nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,233 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- hidden_size: int
14
- num_attention_heads: int
15
- patch_size: int
16
- num_hidden_layers: int = 12
17
- intermediate_size: int = 3072
18
- image_size: int = 224
19
- num_channels: int = 3
20
- layer_norm_eps: float = 1e-6
21
-
22
- @classmethod
23
- def from_dict(cls, params):
24
- return cls(
25
- **{
26
- k: v
27
- for k, v in params.items()
28
- if k in inspect.signature(cls).parameters
29
- }
30
- )
31
-
32
-
33
- def check_array_shape(arr):
34
- shape = arr.shape
35
-
36
- # Check if the shape has 4 dimensions
37
- if len(shape) != 4:
38
- return False
39
-
40
- out_channels, kH, KW, _ = shape
41
-
42
- # Check if out_channels is the largest, and kH and KW are the same
43
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
44
- return True
45
- else:
46
- return False
47
-
48
-
49
- class Attention(nn.Module):
50
- def __init__(
51
- self,
52
- dims: int,
53
- num_heads: int,
54
- query_input_dims: Optional[int] = None,
55
- key_input_dims: Optional[int] = None,
56
- value_input_dims: Optional[int] = None,
57
- value_dims: Optional[int] = None,
58
- value_output_dims: Optional[int] = None,
59
- bias: bool = True,
60
- ):
61
- super().__init__()
62
-
63
- if (dims % num_heads) != 0:
64
- raise ValueError(
65
- "The input feature dimensions should be divisible by the "
66
- f"number of heads ({dims} % {num_heads}) != 0"
67
- )
68
-
69
- query_input_dims = query_input_dims or dims
70
- key_input_dims = key_input_dims or dims
71
- value_input_dims = value_input_dims or key_input_dims
72
- value_dims = value_dims or dims
73
- value_output_dims = value_output_dims or dims
74
-
75
- self.num_heads = num_heads
76
- head_dim = dims // num_heads
77
- self.scale = head_dim**-0.5
78
-
79
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
80
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
81
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
82
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
83
-
84
- def __call__(self, x, mask=None):
85
- queries = self.q_proj(x)
86
- keys = self.k_proj(x)
87
- values = self.v_proj(x)
88
-
89
- num_heads = self.num_heads
90
- B, L, D = queries.shape
91
- _, S, _ = keys.shape
92
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
93
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
94
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
-
96
- output = mx.fast.scaled_dot_product_attention(
97
- queries, keys, values, scale=self.scale, mask=mask
98
- )
99
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
100
- return self.out_proj(output)
101
-
102
-
103
- class MLP(nn.Module):
104
- def __init__(self, config: VisionConfig):
105
- super().__init__()
106
- self.activation_fn = nn.GELU(approx="precise")
107
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
108
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
109
-
110
- def __call__(self, x: mx.array) -> mx.array:
111
- x = self.fc1(x)
112
- x = self.activation_fn(x)
113
- x = self.fc2(x)
114
- return x
115
-
116
-
117
- class EncoderLayer(nn.Module):
118
- def __init__(self, config: VisionConfig):
119
- super().__init__()
120
- self.embed_dim = config.hidden_size
121
- self.self_attn = Attention(
122
- config.hidden_size, config.num_attention_heads, bias=True
123
- )
124
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
125
- self.mlp = MLP(config)
126
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
127
-
128
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
129
- r = self.self_attn(self.layer_norm1(x), mask)
130
- h = x + r
131
- r = self.mlp(self.layer_norm2(h))
132
- return h + r
133
-
134
-
135
- class Encoder(nn.Module):
136
- def __init__(self, config: VisionConfig):
137
- super().__init__()
138
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
139
-
140
- def __call__(
141
- self,
142
- x: mx.array,
143
- output_hidden_states: Optional[bool] = None,
144
- mask: Optional[mx.array] = None,
145
- ) -> mx.array:
146
- encoder_states = (x,) if output_hidden_states else None
147
- h = x
148
- for l in self.layers:
149
- x = l(x, mask=mask)
150
- if output_hidden_states:
151
- encoder_states = encoder_states + (x,)
152
-
153
- h = x
154
-
155
- return (h, encoder_states)
156
-
157
-
158
