_weights, axis=-1)
156
- output = mx.matmul(attn_weights, values)
157
-
158
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
159
-
160
- return self.o_proj(output)
161
-
162
-
163
- class MLP(nn.Module):
164
- def __init__(self, config: VisionConfig):
165
- super().__init__()
166
- dim = config.hidden_size
167
- hidden_dim = config.intermediate_size
168
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
169
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
170
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
171
-
172
- def __call__(self, x) -> mx.array:
173
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
174
-
175
-
176
- class EncoderLayer(nn.Module):
177
- def __init__(self, config: VisionConfig):
178
- super().__init__()
179
- self.embed_dim = config.hidden_size
180
- self.attention = Attention(
181
- config.hidden_size, config.num_attention_heads, bias=True
182
- )
183
- self.attention_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
184
- self.feed_forward = MLP(config)
185
- self.ffn_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
186
-
187
- def __call__(
188
- self,
189
- x: mx.array,
190
- position_embeddings: mx.array,
191
- mask: Optional[mx.array] = None,
192
- ) -> mx.array:
193
- y = self.attention_norm(x)
194
- y = self.attention(y, y, y, position_embeddings, mask)
195
- x = x + y
196
- y = self.ffn_norm(x)
197
- y = self.feed_forward(y)
198
- return x + y
199
-
200
-
201
- class Encoder(nn.Module):
202
- def __init__(self, config: VisionConfig):
203
- super().__init__()
204
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
205
-
206
-
207
- class PixtralRotaryEmbedding:
208
- def __init__(self, config):
209
- self.dim = config.head_dim
210
- self.base = config.rope_theta
211
- max_patches_per_side = config.image_size // config.patch_size
212
- freqs = 1.0 / (
213
- self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)
214
- )
215
-
216
- h = mx.arange(max_patches_per_side)
217
- w = mx.arange(max_patches_per_side)
218
-
219
- freqs_h = mx.outer(h, freqs[::2]).astype(mx.float32)
220
- freqs_w = mx.outer(w, freqs[1::2]).astype(mx.float32)
221
- inv_freq = mx.concatenate(
222
- [
223
- mx.tile(freqs_h[:, None, :], (1, max_patches_per_side, 1)),
224
- mx.tile(freqs_w[None, :, :], (max_patches_per_side, 1, 1)),
225
- ],
226
- axis=-1,
227
- ).reshape(-1, self.dim // 2)
228
-
229
- self.inv_freq = mx.concatenate((inv_freq, inv_freq), axis=-1)
230
-
231
- def __call__(self, x, position_ids):
232
- freqs = self.inv_freq[position_ids]
233
- emb = freqs
234
- cos = mx.cos(emb)
235
- sin = mx.sin(emb)
236
- return cos.astype(x.dtype), sin.astype(x.dtype)
237
-
238
-
239
- class PixtralVisionModel(nn.Module):
240
- def __init__(self, config: VisionConfig):
241
- super().__init__()
242
- self.config = config
243
- self.patch_conv = nn.Conv2d(
244
- in_channels=config.num_channels,
245
- out_channels=config.hidden_size,
246
- kernel_size=config.patch_size,
247
- stride=config.patch_size,
248
- bias=False,
249
- )
250
- self.ln_pre = nn.RMSNorm(config.hidden_size)
251
- self.transformer = Encoder(config)
252
- self.patch_positional_embedding = PixtralRotaryEmbedding(config)
253
-
254
- def __call__(
255
- self,
256
- x: List[mx.array],
257
- output_hidden_states: Optional[bool] = None,
258
- ) -> mx.array:
259
- patch_embeds_list = self.patch_conv(x)
260
- patch_embeds = patch_embeds_list.reshape(1, -1, patch_embeds_list.shape[-1])
261
-
262
- patch_embeds = self.ln_pre(patch_embeds)
263
-
264
- position_ids = position_ids_in_meshgrid(
265
- patch_embeds_list,
266
- max_width=self.config.image_size // self.config.patch_size,
267
- )
268
-
269
- position_embedding = self.patch_positional_embedding(patch_embeds, position_ids)
270
-
271
- mask = generate_block_attention_mask(
272
- [p.shape[1] * p.shape[0] for p in patch_embeds_list], patch_embeds
273
- )
274
-
275
- encoder_states = (patch_embeds,) if output_hidden_states else None
276
-
277
- for l in self.transformer.layers:
278
- patch_embeds = l(
279
- patch_embeds, mask=mask, position_embeddings=position_embedding
280
- )
281
- if output_hidden_states:
282
- encoder_states = encoder_states + (patch_embeds,)
283
-
284
- return patch_embeds, encoder_states
285
-
286
-
287
- class VisionModel(nn.Module):
288
- def __init__(self, config: VisionConfig):
289
- super().__init__()
290
-
291
- self.model_type = config.model_type
292
- if self.model_type not in ["clip_vision_model", "pixtral"]:
293
- raise ValueError(f"Unsupported model type: {self.model_type}")
294
-
295
- self.vision_model = PixtralVisionModel(config)
296
-
297
- def __call__(
298
- self, x: List[mx.array], output_hidden_states: Optional[bool] = None
299
- ) -> mx.array:
300
- return self.vision_model(x, output_hidden_states)
301
-
302
- def sanitize(self, weights):
303
- sanitized_weights = {}
304
- for k, v in weights.items():
305
- if "position_ids" in k:
306
- # Remove unused position_ids
307
- continue
308
- elif "patch_conv.weight" in k:
309
- # PyTorch conv2d weight tensors have shape:
310
- # [out_channels, in_channels, kH, KW]
311
- # MLX conv2d expects the weight be of shape:
312
- # [out_channels, kH, KW, in_channels]
313
- if check_array_shape(v):
314
- sanitized_weights[k] = v
315
- else:
316
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
317
- else:
318
- sanitized_weights[k] = v
319
-
320
- return sanitized_weights