nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,320 +0,0 @@
1
- from .interface import VLM
2
- from ml import GenerationConfig, SamplerConfig, ChatMessage
3
- import re
4
- import os
5
- import codecs
6
- import argparse
7
-
8
- def parse_media_from_input(user_input):
9
- """Parse quoted media files from user input and return prompt and media paths"""
10
- # Find all quoted strings (both single and double quotes)
11
- quoted_pattern = r'["\']([^"\']*)["\']'
12
- quoted_matches = re.findall(quoted_pattern, user_input)
13
-
14
- # Remove quoted strings from the input to get the actual prompt
15
- prompt = re.sub(quoted_pattern, '', user_input).strip()
16
-
17
- # Separate image and audio files based on extensions
18
- image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp'}
19
- audio_extensions = {'.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a'}
20
-
21
- image_paths = []
22
- audio_paths = []
23
-
24
- for quoted_file in quoted_matches:
25
- if quoted_file: # Skip empty quotes
26
- # Expand user path if it starts with ~
27
- if quoted_file.startswith('~'):
28
- quoted_file = os.path.expanduser(quoted_file)
29
-
30
- # Check if file exists
31
- if not os.path.exists(quoted_file):
32
- print(f"Warning: File '{quoted_file}' not found")
33
- continue
34
-
35
- file_ext = os.path.splitext(quoted_file.lower())[1]
36
- if file_ext in image_extensions:
37
- image_paths.append(quoted_file)
38
- elif file_ext in audio_extensions:
39
- audio_paths.append(quoted_file)
40
-
41
- return prompt, image_paths if image_paths else None, audio_paths if audio_paths else None
42
-
43
- def parse_arguments():
44
- """Parse command line arguments for the VLM main function."""
45
- parser = argparse.ArgumentParser(
46
- description="Interactive VLM (Vision-Language Model) conversation interface."
47
- )
48
- parser.add_argument(
49
- "--model_path",
50
- type=str,
51
- default="mlx-community/gemma-3-4b-it-8bit",
52
- help="The path to the local model directory or Hugging Face repo."
53
- )
54
- parser.add_argument(
55
- "--model_name",
56
- type=str,
57
- default="",
58
- help="Specific model name/type (e.g., 'qwen3vl', 'qwen3vl-moe', 'gemma3'). If empty, auto-detect from model_path."
59
- )
60
- parser.add_argument(
61
- "--context_length",
62
- type=int,
63
- default=2048,
64
- help="Context length for the model (default: 2048)."
65
- )
66
- parser.add_argument(
67
- "--temperature",
68
- type=float,
69
- default=0.7,
70
- help="Sampling temperature (default: 0.7)."
71
- )
72
- parser.add_argument(
73
- "--top_p",
74
- type=float,
75
- default=0.9,
76
- help="Top-p sampling parameter (default: 0.9)."
77
- )
78
- parser.add_argument(
79
- "--max_tokens",
80
- type=int,
81
- default=512,
82
- help="Maximum tokens to generate (default: 512)."
83
- )
84
- return parser.parse_args()
85
-
86
- def main():
87
- """Main function for interactive VLM conversation."""
88
- args = parse_arguments()
89
-
90
- # Auto-detect model name if not provided
91
- model_name = args.model_name
92
-
93
- # TODO: avoid such hardcoded model name detection
94
- if not model_name:
95
- if "qwen3vl-30B" in args.model_path.lower():
96
- model_name = "qwen3vl-moe"
97
- elif "qwen3" in args.model_path.lower():
98
- model_name = "qwen3vl"
99
- elif "gemma" in args.model_path.lower():
100
- model_name = "gemma3"
101
- else:
102
- model_name = ""
103
-
104
- # Load the VLM instance
105
- vlm = VLM(
106
- model_name=model_name,
107
- model_path=args.model_path,
108
- mmproj_path=None, # Not needed for this model
109
- context_length=args.context_length,
110
- device=None
111
- )
112
-
113
- # Configure sampler
114
- sampler_config = SamplerConfig(
115
- temperature=args.temperature,
116
- top_p=args.top_p
117
- )
118
- vlm.set_sampler(sampler_config)
119
-
120
- # Chat history using ChatMessage objects
121
- chat = []
122
-
123
- print("VLM Multi-round conversation started. Type 'quit' or 'exit' to end.")
