nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,229 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Dict, Optional, Tuple, Union
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
|
|
8
|
-
from ..base import (
|
|
9
|
-
LanguageModelOutput,
|
|
10
|
-
create_attention_mask,
|
|
11
|
-
scaled_dot_product_attention,
|
|
12
|
-
)
|
|
13
|
-
from ..cache import KVCache
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
@dataclass
|
|
17
|
-
class TextConfig:
|
|
18
|
-
model_type: str
|
|
19
|
-
hidden_size: int = 5120
|
|
20
|
-
head_dim: int = 128
|
|
21
|
-
num_hidden_layers: int = 40
|
|
22
|
-
intermediate_size: int = 14336
|
|
23
|
-
num_attention_heads: int = 32
|
|
24
|
-
rms_norm_eps: float = 1e-06
|
|
25
|
-
vocab_size: int = 131072
|
|
26
|
-
num_key_value_heads: int = 8
|
|
27
|
-
rope_theta: float = 1000000000.0
|
|
28
|
-
rope_traditional: bool = False
|
|
29
|
-
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
30
|
-
max_position_embeddings: int = 4096
|
|
31
|
-
|
|
32
|
-
@classmethod
|
|
33
|
-
def from_dict(cls, params):
|
|
34
|
-
return cls(
|
|
35
|
-
**{
|
|
36
|
-
k: v
|
|
37
|
-
for k, v in params.items()
|
|
38
|
-
if k in inspect.signature(cls).parameters
|
|
39
|
-
}
|
|
40
|
-
)
|
|
41
|
-
|
|
42
|
-
def __post_init__(self):
|
|
43
|
-
if self.num_key_value_heads is None:
|
|
44
|
-
self.num_key_value_heads = self.num_attention_heads
|
|
45
|
-
|
|
46
|
-
if self.rope_scaling:
|
|
47
|
-
required_keys = {"factor", "type"}
|
|
48
|
-
if not all(key in self.rope_scaling for key in required_keys):
|
|
49
|
-
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
50
|
-
|
|
51
|
-
if self.rope_scaling["type"] != "linear":
|
|
52
|
-
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
class Attention(nn.Module):
|
|
56
|
-
def __init__(self, config: TextConfig):
|
|
57
|
-
super().__init__()
|
|
58
|
-
|
|
59
|
-
dim = config.hidden_size
|
|
60
|
-
self.n_heads = n_heads = config.num_attention_heads
|
|
61
|
-
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
62
|
-
|
|
63
|
-
head_dim = config.head_dim
|
|
64
|
-
self.scale = head_dim**-0.5
|
|
65
|
-
|
|
66
|
-
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
67
|
-
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
68
|
-
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
69
|
-
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
70
|
-
|
|
71
|
-
rope_scale = (
|
|
72
|
-
1 / config.rope_scaling["factor"]
|
|
73
|
-
if config.rope_scaling is not None
|
|
74
|
-
and config.rope_scaling["type"] == "linear"
|
|
75
|
-
else 1
|
|
76
|
-
)
|
|
77
|
-
self.rope = nn.RoPE(
|
|
78
|
-
head_dim,
|
|
79
|
-
traditional=config.rope_traditional,
|
|
80
|
-
base=config.rope_theta,
|
|
81
|
-
scale=rope_scale,
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
def __call__(
|
|
85
|
-
self,
|
|
86
|
-
x: mx.array,
|
|
87
|
-
mask: Optional[mx.array] = None,
|
|
88
|
-
cache: Optional[KVCache] = None,
|
|
89
|
-
) -> mx.array:
|
|
90
|
-
B, L, D = x.shape
|
|
91
|
-
|
|
92
|
-
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
93
|
-
|
|
94
|
-
# Prepare the queries, keys and values for the attention computation
|
|
95
|
-
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
96
|
-
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
97
|
-
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
98
|
-
|
|
99
|
-
if cache is not None:
|
|
100
|
-
queries = self.rope(queries, offset=cache.offset)
|
|
101
|
-
keys = self.rope(keys, offset=cache.offset)
|
|
102
|
-
keys, values = cache.update_and_fetch(keys, values)
|
|
103
|
-
else:
|
|
104
|
-
queries = self.rope(queries)
|
|
105
|
-
keys = self.rope(keys)
|
|
106
|
-
|
|
107
|
-
output = scaled_dot_product_attention(
|
|
108
