nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,186 +0,0 @@
1
- import mlx.core as mx
2
- import numpy as np
3
-
4
-
5
- def gaussian_blur_axis(image, sigma, axis):
6
- """
7
- Applies a 1D Gaussian blur along the given axis.
8
- This version works for arrays with any number of dimensions.
9
- """
10
- radius = int(3 * sigma)
11
- if radius < 1:
12
- return image
13
- x = mx.arange(-radius, radius + 1)
14
- kernel = mx.exp(-(x**2) / (2 * sigma**2))
15
- kernel = kernel / mx.sum(kernel)
16
-
17
- # MLX doesn't have a direct apply_along_axis equivalent,
18
- # so we'll implement the convolution differently based on the axis
19
-
20
- # Helper function to apply 1D convolution along specific axis
21
- def conv_1d(array, kernel, axis):
22
- # Reshape kernel to broadcast along the right dimensions
23
- kernel_shape = [1] * image.ndim
24
- kernel_shape[axis] = len(kernel)
25
- kernel_reshaped = kernel.reshape(kernel_shape)
26
-
27
- # Pad the array
28
- pad_width = [(0, 0)] * image.ndim
29
- pad_width[axis] = (radius, radius)
30
- padded = mx.pad(array, pad_width, mode="edge")
31
-
32
- # Perform convolution via sliding window sum
33
- result = mx.zeros_like(array)
34
- slices = [slice(None)] * padded.ndim
35
-
36
- for i in range(2 * radius + 1):
37
- slices[axis] = slice(i, i + array.shape[axis])
38
- result = result + padded[tuple(slices)] * kernel_reshaped
39
-
40
- return result
41
-
42
- return conv_1d(image, kernel, axis)
43
-
44
-
45
- def bilinear_interpolate(image, new_height, new_width, align_corners=False):
46
- """
47
- Performs bilinear interpolation on an array whose spatial dimensions are the first two.
48
- It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
49
- """
50
- # image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
51
- H_in, W_in = image.shape[0], image.shape[1]
52
-
53
- # Compute sampling positions in the input image.
54
- if new_height == 1:
55
- row_positions = mx.array([0.0])
56
- else:
57
- if align_corners:
58
- row_positions = mx.linspace(0, H_in - 1, new_height)
59
- else:
60
- row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
61
-
62
- if new_width == 1:
63
- col_positions = mx.array([0.0])
64
- else:
65
- if align_corners:
66
- col_positions = mx.linspace(0, W_in - 1, new_width)
67
- else:
68
- col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
69
-
70
- # Compute floor and ceil indices.
71
- row_floor = mx.floor(row_positions).astype(mx.int32)
72
- col_floor = mx.floor(col_positions).astype(mx.int32)
73
- row_ceil = row_floor + 1
74
- col_ceil = col_floor + 1
75
-
76
- row_floor = mx.clip(row_floor, 0, H_in - 1)
77
- row_ceil = mx.clip(row_ceil, 0, H_in - 1)
78
- col_floor = mx.clip(col_floor, 0, W_in - 1)
79
- col_ceil = mx.clip(col_ceil, 0, W_in - 1)
80
-
81
- row_weight = row_positions - row_floor # shape (new_height,)
82
- col_weight = col_positions - col_floor # shape (new_width,)
83
-
84
- # Use advanced indexing for gather operations
85
- # Create meshgrid for coordinates
86
- row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
87
- row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
88
- row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
89
- row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
90
-
91
- # Gather the four surrounding pixels using take_along_axis
92
- # For higher dimensional arrays, we'll need to reshape and broadcast
93
- extra_dims = image.ndim - 2
94
-
95
- def gather_pixels(row_indices, col_indices):
96
- # Flatten the spatial dimensions for gathering
97
- flat_indices = row_indices * W_in + col_indices
98
- flat_image = mx.reshape(image, (-1,) + image.shape[2:])
99
- # Gather and reshape back
100
- gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
101
- return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
102
-
103
- top_left = gather_pixels(row_floor_grid, col_floor_grid)
104
- top_right = gather_pixels(row_floor_grid, col_ceil_grid)
105
- bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
106
- bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
107
-
108
- # Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
109
- r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
110
- c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
111
-
112
- # Perform bilinear interpolation.
113
- result = (
114
- (1 - r_weight) * (1 - c_weight) * top_left
115
- + (1 - r_weight) * c_weight * top_right
116
- + r_weight * (1 - c_weight) * bottom_left
117
- + r_weight * c_weight * bottom_right
118
- )
119
- return result
120
-
121
-
122
- def resize_bilinear(image, new_size, align_corners=False, antialias=True):
123
- """
124
- Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
125
- using bilinear interpolation with MLX.
