nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,9 +0,0 @@
1
- from .idefics2 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- PerceiverConfig,
6
- TextConfig,
7
- VisionConfig,
8
- VisionModel,
9
- )
@@ -1,294 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import re
5
- from dataclasses import dataclass
6
- from pathlib import Path
7
- from typing import List, Optional, Tuple
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- import numpy as np
12
- from huggingface_hub import snapshot_download
13
- from transformers import AutoConfig
14
-
15
- from .language import LanguageModel, TextConfig
16
- from .vision import VisionConfig, VisionModel
17
-
18
-
19
- @dataclass
20
- class PerceiverConfig:
21
- model_type: str
22
- num_key_value_heads: int = 4
23
- resampler_depth: int = 3
24
- resampler_head_dim: int = 96
25
- resampler_n_heads: int = 16
26
- resampler_n_latents: int = 64
27
-
28
- @classmethod
29
- def from_dict(cls, params):
30
- return cls(
31
- **{
32
- k: v
33
- for k, v in params.items()
34
- if k in inspect.signature(cls).parameters
35
- }
36
- )
37
-
38
-
39
- @dataclass
40
- class ModelConfig:
41
- text_config: TextConfig
42
- vision_config: VisionConfig
43
- perceiver_config: PerceiverConfig
44
- model_type: str
45
- ignore_index: int = -100
46
- image_token_id: int = 32001
47
- vocab_size: int = 151936
48
- image_token_index: Optional[int] = None
49
- eos_token_id: Optional[List[int]] = None
50
-
51
- @classmethod
52
- def from_dict(cls, params):
53
- return cls(
54
- **{
55
- k: v
56
- for k, v in params.items()
57
- if k in inspect.signature(cls).parameters
58
- }
59
- )
60
-
61
- def __post_init__(self):
62
- if self.image_token_index is None:
63
- self.image_token_index = self.image_token_id
64
-
65
-
66
- class Idefics2PerceiverAttention(nn.Module):
67
- def __init__(self, config: ModelConfig):
68
- super().__init__()
69
-
70
- dim = config.text_config.hidden_size
71
- self.n_heads = n_heads = config.perceiver_config.resampler_n_heads
72
- self.n_kv_heads = n_kv_heads = config.perceiver_config.num_key_value_heads
73
-
74
- head_dim = config.perceiver_config.resampler_head_dim
75
- self.scale = head_dim**-0.5
76
-
77
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
78
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
79
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
80
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
81
-
82
- def __call__(
83
- self,
84
- x: mx.array,
85
- kv: mx.array,
86
- mask: Optional[mx.array] = None,
87
- cache: Optional[Tuple[mx.array, mx.array]] = None,
88
- ) -> mx.array:
89
- B, L, D = x.shape
90
- kv_seq_len = L + kv.shape[1]
91
- hidden_states = mx.concatenate([kv, x], axis=-2)
92
-
93
- queries = self.q_proj(x)
94
- keys = self.k_proj(hidden_states)
95
- values = self.v_proj(hidden_states)
96
-
97
- # Prepare the queries, keys and values for the attention computation
98
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
99
- keys = keys.reshape(B, kv_seq_len, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
100
- values = values.reshape(B, kv_seq_len, self.n_kv_heads, -1).transpose(
101
- 0, 2, 1, 3
102
- )
103
-
104
- if cache is not None:
105
- key_cache, value_cache = cache
106
- keys = mx.concatenate([key_cache, keys], axis=2)
107
- values = mx.concatenate([value_cache, values], axis=2)
108
-
109
- output = mx.fast.scaled_dot_product_attention(
110
- queries, keys, values, scale=self.scale
111
- )
112
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
113
- return self.o_proj(output)
114
-
115
-
116
- class Idefics2PerceiverLayer(nn.Module):
117
- def __init__(self, config: ModelConfig):
118
- super().__init__()
119
- self.hidden_size = config.text_config.hidden_size
120
- self.n_latents = config.perceiver_config.resampler_n_latents
121
- self.depth = config.perceiver_config.resampler_depth
122
- self.rms_norm_eps = config.text_config.rms_norm_eps
123
-
124
- self.input_latents_norm = nn.RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
125
- self.input_context_norm = nn.RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
126
- self.self_attn = Idefics2PerceiverAttention(config)
127
- self.post_attention_layernorm = nn.RMSNorm(
128
- self.hidden_size, eps=self.rms_norm_eps
129
- )
130
- self.mlp = MLP(self.hidden_size, self.hidden_size * 4, self.hidden_size)
131
-
132
- def __call__(
133
- self,
134
- x: mx.array,
135
- hidden_states: mx.array,
136
- mask: Optional[mx.array] = None,
137
- ) -> mx.array:
138
- latents = self.input_latents_norm(x)
139
- context = self.input_context_norm(hidden_states)
140
-
141
- latents = self.self_attn(latents, context, mask=mask)
142
-
143
- latents = x + latents
144
- r = latents
145
-
146
- latents = self.post_attention_layernorm(latents)
147
- latents = self.mlp(latents)
148
- latents = r + latents