|
-
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
109
|
-
)
|
|
110
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
111
|
-
return self.o_proj(output)
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
class MLP(nn.Module):
|
|
115
|
-
def __init__(self, dim, hidden_dim):
|
|
116
|
-
super().__init__()
|
|
117
|
-
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
118
|
-
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
119
|
-
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
120
|
-
|
|
121
|
-
def __call__(self, x) -> mx.array:
|
|
122
|
-
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
class TransformerBlock(nn.Module):
|
|
126
|
-
def __init__(self, config: TextConfig):
|
|
127
|
-
super().__init__()
|
|
128
|
-
self.num_attention_heads = config.num_attention_heads
|
|
129
|
-
self.hidden_size = config.hidden_size
|
|
130
|
-
self.self_attn = Attention(config)
|
|
131
|
-
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
|
132
|
-
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
133
|
-
self.post_attention_layernorm = nn.RMSNorm(
|
|
134
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
135
|
-
)
|
|
136
|
-
self.config = config
|
|
137
|
-
|
|
138
|
-
def __call__(
|
|
139
|
-
self,
|
|
140
|
-
x: mx.array,
|
|
141
|
-
mask: Optional[mx.array] = None,
|
|
142
|
-
cache: Optional[KVCache] = None,
|
|
143
|
-
) -> mx.array:
|
|
144
|
-
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
145
|
-
h = x + r
|
|
146
|
-
r = self.mlp(self.post_attention_layernorm(h))
|
|
147
|
-
out = h + r
|
|
148
|
-
return out
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
class Mistral(nn.Module):
|
|
152
|
-
def __init__(self, config: TextConfig):
|
|
153
|
-
super().__init__()
|
|
154
|
-
self.config = config
|
|
155
|
-
self.vocab_size = config.vocab_size
|
|
156
|
-
self.num_hidden_layers = config.num_hidden_layers
|
|
157
|
-
assert self.vocab_size > 0
|
|
158
|
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
159
|
-
self.layers = [
|
|
160
|
-
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
|
|
161
|
-
]
|
|
162
|
-
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
163
|
-
|
|
164
|
-
def __call__(
|
|
165
|
-
self,
|
|
166
|
-
inputs: mx.array,
|
|
167
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
168
|
-
mask: Optional[mx.array] = None,
|
|
169
|
-
cache=None,
|
|
170
|
-
):
|
|
171
|
-
# for passing merged input embeddings
|
|
172
|
-
if inputs_embeds is None:
|
|
173
|
-
h = self.embed_tokens(inputs)
|
|
174
|
-
else:
|
|
175
|
-
h = inputs_embeds
|
|
176
|
-
|
|
177
|
-
if cache is None:
|
|
178
|
-
cache = [None] * len(self.layers)
|
|
179
|
-
|
|
180
|
-
if mask is None:
|
|
181
|
-
mask = create_attention_mask(h, cache)
|
|
182
|
-
|
|
183
|
-
for layer, c in zip(self.layers, cache):
|
|
184
|
-
h = layer(h, mask, c)
|
|
185
|
-
|
|
186
|
-
return self.norm(h)
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
class LanguageModel(nn.Module):
|
|
190
|
-
def __init__(self, config: TextConfig):
|
|
191
|
-
super().__init__()
|
|
192
|
-
self.config = config
|
|
193
|
-
self.model_type = config.model_type
|
|
194
|
-
if self.model_type != "mistral":
|
|
195
|
-
raise ValueError(
|
|
196
|
-
f"Model type {self.model_type} not supported. Currently only 'mistral' is supported"
|
|
197
|
-
)
|
|
198
|
-
self.model = Mistral(config)
|
|
199
|
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
200
|
-
|
|
201
|
-
def __call__(
|
|
202
|
-
self,
|
|
203
|
-
inputs: mx.array,
|
|
204
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
205
|
-
mask: Optional[mx.array] = None,
|
|
206
|
-
cache=None,
|
|
207
|
-
):
|
|
208
|
-
out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
|
|
209
|
-