124
- print("Include images/audios in quotes, e.g.: 'describe \"image1.jpg\" \"image2.png\"'")
125
- print("You can also use single quotes: 'describe '/path/to/image.jpg''")
126
- print("=" * 50)
127
-
128
- def on_token(text_chunk):
129
- """Token callback for streaming"""
130
- print(text_chunk, end="", flush=True)
131
- return True
132
-
133
- while True:
134
- # Get user input
135
- user_input = input("\nUser: ").strip()
136
-
137
- # Check for exit commands
138
- if user_input.lower() in ["quit", "exit", "q"]:
139
- print("Goodbye!")
140
- break
141
-
142
- if not user_input:
143
- continue
144
-
145
- # Parse media files and prompt from user input
146
- prompt_text, image_paths, audio_paths = parse_media_from_input(user_input)
147
-
148
- # If no text prompt after parsing, use the original input
149
- if not prompt_text.strip():
150
- prompt_text = user_input
151
- image_paths = None
152
- audio_paths = None
153
-
154
- # Add user message to chat history using ChatMessage
155
- chat.append(ChatMessage(role="user", content=prompt_text))
156
-
157
- # Calculate number of images and audios for chat template
158
- num_images = len(image_paths) if image_paths else 0
159
- num_audios = len(audio_paths) if audio_paths else 0
160
-
161
- # Apply chat template with image/audio token insertion
162
- try:
163
- formatted_prompt = vlm.apply_chat_template_with_media(chat, num_images=num_images, num_audios=num_audios)
164
- except (NotImplementedError, AttributeError):
165
- # Fallback to manual formatting if chat template is not implemented
166
- formatted_prompt = ""
167
- for msg in chat:
168
- formatted_prompt += f"{msg.role}: {msg.content}\n"
169
- formatted_prompt += "Assistant: "
170
-
171
- # Generation config with media paths
172
- generation_config = GenerationConfig(
173
- max_tokens=args.max_tokens,
174
- sampler_config=sampler_config,
175
- image_paths=image_paths,
176
- audio_paths=audio_paths
177
- )
178
-
179
- # Generate response
180
- print("Assistant: ", end="", flush=True)
181
-
182
- try:
183
- # Use streaming generation with callback
184
- response_text = ""
185
-
186
- def token_callback(text_chunk):
187
- nonlocal response_text
188
- print(text_chunk, end="", flush=True)
189
- response_text += text_chunk
190
- return True
191
-
192
- # Use generate_stream method for streaming generation
193
- response = vlm.generate_stream(
194
- prompt=formatted_prompt,
195
- config=generation_config,
196
- on_token=token_callback
197
- )
198
-
199
- print() # New line after streaming
200
-
201
- # Add assistant response to chat history using ChatMessage
202
- chat.append(ChatMessage(role="assistant", content=response_text))
203
-
204
- except Exception as e:
205
- print(f"Error generating response: {e}")
206
- print()
207
-
208
- # Clean up
209
- vlm.destroy()
210
-
211
- def test_vlm_generate_stream(model_path, model_name):
212
- # Specify the checkpoint
213
- context_length = 2048
214
-
215
- # Load the corresponding model and VLM instance
216
- vlm = VLM(
217
- model_name=model_name,
218
- model_path=model_path,
219
- mmproj_path=None, # Not needed for this model
220
- context_length=context_length,
221
- device=None
222
- )
223
-
224
- # Configure sampler
225
- sampler_config = SamplerConfig(
226
- temperature=0.7,
227
- top_p=0.9
228
- )
229
- vlm.set_sampler(sampler_config)
230
-
231
- # Chat history using ChatMessage objects (following ml.py API)
232
- chat = []
233
-
234
- print("Multi-round VLM conversation started. Type 'quit' or 'exit' to end.")