126
-
127
- Supports:
128
- - 2D: (H, W)
129
- - 3D: (H, W, C)
130
- - 4D: (B, C, H, W) (assumed for typical image batches)
131
- """
132
- new_height, new_width = new_size
133
-
134
- # Convert numpy arrays to MLX arrays if needed
135
- if isinstance(image, np.ndarray):
136
- image = mx.array(image)
137
-
138
- if image.ndim == 2 or image.ndim == 3:
139
- # Assume spatial dims are the first two.
140
- resized = image
141
- H_in, W_in = image.shape[:2]
142
- if antialias:
143
- if new_height < H_in:
144
- scale_y = new_height / H_in
145
- sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
146
- if sigma_y > 0:
147
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
148
- if new_width < W_in:
149
- scale_x = new_width / W_in
150
- sigma_x = (1 / scale_x - 1) / 2.0
151
- if sigma_x > 0:
152
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
153
- resized = bilinear_interpolate(
154
- resized, new_height, new_width, align_corners=align_corners
155
- )
156
- return resized
157
-
158
- elif image.ndim == 4:
159
- # Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
160
- B, C, H_in, W_in = image.shape
161
- # Permute to bring spatial dims to the front: (H, W, B, C)
162
- image_perm = mx.transpose(image, (2, 3, 0, 1))
163
- resized = image_perm
164
- if antialias:
165
- if new_height < H_in:
166
- scale_y = new_height / H_in
167
- sigma_y = (1 / scale_y - 1) / 2.0
168
- if sigma_y > 0:
169
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
170
- if new_width < W_in:
171
- scale_x = new_width / W_in
172
- sigma_x = (1 / scale_x - 1) / 2.0
173
- if sigma_x > 0:
174
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
175
- resized = bilinear_interpolate(
176
- resized, new_height, new_width, align_corners=align_corners
177
- )
178
- # Permute back to (B, C, new_height, new_width)
179
- resized = mx.transpose(resized, (2, 3, 0, 1))
180
- return resized
181
-
182
- else:
183
- raise ValueError("Unsupported image dimensions.")
184
-
185
-
186
- #
@@ -1,233 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional, Tuple
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache, RotatingKVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 8192
20
- head_dim: int = 128
21
- num_hidden_layers: int = 40
22
- intermediate_size: int = 14336
23
- num_attention_heads: int = 64
24
- num_key_value_heads: int = 8
25
- rope_theta: float = 50000.0
26
- vocab_size: int = 256000
27
- layer_norm_eps: float = 1e-05
28
- logit_scale: float = 0.0625
29
- attention_bias: bool = False
30
- layer_norm_bias: bool = False
31
- sliding_window: int = 4096
32
- sliding_window_pattern: int = 4
33
- max_position_embeddings: int = 4096
34
-
35
- @classmethod
36
- def from_dict(cls, params):
37
- return cls(
38
- **{
39
- k: v
40
- for k, v in params.items()
41
- if k in inspect.signature(cls).parameters
42
- }
43
- )
44
-
45
-
46
- class Attention(nn.Module):
47
- def __init__(self, config: TextConfig, layer_idx: int):
48
- super().__init__()
49
- self.config = config
50
- self.layer_idx = layer_idx
51
-
52
- dim = config.hidden_size
53
- self.n_heads = n_heads = config.num_attention_heads
54
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
55
- self.head_dim = head_dim = config.head_dim
56
- if (head_dim * n_heads) != dim:
57
- raise ValueError(
58
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {dim}"
59
- f" and `num_heads`: {n_heads})."