logits = self.lm_head(out)
|
|
210
|
-
return LanguageModelOutput(logits=logits)
|
|
211
|
-
|
|
212
|
-
@staticmethod
|
|
213
|
-
def sanitize(weights):
|
|
214
|
-
# Remove unused precomputed rotary freqs
|
|
215
|
-
return {
|
|
216
|
-
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
217
|
-
}
|
|
218
|
-
|
|
219
|
-
@property
|
|
220
|
-
def layers(self):
|
|
221
|
-
return self.model.layers
|
|
222
|
-
|
|
223
|
-
@property
|
|
224
|
-
def head_dim(self):
|
|
225
|
-
return self.config.head_dim
|
|
226
|
-
|
|
227
|
-
@property
|
|
228
|
-
def n_kv_heads(self):
|
|
229
|
-
return self.config.num_key_value_heads
|
|
@@ -1,161 +0,0 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
import inspect
|
|
3
|
-
import json
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from typing import List, Optional
|
|
7
|
-
|
|
8
|
-
import mlx.core as mx
|
|
9
|
-
import mlx.nn as nn
|
|
10
|
-
import numpy as np
|
|
11
|
-
from huggingface_hub import snapshot_download
|
|
12
|
-
|
|
13
|
-
from .language import LanguageModel, TextConfig
|
|
14
|
-
from .vision import VisionConfig, VisionModel
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
@dataclass
|
|
18
|
-
class ModelConfig:
|
|
19
|
-
text_config: TextConfig
|
|
20
|
-
vision_config: VisionConfig
|
|
21
|
-
model_type: str
|
|
22
|
-
ignore_index: int = -100
|
|
23
|
-
image_token_index: int = 10
|
|
24
|
-
vision_feature_select_strategy: str = "full"
|
|
25
|
-
vision_feature_layer: int = -1
|
|
26
|
-
vocab_size: int = 32000
|
|
27
|
-
eos_token_id: Optional[List[int]] = None
|
|
28
|
-
|
|
29
|
-
@classmethod
|
|
30
|
-
def from_dict(cls, params):
|
|
31
|
-
return cls(
|
|
32
|
-
**{
|
|
33
|
-
k: v
|
|
34
|
-
for k, v in params.items()
|
|
35
|
-
if k in inspect.signature(cls).parameters
|
|
36
|
-
}
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
class LlavaMultiModalProjector(nn.Module):
|
|
41
|
-
def __init__(self, config: ModelConfig):
|
|
42
|
-
super().__init__()
|
|
43
|
-
self.linear_1 = nn.Linear(
|
|
44
|
-
config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
|
|
45
|
-
)
|
|
46
|
-
self.gelu = nn.GELU()
|
|
47
|
-
self.linear_2 = nn.Linear(
|
|
48
|
-
config.text_config.hidden_size, config.text_config.hidden_size, bias=True
|
|
49
|
-
)
|
|
50
|
-
|
|
51
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
52
|
-
x = self.linear_1(x)
|
|
53
|
-
x = self.gelu(x)
|
|
54
|
-
x = self.linear_2(x)
|
|
55
|
-
return x
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
class Model(nn.Module):
|
|
59
|
-
def __init__(self, config: ModelConfig):
|
|
60
|
-
super().__init__()
|
|
61
|
-
self.config = config
|
|
62
|
-
self.vision_tower = VisionModel(config.vision_config)
|
|
63
|
-
self.language_model = LanguageModel(config.text_config)
|
|
64
|
-
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
|
65
|
-
self.vision_feature_layer = config.vision_feature_layer
|
|
66
|
-
self.vision_feature_select_strategy = config.vision_feature_select_strategy
|
|
67
|
-
|
|
68
|
-
def get_input_embeddings(
|
|
69
|
-
self,
|
|
70
|
-
input_ids: Optional[mx.array] = None,
|
|
71
|
-
pixel_values: Optional[mx.array] = None,
|
|
72
|
-
**kwargs,
|
|
73
|
-
):
|
|
74
|
-
if pixel_values is None:
|
|
75
|
-
return self.language_model.model.embed_tokens(input_ids)
|
|
76
|
-
|
|
77
|
-
# Get the input embeddings from the language model
|
|
78
|
-
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
79
|
-
|
|
80
|
-
# Get the output hidden states from the vision model
|
|
81
|
-
if isinstance(pixel_values, list):
|
|
82
|
-
pixel_values = mx.concatenate(
|
|
83
|
-
[mx.array(pv)[None, ...] for pv in pixel_values], axis=0
|
|
84
|
-
)
|
|
85
|
-
if pixel_values.ndim == 3:
|
|
86
|
-
pixel_values = pixel_values[None, ...]