- class VisionEmbeddings(nn.Module):
159
- def __init__(self, config: VisionConfig):
160
- super().__init__()
161
- self.config = config
162
- self.embed_dim = config.hidden_size
163
- self.image_size = config.image_size
164
- self.patch_size = config.patch_size
165
-
166
- self.patch_embedding = nn.Conv2d(
167
- in_channels=config.num_channels,
168
- out_channels=self.embed_dim,
169
- kernel_size=self.patch_size,
170
- stride=self.patch_size,
171
- )
172
-
173
- self.num_patches = (self.image_size // self.patch_size) ** 2
174
- self.num_positions = self.num_patches
175
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
176
-
177
- def __call__(self, x: mx.array) -> mx.array:
178
- patch_embeddings = self.patch_embedding(x)
179
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
180
- position_ids = mx.array(mx.arange(self.num_positions)[None, :])
181
- embeddings = patch_embeddings
182
- embeddings += self.position_embedding(position_ids)
183
- return embeddings
184
-
185
-
186
- class VisionModel(nn.Module):
187
- def __init__(self, config: VisionConfig):
188
- super().__init__()
189
- self.model_type = config.model_type
190
- if self.model_type not in [
191
- "siglip_vision_model",
192
- "idefics3",
193
- "idefics3_vision",
194
- "smolvlm_vision",
195
- ]:
196
- raise ValueError(f"Unsupported model type: {self.model_type}")
197
-
198
- self.embeddings = VisionEmbeddings(config)
199
- self.encoder = Encoder(config)
200
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
201
-
202
- def __call__(
203
- self,
204
- x: mx.array,
205
- output_hidden_states: Optional[bool] = None,
206
- ) -> mx.array:
207
- x = self.embeddings(x)
208
- x = x.astype(self.embeddings.patch_embedding.weight.dtype)
209
- encoder_outputs = self.encoder(
210
- x=x, output_hidden_states=output_hidden_states, mask=None
211
- )
212
- pooler_output = self.post_layernorm(encoder_outputs[0])
213
- return pooler_output, x, encoder_outputs[-1]
214
-
215
- def sanitize(self, weights):
216
- sanitized_weights = {}
217
- for k, v in weights.items():
218
- if "position_ids" in k:
219
- # Remove unused position_ids
220
- continue
221
- elif "patch_embedding.weight" in k:
222
- # PyTorch conv2d weight tensors have shape:
223
- # [out_channels, in_channels, kH, KW]
224
- # MLX conv2d expects the weight be of shape:
225
- # [out_channels, kH, KW, in_channels]
226
- if check_array_shape(v):
227
- sanitized_weights[k] = v
228
- else:
229
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
230
- else:
231
- sanitized_weights[k] = v
232
-
233
- return sanitized_weights
@@ -1,9 +0,0 @@
1
- from .internvl_chat import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
9
- from .processor import InternVLChatProcessor, InternVLImageProcessor
@@ -1,140 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from ..base import pixel_shuffle
14
- from .language import LanguageModel, TextConfig
15
- from .vision import VisionConfig, VisionModel
16
-
17
-
18
- @dataclass
19
- class ModelConfig:
20
- text_config: TextConfig
21
- vision_config: VisionConfig
22
- model_type: str
23
- ignore_index: int = -100
24
- image_token_index: int = 151667
25
- video_token_index: int = 151656
26
- vision_feature_select_strategy: str = "default"
27
- vision_feature_layer: int = -1
28
- vocab_size: int = 32000
29
- downsample_ratio: float = 0.5
30
- eos_token_id: Optional[List[int]] = None
31
-
32
- @classmethod
33
- def from_dict(cls, params):
34
- return cls(
35
- **{
36
- k: v
37
- for k, v in params.items()
38
- if k in inspect.signature(cls).parameters
39
- }
40
- )
41
-
42
-
43
- class Model(nn.Module):
44
- def __init__(self, config: ModelConfig):
45
- super().__init__()
46
- self.config = config
47
- self.vision_model = VisionModel(config.vision_config)
48
- self.language_model = LanguageModel(config.text_config)
49
-
50
- self.downsample_ratio = config.downsample_ratio
51
-
52
- vit_hidden_size = self.config.vision_config.hidden_size
53
- llm_hidden_size = self.config.text_config.hidden_size
54
-
55
- self.mlp1 = [
56
- nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
57
- nn.Linear(
58
- vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size
59
- ),
60
- nn.GELU(),
61
- nn.Linear(llm_hidden_size, llm_hidden_size),
62
- ]
63
-
64
- def get_input_embeddings(
65
- self,
66
- input_ids: Optional[mx.array] = None,