60
- )
61
- self.scale = head_dim**-0.5
62
-
63
- attetion_bias = config.attention_bias
64
-
65
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
66
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
67
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
68
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
69
-
70
- self.rope = nn.RoPE(head_dim, traditional=True, base=config.rope_theta)
71
-
72
- self.use_sliding_window = (layer_idx + 1) % config.sliding_window_pattern != 0
73
-
74
- def __call__(
75
- self,
76
- x: mx.array,
77
- mask: Optional[mx.array] = None,
78
- cache: Optional[Tuple[mx.array, mx.array]] = None,
79
- ) -> mx.array:
80
- B, L, D = x.shape
81
-
82
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
83
-
84
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
85
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
86
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
87
-
88
- # Apply RoPE only if sliding window is enabled
89
- if self.use_sliding_window:
90
- if cache is None:
91
- queries = self.rope(queries)
92
- keys = self.rope(keys)
93
- else:
94
- queries = self.rope(queries, offset=cache.offset)
95
- keys = self.rope(keys, offset=cache.offset)
96
-
97
- if cache is not None:
98
- keys, values = cache.update_and_fetch(keys, values)
99
-
100
- if self.use_sliding_window and mask is not None and isinstance(mask, mx.array):
101
- key_len = keys.shape[-2]
102
- if mask.shape[-1] != key_len:
103
- mask = mask[..., -key_len:]
104
-
105
- output = scaled_dot_product_attention(
106
- queries, keys, values, cache, scale=self.scale, mask=mask
107
- )
108
-
109
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
110
- return self.o_proj(output)
111
-
112
-
113
- class MLP(nn.Module):
114
- def __init__(self, dim, hidden_dim):
115
- super().__init__()
116
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
117
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
118
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
119
-
120
- def __call__(self, x):
121
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
122
-
123
-
124
- class TransformerBlock(nn.Module):
125
- def __init__(self, config: TextConfig, layer_idx: int):
126
- super().__init__()
127
- self.hidden_size = config.hidden_size
128
- self.n_heads = config.num_attention_heads
129
-
130
- self.self_attn = Attention(config, layer_idx)
131
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
132
- self.input_layernorm = nn.LayerNorm(
133
- config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
134
- )
135
- self.config = config
136
-
137
- def __call__(
138
- self,
139
- x: mx.array,
140
- mask: Optional[mx.array] = None,
141
- cache: Optional[Tuple[mx.array, mx.array]] = None,
142
- ) -> mx.array:
143
- h = self.input_layernorm(x)
144
- attn_h = self.self_attn(h, mask, cache)
145
- ff_h = self.mlp(h)
146
- return attn_h + ff_h + x
147
-
148
-
149
- class CohereModel(nn.Module):
150
- def __init__(self, config: TextConfig):
151
- super().__init__()
152
- self.config = config
153
- self.vocab_size = config.vocab_size
154
- self.num_hidden_layers = config.num_hidden_layers
155
- assert self.vocab_size > 0
156
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
157
- self.layers = [
158
- TransformerBlock(config, layer_idx=i)
159
- for i in range(config.num_hidden_layers)
160
- ]
161
- self.norm = nn.LayerNorm(
162
- config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
163
- )
164
-
165
- def __call__(
166
- self,
167
- inputs: mx.array,
168
- inputs_embeds: mx.array = None,
169
- mask: mx.array = None,
170
- cache=None,
171
- ):
172
- if inputs_embeds is None:
173
- h = self.embed_tokens(inputs)
174
- else:
175
- h = inputs_embeds
176
-
177
- if cache is None:
178
- cache = [None] * len(self.layers)
179
-
180
- if mask is None:
181
- j = self.config.sliding_window_pattern
182
- mask = create_attention_mask(h, cache[j - 1 : j])
183
-
184
- for layer, c in zip(self.layers, cache):
185
- h = layer(h, mask, c)
186
-
187
- return self.norm(h)
188
-
189
-
190
- class LanguageModel(nn.Module):
191
- def __init__(self, config: TextConfig):
192
- super().__init__()
193
- self.model_type = config.model_type
194
- self.model = CohereModel(config)
195
- self.config = config
196
-
197
- def __call__(
198
- self,
199
- inputs: mx.array,
200
- inputs_embeds: mx.array = None,
201
- mask: mx.array = None,
202
- cache=None,
203
- ):
204
- out = self.model(inputs, inputs_embeds, mask, cache)
205
- out = self.model.embed_tokens.as_linear(out)
206
- out = out * self.model.config.logit_scale
207
- return LanguageModelOutput(logits=out)
208
-
209
- def make_cache(self):
210
- caches = []
211
- for i in range(self.config.num_hidden_layers):
212
- if (
213
- i % self.config.sliding_window_pattern
214
- == self.config.sliding_window_pattern - 1
215
- ):
216
- caches.append(KVCache())
217
- else:
218
- caches.append(
219
- RotatingKVCache(max_size=self.config.sliding_window, keep=0)
220
- )
221
- return caches
222
-
223
- @property
224
- def layers(self):
225
- return self.model.layers
226
-
227
- @property
228
- def head_dim(self):
229
- return self.model.config.head_dim
230
-
231
- @property
232
- def n_kv_heads(self):
233
- return self.model.config.num_key_value_heads