|
|
87
|
-
|
|
88
|
-
# Pass pixel_values as list of images, as each image is individually run through conv2d and position encoding
|
|
89
|
-
# Reference code from transformers: https://github.com/huggingface/transformers/blob/main/src/transformers/models/pixtral/modeling_pixtral.py#L479C9-L479C21
|
|
90
|
-
# and mistral_inference: https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/vision_encoder.py#L85
|
|
91
|
-
*_, hidden_states = self.vision_tower(
|
|
92
|
-
pixel_values.transpose(0, 2, 3, 1),
|
|
93
|
-
output_hidden_states=True,
|
|
94
|
-
)
|
|
95
|
-
# Select the hidden states from the desired layer
|
|
96
|
-
selected_image_feature = hidden_states[self.vision_feature_layer]
|
|
97
|
-
|
|
98
|
-
# Pass image features through the multi-modal projector
|
|
99
|
-
image_features = self.multi_modal_projector(selected_image_feature)
|
|
100
|
-
|
|
101
|
-
# Insert special image tokens in the input_ids
|
|
102
|
-
final_inputs_embeds = self.merge_input_ids_with_image_features(
|
|
103
|
-
self.config.image_token_index, image_features, inputs_embeds, input_ids
|
|
104
|
-
)
|
|
105
|
-
return final_inputs_embeds
|
|
106
|
-
|
|
107
|
-
@staticmethod
|
|
108
|
-
def merge_input_ids_with_image_features(
|
|
109
|
-
image_token_index, image_features, inputs_embeds, input_ids
|
|
110
|
-
):
|
|
111
|
-
num_images, num_image_patches, embed_dim = image_features.shape
|
|
112
|
-
|
|
113
|
-
# Positions of <image> tokens in input_ids, assuming batch size is 1
|
|
114
|
-
image_positions = np.where(input_ids == image_token_index)[1].tolist()
|
|
115
|
-
|
|
116
|
-
text_segments = []
|
|
117
|
-
start_idx = 0
|
|
118
|
-
|
|
119
|
-
for position in image_positions:
|
|
120
|
-
text_segments.append(inputs_embeds[:, start_idx:position])
|
|
121
|
-
start_idx = position + 1
|
|
122
|
-
|
|
123
|
-
# Split image features into separate embeddings for each image
|
|
124
|
-
image_embeddings = mx.split(image_features, num_image_patches, axis=1)
|
|
125
|
-
final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
|
|
126
|
-
final_embeddings += [inputs_embeds[:, start_idx:]]
|
|
127
|
-
|
|
128
|
-
# Create a final embedding of shape
|
|
129
|
-
# (1, num_image_patches*num_images + sequence_len, embed_dim)
|
|
130
|
-
return mx.concatenate(final_embeddings, axis=1)
|
|
131
|
-
|
|
132
|
-
@property
|
|
133
|
-
def layers(self):
|
|
134
|
-
return self.language_model.model.layers
|
|
135
|
-
|
|
136
|
-
def __call__(
|
|
137
|
-
self,
|
|
138
|
-
input_ids: mx.array,
|
|
139
|
-
pixel_values: mx.array,
|
|
140
|
-
mask: mx.array,
|
|
141
|
-
cache=None,
|
|
142
|
-
**kwargs,
|
|
143
|
-
):
|
|
144
|
-
input_embddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
|
|
145
|
-
logits = self.language_model(
|
|
146
|
-
input_ids, cache=cache, inputs_embeds=input_embddings
|
|
147
|
-
)
|
|
148
|
-
return logits
|
|
149
|
-
|
|
150
|
-
def sanitize(self, weights):
|
|
151
|
-
def transform_key(key):
|
|
152
|
-
if "vision_tower" in key and "vision_model" not in key:
|
|
153
|
-
if "transformer" in key:
|
|
154
|
-
key = key.replace("vision_tower", "vision_tower.vision_model")