149
- return latents
150
-
151
-
152
- class Idefics2PerceiverResampler(nn.Module):
153
- def __init__(self, config: ModelConfig):
154
- super().__init__()
155
- self.hidden_size = config.text_config.hidden_size
156
- self.n_latents = config.perceiver_config.resampler_n_latents
157
-
158
- self.latents = mx.ones((self.n_latents, self.hidden_size))
159
- self.layers = [
160
- Idefics2PerceiverLayer(config)
161
- for _ in range(config.perceiver_config.resampler_depth)
162
- ]
163
- self.norm = nn.RMSNorm(self.hidden_size, eps=config.text_config.rms_norm_eps)
164
-
165
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None):
166
-
167
- h = mx.expand_dims(self.latents, axis=0)
168
- h = mx.repeat(h, x.shape[0], axis=0)
169
-
170
- for layer in self.layers:
171
- h = layer(h, x, mask=mask)
172
-
173
- return self.norm(h)
174
-
175
-
176
- class MLP(nn.Module):
177
- def __init__(self, dim, hidden_dim, output_size):
178
- super().__init__()
179
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
180
- self.down_proj = nn.Linear(hidden_dim, output_size, bias=False)
181
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
182
-
183
- def __call__(self, x) -> mx.array:
184
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
185
-
186
-
187
- class Idefics2Connector(nn.Module):
188
- def __init__(self, config: ModelConfig):
189
- super().__init__()
190
- self.modality_projection = MLP(
191
- config.vision_config.hidden_size,
192
- config.text_config.intermediate_size,
193
- config.text_config.hidden_size,
194
- )
195
-
196
- self.perceiver_resampler = Idefics2PerceiverResampler(config)
197
-
198
- def __call__(self, x: mx.array, mask=None) -> mx.array:
199
- x = self.modality_projection(x)
200
- x = self.perceiver_resampler(x, mask=mask)
201
- return x
202
-
203
-
204
- class Model(nn.Module):
205
- def __init__(self, config: ModelConfig):
206
- super().__init__()
207
- self.model_type = config.model_type
208
- self.config = config
209
-
210
- self.vision_model = VisionModel(config.vision_config)
211
- self.language_model = LanguageModel(config.text_config)
212
- self.connector = Idefics2Connector(config)
213
-
214
- def get_input_embeddings(
215
- self,
216
- input_ids: Optional[mx.array] = None,
217
- pixel_values: Optional[mx.array] = None,
218
- pixel_attention_mask: Optional[mx.array] = None,
219
- ):
220
- if pixel_values is None:
221
- return self.language_model.embed_tokens(input_ids)
222
-
223
- inputs_embeds = self.language_model.embed_tokens(input_ids)
224
-
225
- pooler_output, embeddings, hidden_state = self.vision_model(
226
- pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
227
- )
228
- image_features = pooler_output.astype(pixel_values.dtype)
229
- image_features = self.connector(image_features, mask=None)
230
-
231
- final_inputs_embeds = self._prepare_inputs_for_multimodal(
232
- image_features, inputs_embeds, input_ids
233
- )
234
- return final_inputs_embeds
235
-
236
- def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
237
- image_token_index = self.config.image_token_index
238
-
239
- # Positions of <image> tokens in input_ids, assuming batch size is 1
240
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
241
- num_images, _, vision_hidden_size = image_features.shape
242
-
243
- reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
244
-
245
- # cast to the dtype of the input_embeds to support quantized models
246
- reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
247
- inputs_embeds.dtype
248
- )
249
-
250
- inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
251
-
252
- return inputs_embeds
253
-
254
- @property
255
- def layers(self):
256
- return self.language_model.model.layers
257
-
258
- def __call__(
259
- self,
260
- input_ids: mx.array,
261
- pixel_values: mx.array,
262
- mask: mx.array,
263
- cache=None,
264
- **kwargs,
265
- ):
266
- input_embeddings = self.get_input_embeddings(input_ids, pixel_values)
267
- logits = self.language_model(
268
- inputs=input_ids, cache=cache, inputs_embeds=input_embeddings
269
- )
270
- return logits
271
-
272
- def sanitize(self, weights):
273
- weights = {
274
- (
275
- f"{k.split('.', 1)[1]}"
276
- if re.match(r"^model\.", k)
277
- else (f"language_model.{k}" if re.match(r"^lm_head\.", k) else k)
278
- ): v
279
- for k, v in weights.items()
280
- }
281
-
282
- weights = {
283
- (
284
- f"language_model.{k.split('.', 1)[1]}"
285
- if re.match(
286
- r"^text_model\.",
287
- k,
288
- )
289
- else k
290
- ): v
291
- for k, v in weights.items()
292
- }
293
-
294
- return weights
@@ -1,191 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int
20
- num_hidden_layers: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- rms_norm_eps: float
24
- vocab_size: int
25
- num_key_value_heads: int
26
- rope_theta: float = 1000000.0
27
- rope_traditional: bool = False