235
- print("Include images/audios in quotes, e.g.: 'describe \"image1.jpg\" \"image2.png\"'")
236
- print("You can also use single quotes: 'describe '/path/to/image.jpg''")
237
- print("=" * 50)
238
-
239
- def on_token(text_chunk, user_data):
240
- """Token callback for streaming"""
241
- print(text_chunk, end="", flush=True)
242
- if user_data is not None:
243
- user_data["response"] += text_chunk
244
- return True
245
-
246
- while True:
247
- # Get user input
248
- user_input = input("\nUser: ").strip()
249
-
250
- # Check for exit commands
251
- if user_input.lower() in ["quit", "exit", "q"]:
252
- print("Goodbye!")
253
- break
254
-
255
- if not user_input:
256
- continue
257
-
258
- # Parse media files and prompt from user input
259
- prompt_text, image_paths, audio_paths = parse_media_from_input(user_input)
260
-
261
- # If no text prompt after parsing, use the original input
262
- if not prompt_text.strip():
263
- prompt_text = user_input
264
- image_paths = None
265
- audio_paths = None
266
-
267
- # Add user message to chat history using ChatMessage (following ml.py API)
268
- chat.append(ChatMessage(role="user", content=prompt_text))
269
-
270
- # Calculate number of images and audios for chat template
271
- num_images = len(image_paths) if image_paths else 0
272
- num_audios = len(audio_paths) if audio_paths else 0
273
-
274
- # Apply chat template with image/audio token insertion
275
- try:
276
- formatted_prompt = vlm.apply_chat_template_with_media(chat, num_images=num_images, num_audios=num_audios)
277
- except (NotImplementedError, AttributeError):
278
- # Fallback to manual formatting if chat template is not implemented
279
- formatted_prompt = ""
280
- for msg in chat:
281
- formatted_prompt += f"{msg.role}: {msg.content}\n"
282
- formatted_prompt += "Assistant: "
283
-
284
- # Generation config with media paths
285
- generation_config = GenerationConfig(
286
- max_tokens=512,
287
- sampler_config=sampler_config,
288
- image_paths=image_paths,
289
- audio_paths=audio_paths
290
- )
291
-
292
- # Generate response
293
- print("Assistant: ", end="", flush=True)
294
-
295
- try:
296
- # Use streaming generation with callback - single method handles all cases
297
- user_data = {"response": ""}
298
-
299
- # Always use the unified generate_stream method
300
- response = vlm.generate_stream(
301
- prompt=formatted_prompt,
302
- config=generation_config,
303
- on_token=on_token,
304
- user_data=user_data
305
- )
306
-
307
- print() # New line after streaming
308
-
309
- # Add assistant response to chat history using ChatMessage
310
- chat.append(ChatMessage(role="assistant", content=user_data["response"]))
311
-
312
- except Exception as e:
313
- print(f"Error generating response: {e}")
314
- print()
315
-
316
- # Clean up
317
- vlm.destroy()
318
-
319
- if __name__ == "__main__":
320
- main()
File without changes
@@ -1,68 +0,0 @@
1
- # Copyright © 2023-2024 Apple Inc.
2
-
3
- import argparse
4
-
5
- from .utils import MODEL_CONVERSION_DTYPES, convert
6
-
7
-
8
- def configure_parser() -> argparse.ArgumentParser:
9
- """
10
- Configures and returns the argument parser for the script.
11
-
12
- Returns:
13
- argparse.ArgumentParser: Configured argument parser.