|
|
155
|
-
if "patch_conv" in key:
|
|
156
|
-
key = key.replace("vision_tower", "vision_tower.vision_model")
|
|
157
|
-
if "ln_pre" in key:
|
|
158
|
-
key = key.replace("vision_tower", "vision_tower.vision_model")
|
|
159
|
-
return key
|
|
160
|
-
|
|
161
|
-
return {transform_key(k): v for k, v in weights.items()}
|
|
@@ -1,320 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import List, Optional
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
@dataclass
|
|
10
|
-
class VisionConfig:
|
|
11
|
-
model_type: str
|
|
12
|
-
num_hidden_layers: int = 24
|
|
13
|
-
hidden_size: int = 1024
|
|
14
|
-
head_dim: int = 64
|
|
15
|
-
intermediate_size: int = 4096
|
|
16
|
-
num_attention_heads: int = 16
|
|
17
|
-
image_size: int = 336
|
|
18
|
-
patch_size: int = 14
|
|
19
|
-
projection_dim: int = 768
|
|
20
|
-
vocab_size: int = 32000
|
|
21
|
-
num_channels: int = 3
|
|
22
|
-
rms_norm_eps: float = 1e-5
|
|
23
|
-
rope_theta: float = 10000.0
|
|
24
|
-
|
|
25
|
-
@classmethod
|
|
26
|
-
def from_dict(cls, params):
|
|
27
|
-
return cls(
|
|
28
|
-
**{
|
|
29
|
-
k: v
|
|
30
|
-
for k, v in params.items()
|
|
31
|
-
if k in inspect.signature(cls).parameters
|
|
32
|
-
}
|
|
33
|
-
)
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
def check_array_shape(arr):
|
|
37
|
-
shape = arr.shape
|
|
38
|
-
|
|
39
|
-
# Check if the shape has 4 dimensions
|
|
40
|
-
if len(shape) != 4:
|
|
41
|
-
return False
|
|
42
|
-
|
|
43
|
-
out_channels, kH, KW, _ = shape
|
|
44
|
-
|
|
45
|
-
# Check if out_channels is the largest, and kH and KW are the same
|
|
46
|
-
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
47
|
-
return True
|
|
48
|
-
else:
|
|
49
|
-
return False
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def position_ids_in_meshgrid(patch_embeds_list, max_width):
|
|
53
|
-
positions = []
|
|
54
|
-
for patch in patch_embeds_list:
|
|
55
|
-
height, width = patch.shape[0], patch.shape[1]
|
|
56
|
-
h_grid, v_grid = mx.meshgrid(mx.arange(height), mx.arange(width), indexing="ij")
|
|
57
|
-
h_grid = h_grid.reshape(-1, 1)
|
|
58
|
-
v_grid = v_grid.reshape(-1, 1)
|
|
59
|
-
ids = h_grid * max_width + v_grid
|
|
60
|
-
positions.append(ids.flatten())
|
|
61
|
-
return mx.concatenate(positions)
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def generate_block_attention_mask(patch_embeds_list, tensor):
|
|
65
|
-
seq_len = tensor.shape[1]
|
|
66
|
-
d_min = -1e9 # Using a large negative value as MLX doesn't have finfo
|
|
67
|
-
|
|
68
|
-
causal_mask = mx.full((seq_len, seq_len), vals=d_min)
|
|
69
|
-
|
|
70
|
-
block_end_idx = mx.cumsum(mx.array(patch_embeds_list))
|
|
71
|
-
block_start_idx = mx.concatenate([mx.array([0]), mx.array(patch_embeds_list[:-1])])
|
|
72
|
-
block_start_idx = mx.cumsum(block_start_idx)
|
|
73
|
-
|
|
74
|
-
for start, end in zip(block_start_idx, block_end_idx):
|
|
75
|
-
start, end = int(start), int(end) # Convert to integers for indexing
|
|
76
|
-
causal_mask[start:end, start:end] = 0
|
|
77
|
-
|
|
78
|
-
causal_mask = mx.broadcast_to(
|
|
79
|
-
causal_mask[None, None, :, :], (tensor.shape[0], 1, seq_len, seq_len)