67
- pixel_values: Optional[mx.array] = None,
68
- ):
69
-
70
- if pixel_values is None:
71
- return self.language_model.model.embed_tokens(input_ids)
72
-
73
- dtype = self.vision_model.embeddings.patch_embedding.weight.dtype
74
- pixel_values = pixel_values.astype(dtype)
75
-
76
- # TODO: Remove this after transformers implementation is merged
77
- if pixel_values.ndim == 5:
78
- pixel_values = pixel_values[0]
79
-
80
- # Get the input embeddings from the language model
81
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
82
-
83
- # Get the ouptut hidden states from the vision model
84
- hidden_states, _, _ = self.vision_model(
85
- pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
86
- )
87
-
88
- # Extract vision embeddings, removing the class token (first token)
89
- hidden_states = hidden_states[:, 1:, :]
90
-
91
- # Apply pixel shuffle with downsampling
92
- hidden_states = pixel_shuffle(
93
- hidden_states, shuffle_ratio=self.downsample_ratio
94
- )
95
-
96
- # Apply MLP transformation
97
- for layer in self.mlp1:
98
- hidden_states = layer(hidden_states)
99
-
100
- # Insert special image tokens in the input_ids
101
- final_inputs_embeds = self._merge_input_ids_with_image_features(
102
- hidden_states, inputs_embeds, input_ids
103
- )
104
- return final_inputs_embeds
105
-
106
- def _merge_input_ids_with_image_features(
107
- self, image_features, inputs_embeds, input_ids
108
- ):
109
- B, N, C = inputs_embeds.shape
110
- image_token_index = self.config.image_token_index
111
- video_token_index = self.config.video_token_index
112
-
113
- # Positions of <image> tokens in input_ids, assuming batch size is 1
114
- image_positions = input_ids == image_token_index
115
- if mx.sum(image_positions) == 0:
116
- image_positions = input_ids == video_token_index
117
-
118
- image_indices = np.where(image_positions)[1].tolist()
119
-
120
- image_features = image_features.reshape(-1, image_features.shape[-1])
121
-
122
- inputs_embeds[:, image_indices, :] = image_features
123
-
124
- return inputs_embeds.reshape(B, N, C)
125
-
126
- @property
127
- def layers(self):
128
- return self.language_model.model.layers
129
-
130
- def __call__(
131
- self,
132
- input_ids: mx.array,
133
- pixel_values: mx.array,
134
- mask: mx.array,
135
- cache=None,
136
- **kwargs,
137
- ):
138
- input_embddings = self.get_input_embeddings(input_ids, pixel_values)
139
- logits = self.language_model(None, cache=cache, inputs_embeds=input_embddings)
140
- return logits
@@ -1,220 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int
20
- num_hidden_layers: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- rms_norm_eps: float
24
- vocab_size: int
25
- max_window_layers: int
26
- hidden_act: str
27
- num_key_value_heads: Optional[int] = 8
28
- max_position_embeddings: Optional[int] = 40960
29
- rope_theta: float = 1000000.0
30
- rope_traditional: bool = False
31
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
32
- tie_word_embeddings: bool = False
33
- sliding_window: int = 32768
34
- use_sliding_window: bool = False
35
- use_cache: bool = True
36
-
37
- def __post_init__(self):
38
- if self.num_key_value_heads is None:
39
- self.num_key_value_heads = self.num_attention_heads
40
-
41
- @classmethod
42
- def from_dict(cls, params):
43
- return cls(
44
- **{
45
- k: v
46
- for k, v in params.items()
47
- if k in inspect.signature(cls).parameters
48
- }
49
- )
50
-
51
-
52
- class Attention(nn.Module):
53
- def __init__(self, args: TextConfig):
54
- super().__init__()
55
-
56
- dim = args.hidden_size
57
- self.n_heads = n_heads = args.num_attention_heads
58
- assert args.num_key_value_heads is not None
59
- self.n_kv_heads = n_kv_heads = args.num_key_value_heads
60
-
61
- self.head_dim = head_dim = args.hidden_size // n_heads
62
- self.scale = head_dim**-0.5
63
-
64
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
65
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
66
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
67
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
68
-
69
- self.rotary_emb = nn.RoPE(
70
- head_dim,
71
- base=args.rope_theta,
72
- traditional=args.rope_traditional,
73
- )
74
-
75
- def __call__(
76
- self,
77
- x: mx.array,
78
- mask: Optional[mx.array] = None,
79
- cache: Optional[KVCache] = None,