28
- max_position_embeddings: int = 4096
29
- tie_word_embeddings: bool = False
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
- def __post_init__(self):
42
- if self.num_key_value_heads is None:
43
- self.num_key_value_heads = self.num_attention_heads
44
-
45
-
46
- class Attention(nn.Module):
47
- def __init__(self, config: TextConfig):
48
- super().__init__()
49
-
50
- dim = config.hidden_size
51
- self.n_heads = n_heads = config.num_attention_heads
52
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
53
-
54
- head_dim = config.hidden_size // n_heads
55
- self.scale = head_dim**-0.5
56
-
57
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
58
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
59
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
60
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
61
-
62
- self.rope = nn.RoPE(
63
- head_dim,
64
- traditional=config.rope_traditional,
65
- base=config.rope_theta,
66
- )
67
-
68
- def __call__(
69
- self,
70
- x: mx.array,
71
- mask: Optional[mx.array] = None,
72
- cache: Optional[KVCache] = None,
73
- ) -> mx.array:
74
- B, L, D = x.shape
75
-
76
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
77
-
78
- # Prepare the queries, keys and values for the attention computation
79
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
80
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
81
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
82
-
83
- if cache is not None:
84
- queries = self.rope(queries, offset=cache.offset)
85
- keys = self.rope(keys, offset=cache.offset)
86
- keys, values = cache.update_and_fetch(keys, values)
87
- else:
88
- queries = self.rope(queries)
89
- keys = self.rope(keys)
90
-
91
- output = scaled_dot_product_attention(
92
- queries, keys, values, cache, scale=self.scale, mask=mask
93
- )
94
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
95
- return self.o_proj(output)
96
-
97
-
98
- class MLP(nn.Module):
99
- def __init__(self, dim, hidden_dim):
100
- super().__init__()
101
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
102
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
103
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
104
-
105
- def __call__(self, x) -> mx.array:
106
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
107
-
108
-
109
- class TransformerBlock(nn.Module):
110
- def __init__(self, config: TextConfig):
111
- super().__init__()
112
- self.num_attention_heads = config.num_attention_heads
113
- self.hidden_size = config.hidden_size
114
- self.self_attn = Attention(config)
115
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
116
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
117
- self.post_attention_layernorm = nn.RMSNorm(
118
- config.hidden_size, eps=config.rms_norm_eps
119
- )
120
- self.config = config
121
-
122
- def __call__(
123
- self,
124
- x: mx.array,
125
- mask: Optional[mx.array] = None,
126
- cache: Optional[KVCache] = None,
127
- ) -> mx.array:
128
- r = self.self_attn(self.input_layernorm(x), mask, cache)
129
- h = x + r
130
- r = self.mlp(self.post_attention_layernorm(h))
131
- out = h + r
132
- return out
133
-
134
-
135
- class LanguageModel(nn.Module):
136
- def __init__(self, config: TextConfig):
137
- super().__init__()
138
- self.config = config
139
- self.model_type = config.model_type
140
- self.vocab_size = config.vocab_size
141
- self.num_hidden_layers = config.num_hidden_layers
142
- assert self.vocab_size > 0
143
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
144
- self.layers = [
145
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
146
- ]
147
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
148
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
149
-
150
- def __call__(
151
- self,
152
- inputs: mx.array,
153
- inputs_embeds: Optional[mx.array] = None,
154
- mask: Optional[mx.array] = None,
155
- cache=None,
156
- ):
157
- # for passing merged input embeddings
158
- if inputs_embeds is None:
159
- h = self.embed_tokens(inputs)
160
- else:
161
- h = inputs_embeds
162
-
163
- if cache is None:
164
- cache = [None] * len(self.layers)
165
-
166
- if mask is None:
167
- mask = create_attention_mask(h, cache)
168
-
169
- for layer, c in zip(self.layers, cache):
170
- h = layer(h, mask, c)
171
-
172
- logits = self.lm_head(self.norm(h))
173
- return LanguageModelOutput(logits=logits)
174
-
175
- def sanitize(self, weights):
176
- # Remove unused precomputed rotary freqs
177
- return {
178
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
179
- }
180
-
181
- @property
182
- def layers(self):
183
- return self.model.layers
184
-
185
- @property
186
- def head_dim(self):
187
- return self.config.hidden_size // self.config.num_attention_heads
188
-
189
- @property
190
- def n_kv_heads(self):
191
- return self.config.num_key_value_heads