|
|
80
|
-
)
|
|
81
|
-
return causal_mask
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
def rotate_half(x):
|
|
85
|
-
x1 = x[..., : x.shape[-1] // 2]
|
|
86
|
-
x2 = x[..., x.shape[-1] // 2 :]
|
|
87
|
-
return mx.concatenate((-x2, x1), axis=-1)
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
|
91
|
-
cos = mx.expand_dims(cos, axis=unsqueeze_dim)
|
|
92
|
-
sin = mx.expand_dims(sin, axis=unsqueeze_dim)
|
|
93
|
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
94
|
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
95
|
-
return q_embed, k_embed
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
class Attention(nn.Module):
|
|
99
|
-
def __init__(
|
|
100
|
-
self,
|
|
101
|
-
dims: int,
|
|
102
|
-
num_heads: int,
|
|
103
|
-
query_input_dims: Optional[int] = None,
|
|
104
|
-
key_input_dims: Optional[int] = None,
|
|
105
|
-
value_input_dims: Optional[int] = None,
|
|
106
|
-
value_dims: Optional[int] = None,
|
|
107
|
-
value_output_dims: Optional[int] = None,
|
|
108
|
-
bias: bool = False,
|
|
109
|
-
):
|
|
110
|
-
super().__init__()
|
|
111
|
-
|
|
112
|
-
if (dims % num_heads) != 0:
|
|
113
|
-
raise ValueError(
|
|
114
|
-
"The input feature dimensions should be divisible by the "
|
|
115
|
-
f"number of heads ({dims} % {num_heads}) != 0"
|
|
116
|
-
)
|
|
117
|
-
|
|
118
|
-
query_input_dims = query_input_dims or dims
|
|
119
|
-
key_input_dims = key_input_dims or dims
|
|
120
|
-
value_input_dims = value_input_dims or key_input_dims
|
|
121
|
-
value_dims = value_dims or dims
|
|
122
|
-
value_output_dims = value_output_dims or dims
|
|
123
|
-
|
|
124
|
-
self.embed_dim = dims
|
|
125
|
-
self.num_heads = num_heads
|
|
126
|
-
self.head_dim = self.embed_dim // self.num_heads
|
|
127
|
-
|
|
128
|
-
self.scale = self.head_dim**-0.5
|
|
129
|
-
|
|
130
|
-
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
|
131
|
-
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
|
132
|
-
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
|
133
|
-
self.o_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
|
134
|
-
|
|
135
|
-
def __call__(self, queries, keys, values, position_embeddings, mask=None):
|
|
136
|
-
queries = self.q_proj(queries)
|
|
137
|
-
keys = self.k_proj(keys)
|
|
138
|
-
values = self.v_proj(values)
|
|
139
|
-
|
|
140
|
-
num_heads = self.num_heads
|
|
141
|
-
B, L, D = queries.shape
|
|
142
|
-
_, S, _ = keys.shape
|
|
143
|
-
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
144
|
-
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
145
|
-
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
|
146
|
-
|
|
147
|
-
cos, sin = position_embeddings
|
|
148
|
-
queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin, unsqueeze_dim=0)
|
|
149
|
-
|
|
150
|
-
attn_weights = mx.matmul(queries, keys.transpose(0, 1, 3, 2)) * self.scale
|
|
151
|
-
|
|
152
|
-
if mask is not None:
|
|
153
|
-
attn_weights = attn_weights + mask
|
|
154
|
-
|
|
155
|
-
attn_weights = mx.softmax(attn_weights, axis=-1)
|
|
156
|
-
output = mx.matmul(attn_weights, values)
|
|
157
|
-
|
|
158