14
- """
15
- parser = argparse.ArgumentParser(
16
- description="Convert Hugging Face model to MLX format"
17
- )
18
-
19
- parser.add_argument("--hf-path", type=str, help="Path to the Hugging Face model.")
20
- parser.add_argument(
21
- "--mlx-path", type=str, default="mlx_model", help="Path to save the MLX model."
22
- )
23
- parser.add_argument(
24
- "-q", "--quantize", help="Generate a quantized model.", action="store_true"
25
- )
26
- parser.add_argument(
27
- "--q-group-size", help="Group size for quantization.", type=int, default=64
28
- )
29
- parser.add_argument(
30
- "--q-bits", help="Bits per weight for quantization.", type=int, default=4
31
- )
32
- parser.add_argument(
33
- "--dtype",
34
- help="Type to save the parameter. Defaults to config.json's `torch_dtype` or the current model weights dtype",
35
- type=str,
36
- choices=MODEL_CONVERSION_DTYPES,
37
- default=None,
38
- )
39
- parser.add_argument(
40
- "--upload-repo",
41
- help="The Hugging Face repo to upload the model to.",
42
- type=str,
43
- default=None,
44
- )
45
- parser.add_argument(
46
- "-d",
47
- "--dequantize",
48
- help="Dequantize a quantized model.",
49
- action="store_true",
50
- default=False,
51
- )
52
- parser.add_argument(
53
- "--skip-vision",
54
- help="Skip vision module quantization.",
55
- action="store_true",
56
- default=False,
57
- )
58
- return parser
59
-
60
-
61
- def main():
62
- parser = configure_parser()
63
- args = parser.parse_args()
64
- convert(**vars(args))
65
-
66
-
67
- if __name__ == "__main__":
68
- main()
@@ -1,8 +0,0 @@
1
- from .aya_vision import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
@@ -1,193 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from mlx_lm.utils import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- image_token_index: int = 255036
23
- max_splits_per_img: int = 12
24
- downsample_factor: int = 2
25
- alignment_intermediate_size: int = 28672
26
- adapter_layer_norm_eps: float = 1e-06
27
- vision_feature_layer: int = -1
28
- vision_feature_select_strategy: str = "full"
29
- eos_token_id: Optional[List[int]] = None
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
-
42
- class AyaVisionMultiModalProjector(nn.Module):
43
- def __init__(self, config: ModelConfig):
44
- super().__init__()
45
- self.config = config
46
- self.downsample_factor = config.downsample_factor
47
- self.alignment_intermediate_size = getattr(
48
- config, "alignment_intermediate_size", config.text_config.hidden_size
49
- )
50
- self.layernorm = nn.LayerNorm(
51
- config.vision_config.hidden_size * (config.downsample_factor**2),
52
- eps=config.adapter_layer_norm_eps,
53
- )
54
-
55
- self.linear_1 = nn.Linear(
56
- config.vision_config.hidden_size * (config.downsample_factor**2),
57
- self.alignment_intermediate_size,
58
- bias=True,
59
- )
60
-
61
- self.act = nn.SiLU() # SwiGLU uses SiLU activation
62
-
63
- # For SwiGLU, project down to half size since we split intermediate dim
64
- self.linear_2 = nn.Linear(
65
- self.alignment_intermediate_size // 2,
66
- config.text_config.hidden_size,
67
- bias=True,
68
- )
69
-
70
- def __call__(self, image_features):
71
- image_features = self.pixel_shuffle(image_features)
72
- image_features = self.layernorm(image_features)
73
- hidden_states = self.linear_1(image_features)
74
-
75
- # Split along last dimension and apply SwiGLU
76
- x, gate = mx.split(hidden_states, 2, axis=-1)
77
- hidden_states = self.act(gate) * x
78
-
79
- hidden_states = self.linear_2(hidden_states)
80
- return hidden_states
81
-
82
- def pixel_shuffle(self, image_features): # B, S, D
83
- batch_size, seq_length, feature_dim = image_features.shape
84
- height = width = int(seq_length**0.5)
85
- image_features = image_features.reshape(
86