80
- ) -> mx.array:
81
- B, L, D = x.shape
82
-
83
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
84
-
85
- # Prepare the queries, keys and values for the attention computation
86
- queries = queries.reshape(B, L, self.n_heads, self.head_dim).transpose(
87
- 0, 2, 1, 3
88
- )
89
- keys = keys.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
90
- values = values.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(
91
- 0, 2, 1, 3
92
- )
93
-
94
- offset = cache.offset if cache else 0
95
-
96
- if mask is not None and isinstance(mask, mx.array):
97
- mask = mask[..., : keys.shape[-2]]
98
-
99
- queries = self.rotary_emb(queries, offset=offset)
100
- keys = self.rotary_emb(keys, offset=offset)
101
-
102
- if cache is not None:
103
- keys, values = cache.update_and_fetch(keys, values)
104
-
105
- output = scaled_dot_product_attention(
106
- queries, keys, values, cache, scale=self.scale, mask=mask
107
- )
108
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
109
- return self.o_proj(output)
110
-
111
-
112
- class MLP(nn.Module):
113
- def __init__(self, dim, hidden_dim):
114
- super().__init__()
115
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
116
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
117
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
118
-
119
- def __call__(self, x) -> mx.array:
120
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
121
-
122
-
123
- class Qwen2VLDecoderLayer(nn.Module):
124
- def __init__(self, args: TextConfig):
125
- super().__init__()
126
- self.num_attention_heads = args.num_attention_heads
127
- self.hidden_size = args.hidden_size
128
- self.self_attn = Attention(args)
129
- self.mlp = MLP(args.hidden_size, args.intermediate_size)
130
- self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
131
- self.post_attention_layernorm = nn.RMSNorm(
132
- args.hidden_size, eps=args.rms_norm_eps
133
- )
134
- self.args = args
135
-
136
- def __call__(
137
- self,
138
- x: mx.array,
139
- mask: Optional[mx.array] = None,
140
- cache: Optional[KVCache] = None,
141
- ) -> mx.array:
142
- r = self.self_attn(self.input_layernorm(x), mask, cache)
143
- h = x + r
144
- r = self.mlp(self.post_attention_layernorm(h))
145
- out = h + r
146
- return out
147
-
148
-
149
- class Qwen2Model(nn.Module):
150
- def __init__(self, args: TextConfig):
151
- super().__init__()
152
- self.args = args
153
- self.vocab_size = args.vocab_size
154
- self.num_hidden_layers = args.num_hidden_layers
155
- assert self.vocab_size > 0
156
- self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
157
- self.layers = [
158
- Qwen2VLDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
159
- ]
160
- self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
161
-
162
- def __call__(
163
- self,
164
- inputs: mx.array,
165
- inputs_embeds: Optional[mx.array] = None,
166
- mask: Optional[mx.array] = None,
167
- cache=None,
168
- ):
169
- if inputs_embeds is None:
170
- h = self.embed_tokens(inputs)
171
- else:
172
- h = inputs_embeds
173
-
174
- if cache is None:
175
- cache = [None] * len(self.layers)
176
-
177
- if mask is None:
178
- mask = create_attention_mask(h, cache)
179
-
180
- for layer, c in zip(self.layers, cache):
181
- h = layer(h, mask, c)
182
-
183
- return self.norm(h)
184
-
185
-
186
- class LanguageModel(nn.Module):
187
- def __init__(self, args: TextConfig):
188
- super().__init__()
189
- self.args = args
190
- self.model_type = args.model_type
191
- self.model = Qwen2Model(args)
192
-
193
- if not args.tie_word_embeddings:
194
- self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
195
-
196
- def __call__(
197
- self,
198
- inputs: mx.array,
199
- inputs_embeds: Optional[mx.array] = None,
200
- mask: Optional[mx.array] = None,
201
- cache=None,
202
- ):
203
- out = self.model(inputs, cache=cache, inputs_embeds=inputs_embeds)
204
- if self.args.tie_word_embeddings:
205
- out = self.model.embed_tokens.as_linear(out)
206
- else:
207
- out = self.lm_head(out)
208
- return LanguageModelOutput(logits=out)
209
-
210
- @property
211
- def layers(self):
212
- return self.model.layers
213
-
214
- @property
215
- def head_dim(self):
216
- return self.args.hidden_size // self.args.num_attention_heads
217
-
218
- @property
219
- def n_kv_heads(self):
220
- return self.args.num_key_value_heads