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
159
|
-
|
|
160
|
-
return self.o_proj(output)
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
class MLP(nn.Module):
|
|
164
|
-
def __init__(self, config: VisionConfig):
|
|
165
|
-
super().__init__()
|
|
166
|
-
dim = config.hidden_size
|
|
167
|
-
hidden_dim = config.intermediate_size
|
|
168
|
-
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
169
|
-
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
170
|
-
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
171
|
-
|
|
172
|
-
def __call__(self, x) -> mx.array:
|
|
173
|
-
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
class EncoderLayer(nn.Module):
|
|
177
|
-
def __init__(self, config: VisionConfig):
|
|
178
|
-
super().__init__()
|
|
179
|
-
self.embed_dim = config.hidden_size
|
|
180
|
-
self.attention = Attention(
|
|
181
|
-
config.hidden_size, config.num_attention_heads, bias=True
|
|
182
|
-
)
|
|
183
|
-
self.attention_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
|
|
184
|
-
self.feed_forward = MLP(config)
|
|
185
|
-
self.ffn_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
|
|
186
|
-
|
|
187
|
-
def __call__(
|
|
188
|
-
self,
|
|
189
|
-
x: mx.array,
|
|
190
|
-
position_embeddings: mx.array,
|
|
191
|
-
mask: Optional[mx.array] = None,
|
|
192
|
-
) -> mx.array:
|
|
193
|
-
y = self.attention_norm(x)
|
|
194
|
-
y = self.attention(y, y, y, position_embeddings, mask)
|
|
195
|
-
x = x + y
|
|
196
|
-
y = self.ffn_norm(x)
|
|
197
|
-
y = self.feed_forward(y)
|
|
198
|
-
return x + y
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
class Encoder(nn.Module):
|
|
202
|
-
def __init__(self, config: VisionConfig):
|
|
203
|
-
super().__init__()
|
|
204
|
-
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
class PixtralRotaryEmbedding:
|
|
208
|
-
def __init__(self, config):
|
|
209
|
-
self.dim = config.head_dim
|
|
210
|
-
self.base = config.rope_theta
|
|
211
|
-
max_patches_per_side = config.image_size // config.patch_size
|
|
212
|
-
freqs = 1.0 / (
|
|
213
|
-
self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)
|
|
214
|
-
)
|
|
215
|
-
|
|
216
|
-
h = mx.arange(max_patches_per_side)
|
|
217
|
-
w = mx.arange(max_patches_per_side)
|
|
218
|
-
|
|
219
|
-
freqs_h = mx.outer(h, freqs[::2]).astype(mx.float32)
|
|
220
|
-
freqs_w = mx.outer(w, freqs[1::2]).astype(mx.float32)
|
|
221
|
-
inv_freq = mx.concatenate(
|
|
222
|
-
[
|
|
223
|
-
mx.tile(freqs_h[:, None, :], (1, max_patches_per_side, 1)),
|
|
224
|
-
mx.tile(freqs_w[None, :, :], (max_patches_per_side, 1, 1)),
|
|
225
|
-
],
|
|
226
|
-
axis=-1,
|
|
227
|
-
).reshape(-1, self.dim // 2)
|
|
228
|
-
|
|
229
|
-
self.inv_freq = mx.concatenate((inv_freq, inv_freq), axis=-1)
|
|
230
|
-
|
|
231
|
-
def __call__(self, x, position_ids):
|
|
232
|
-
freqs = self.inv_freq[position_ids]
|
|
233
|
-
emb = freqs
|
|
234
|
-
cos = mx.cos(emb)
|
|
235
|
-
sin = mx.sin(emb)
|
|
236
|
-
return cos.astype(x.dtype), sin.astype(x.dtype)
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
class PixtralVisionModel(nn.Module):
|
|
240
|
-
def __init__(self, config: VisionConfig):
|