- image_features.shape[0], width, height, -1
87
- )
88
- channels = image_features.shape[-1]
89
- image_features = image_features.reshape(
90
- batch_size,
91
- width,
92
- int(height / self.downsample_factor),
93
- int(channels * self.downsample_factor),
94
- )
95
- image_features = image_features.transpose(0, 2, 1, 3)
96
- image_features = image_features.reshape(
97
- batch_size,
98
- int(height / self.downsample_factor),
99
- int(width / self.downsample_factor),
100
- -1,
101
- )
102
- image_features = image_features.transpose(0, 2, 1, 3)
103
- return image_features
104
-
105
-
106
- class Model(nn.Module):
107
- def __init__(self, config: ModelConfig):
108
- super().__init__()
109
- self.config = config
110
- self.vision_tower = VisionModel(config.vision_config)
111
- self.language_model = LanguageModel(config.text_config)
112
- self.multi_modal_projector = AyaVisionMultiModalProjector(config)
113
- self.vision_feature_layer = config.vision_feature_layer
114
- self.vision_feature_select_strategy = config.vision_feature_select_strategy
115
-
116
- def get_input_embeddings(
117
- self,
118
- input_ids: Optional[mx.array] = None,
119
- pixel_values: Optional[mx.array] = None,
120
- **kwargs,
121
- ):
122
- if pixel_values is None:
123
- return self.language_model.model.embed_tokens(input_ids)
124
-
125
- # Get the input embeddings from the language model
126
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
127
-
128
- spatial_shapes = kwargs.get("spatial_shapes", None)
129
- # Get the ouptut hidden states from the vision model
130
- *_, hidden_states = self.vision_tower(
131
- pixel_values.transpose(0, 2, 3, 1),
132
- spatial_shapes=spatial_shapes,
133
- output_hidden_states=True,
134
- )
135
-
136
- # Select the hidden states from the desired layer
137
- selected_image_feature = hidden_states[self.vision_feature_layer]
138
-
139
- if self.vision_feature_select_strategy == "default":
140
- selected_image_feature = selected_image_feature[:, 1:]
141
- elif self.vision_feature_select_strategy == "full":
142
- selected_image_feature = selected_image_feature
143
- else:
144
- raise ValueError(
145
- "Unexpected feature selection strategy: "
146
- f"{self.vision_feature_select_strategy}"
147
- )
148
-
149
- # Pass image features through the multi-modal projector
150
- image_features = self.multi_modal_projector(selected_image_feature)
151
-
152
- # Insert special image tokens in the input_ids
153
- final_inputs_embeds = self._merge_input_ids_with_image_features(
154
- image_features, inputs_embeds, input_ids
155
- )
156
- return final_inputs_embeds
157
-
158
- def _merge_input_ids_with_image_features(
159
- self, image_features, inputs_embeds, input_ids
160
- ):
161
- image_token_index = self.config.image_token_index
162
-
163
- # Positions of <image> tokens in input_ids, assuming batch size is 1
164
- image_positions = np.where(input_ids[0] == image_token_index)[0].tolist()
165
- num_images, _, _, vision_hidden_size = image_features.shape
166
-
167
- reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
168
-
169
- # cast to the dtype of the input_embeds to support quantized models
170
- reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
171
- inputs_embeds.dtype
172
- )
173
- inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
174
- return inputs_embeds
175
-
176
- @property
177
- def layers(self):
178
- return self.language_model.model.layers
179
-
180
- def __call__(
181
- self,
182
- input_ids: mx.array,
183
- pixel_values: mx.array,
184
- mask: mx.array,
185
- cache=None,
186
- **kwargs,
187
- ):
188
-
189
- input_embddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
190
- logits = self.language_model(
191
- input_ids, cache=cache, inputs_embeds=input_embddings
192
- )
193
- return logits