|
241
|
-
super().__init__()
|
|
242
|
-
self.config = config
|
|
243
|
-
self.patch_conv = nn.Conv2d(
|
|
244
|
-
in_channels=config.num_channels,
|
|
245
|
-
out_channels=config.hidden_size,
|
|
246
|
-
kernel_size=config.patch_size,
|
|
247
|
-
stride=config.patch_size,
|
|
248
|
-
bias=False,
|
|
249
|
-
)
|
|
250
|
-
self.ln_pre = nn.RMSNorm(config.hidden_size)
|
|
251
|
-
self.transformer = Encoder(config)
|
|
252
|
-
self.patch_positional_embedding = PixtralRotaryEmbedding(config)
|
|
253
|
-
|
|
254
|
-
def __call__(
|
|
255
|
-
self,
|
|
256
|
-
x: List[mx.array],
|
|
257
|
-
output_hidden_states: Optional[bool] = None,
|
|
258
|
-
) -> mx.array:
|
|
259
|
-
patch_embeds_list = self.patch_conv(x)
|
|
260
|
-
patch_embeds = patch_embeds_list.reshape(1, -1, patch_embeds_list.shape[-1])
|
|
261
|
-
|
|
262
|
-
patch_embeds = self.ln_pre(patch_embeds)
|
|
263
|
-
|
|
264
|
-
position_ids = position_ids_in_meshgrid(
|
|
265
|
-
patch_embeds_list,
|
|
266
|
-
max_width=self.config.image_size // self.config.patch_size,
|
|
267
|
-
)
|
|
268
|
-
|
|
269
|
-
position_embedding = self.patch_positional_embedding(patch_embeds, position_ids)
|
|
270
|
-
|
|
271
|
-
mask = generate_block_attention_mask(
|
|
272
|
-
[p.shape[1] * p.shape[0] for p in patch_embeds_list], patch_embeds
|
|
273
|
-
)
|
|
274
|
-
|
|
275
|
-
encoder_states = (patch_embeds,) if output_hidden_states else None
|
|
276
|
-
|
|
277
|
-
for l in self.transformer.layers:
|
|
278
|
-
patch_embeds = l(
|
|
279
|
-
patch_embeds, mask=mask, position_embeddings=position_embedding
|
|
280
|
-
)
|
|
281
|
-
if output_hidden_states:
|
|
282
|
-
encoder_states = encoder_states + (patch_embeds,)
|
|
283
|
-
|
|
284
|
-
return patch_embeds, encoder_states
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
class VisionModel(nn.Module):
|
|
288
|
-
def __init__(self, config: VisionConfig):
|
|
289
|
-
super().__init__()
|
|
290
|
-
|
|
291
|
-
self.model_type = config.model_type
|
|
292
|
-
if self.model_type not in ["clip_vision_model", "pixtral"]:
|
|
293
|
-
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
294
|
-
|
|
295
|
-
self.vision_model = PixtralVisionModel(config)
|
|
296
|
-
|
|
297
|
-
def __call__(
|
|
298
|
-
self, x: List[mx.array], output_hidden_states: Optional[bool] = None
|
|
299
|
-
) -> mx.array:
|
|
300
|
-
return self.vision_model(x, output_hidden_states)
|
|
301
|
-
|
|
302
|
-
def sanitize(self, weights):
|
|
303
|
-
sanitized_weights = {}
|
|
304
|
-
for k, v in weights.items():
|
|
305
|
-
if "position_ids" in k:
|
|
306
|
-
# Remove unused position_ids
|
|
307
|
-
continue
|
|
308
|
-
elif "patch_conv.weight" in k:
|
|
309
|
-
# PyTorch conv2d weight tensors have shape:
|
|
310
|
-
# [out_channels, in_channels, kH, KW]
|
|
311
|
-
# MLX conv2d expects the weight be of shape:
|
|
312
|
-
# [out_channels, kH, KW, in_channels]
|
|
313
|
-
if check_array_shape(v):
|
|
314
|
-
sanitized_weights[k] = v
|
|
315
|
-
else:
|
|
316
|
-
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
317
|
-
else:
|
|
318
|
-
sanitized_weights[k] = v
|
|
319
|
-
|
|
320
|
-
return sanitized_weights
|