nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,243 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Any, Dict, List, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str = "molmo"
19
- max_position_embeddings: int = 4096
20
- d_model: int = 3584
21
- n_heads: int = 28
22
- n_kv_heads: int = 4
23
- n_layers: int = 28
24
- mlp_ratio: int = 4
25
- max_sequence_length: int = 1024
26
- act_output_multiplier: int = 0.5
27
- mlp_hidden_size: int = 37888
28
- vocab_size: int = 152064
29
- embedding_size: Optional[int] = 152064
30
- additional_vocab_size: Optional[int] = None
31
- attention_dropout: float = 0.1
32
- residual_dropout: float = 0.1
33
- embedding_dropout: float = 0.1
34
- layer_norm_eps: float = 1e-5
35
- initializer_range: float = 0.02
36
- pad_token_id: int = -1
37
- rope: bool = True
38
- rope_theta: float = 1000000.0
39
- weight_tying: bool = False
40
- rope_full_precision: bool = True
41
- rope_impl: str = "interleave"
42
- additional_vocab_size: Optional[int] = 128
43
-
44
- @classmethod
45
- def from_dict(cls, params):
46
- return cls(
47
- **{
48
- k: v
49
- for k, v in params.items()
50
- if k in inspect.signature(cls).parameters
51
- }
52
- )
53
-
54
-
55
- class SwiGLU(nn.Module):
56
- def __call__(self, x: mx.array) -> mx.array:
57
- x, gate = mx.split(x, 2, axis=-1)
58
- return nn.silu(gate) * x
59
-
60
-
61
- class MolmoBlock(nn.Module):
62
- def __init__(self, config: TextConfig):
63
- super().__init__()
64
- self.attn_out = nn.Linear(config.d_model, config.d_model, bias=False)
65
- self.ff_out = nn.Linear(
66
- int(config.act_output_multiplier * config.mlp_hidden_size),
67
- config.d_model,
68
- bias=False,
69
- )
70
- self.attn_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
71
- self.ff_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
72
- self.ff_proj = nn.Linear(config.d_model, config.mlp_hidden_size, bias=False)
73
- head_dim = config.d_model // config.n_heads
74
- self.rotary_emb = nn.RoPE(head_dim, base=config.rope_theta)
75
- self.scale = head_dim**-0.5
76
- self.n_heads = config.n_heads
77
- self.n_kv_heads = config.n_kv_heads
78
- self.fused_dims = (
79
- config.d_model,
80
- config.n_kv_heads * head_dim,
81
- config.n_kv_heads * head_dim,
82
- )
83
- self.att_proj = nn.Linear(config.d_model, sum(self.fused_dims), bias=True)
84
- self.act = SwiGLU()
85
-
86
- def __call__(self, x, mask=None, cache=None):
87
- batch_size, seq_len, D = x.shape
88
- attn_in = self.attn_norm(x)
89
-
90
- qkv = self.att_proj(attn_in)
91
-
92
- q, k, v = mx.split(
93
- qkv, [self.fused_dims[0], self.fused_dims[0] + self.fused_dims[1]], axis=-1
94
- )
95
-
96
- q = q.reshape(batch_size, seq_len, self.n_heads, D // self.n_heads).transpose(
97
- 0, 2, 1, 3
98
- )
99
- k = k.reshape(
100
- batch_size, seq_len, self.n_kv_heads, D // self.n_heads
101
- ).transpose(0, 2, 1, 3)
102
- v = v.reshape(
103
- batch_size, seq_len, self.n_kv_heads, D // self.n_heads
104
- ).transpose(0, 2, 1, 3)
105
-
106
- if cache is not None:
107
- q = self.rotary_emb(q, offset=cache.offset)
108
- k = self.rotary_emb(k, offset=cache.offset)
109
- k, v = cache.update_and_fetch(k, v)
110
- else:
111
- q = self.rotary_emb(q)
112
- k = self.rotary_emb(k)
113
-
114
- # Perform attention
115
- att = scaled_dot_product_attention(q, k, v, cache, scale=self.scale, mask=mask)
116
- att = att.transpose(0, 2, 1, 3).reshape(batch_size, seq_len, D)
117
- att = self.attn_out(att)
118
-
119
- # Add attention scores
120
- # shape: (batch_size, seq_len, d_model)
121
- x = x + att
122
-
123
- # Feed-forward layer
124
- og_x = x
125
- x = self.ff_norm(x)
126
- x = self.ff_proj(x)
127
- x = self.act(x)
128
- x = self.ff_out(x)
129
- x = og_x + x
130
-
131
- return x
132
-
133
-
134
- class Embedding(nn.Module):
135
- def __init__(
136
- self,
137
- num_embeddings: int,
138
- num_new_embeddings: int,
139
- features: int,
140
- initializer_range: float = 0.02,
141
- new_embed_initializer_range: float = 0.02,
142
- ):
143
- super().__init__()
144
- self.initializer_range = initializer_range
145
- self.new_embed_initializer_range = new_embed_initializer_range
146
-
147
- # Initialize embeddings
148
- self.embedding = mx.random.normal(
149
- (num_embeddings, features), scale=self.initializer_range
150
- )
151
- self.new_embedding = mx.random.normal(
152
- (num_new_embeddings, features), scale=self.new_embed_initializer_range
153
- )
154
-
155
- def __call__(self, x: mx.array) -> mx.array:
156
- return mx.concat([self.embedding, self.new_embedding], axis=0)[x]
157
-
158
-
159
- class Molmo(nn.Module):
160
- def __init__(self, config: TextConfig):
161
- super().__init__()
162
- self.config = config
163
-
164
- self.wte = Embedding(
165
- config.embedding_size, config.additional_vocab_size, config.d_model
166
- )
167
-
168
- self.blocks = [MolmoBlock(config) for _ in range(config.n_layers)]
169
-
170
- self.ln_f = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
171
-
172
- if not config.weight_tying:
173
- self.ff_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
174
-
175
- def __call__(
176
- self,
177
- input_ids: mx.array,
178
- inputs_embeds: Optional[mx.array] = None,
179
- mask: Optional[mx.array] = None,
180
- cache: Optional[KVCache] = None,
181
- ) -> LanguageModelOutput:
182
-
183
- if inputs_embeds is None:
184
- h = self.wte(input_ids)
185
- else:
186
- h = inputs_embeds
187
-
188
- if cache is None:
189
- cache = [None] * self.config.n_layers
190
-
191
- if mask is None:
192
- mask = create_attention_mask(h, cache)
193
-
194
- for block, c in zip(self.blocks, cache):
195
- h = block(h, mask, c)
196
-
197
- h = self.ln_f(h)
198
-
199
- if self.config.weight_tying:
200
- logits = mx.matmul(h, self.wte.weight.T)
201
- else:
202
- logits = self.ff_out(h)
203
-
204
- return LanguageModelOutput(logits=logits)
205
-
206
-
207
- class LanguageModel(nn.Module):
208
- def __init__(self, config: TextConfig):
209
- super().__init__()
210
- self.config = config
211
- self.model_type = config.model_type
212
- if self.model_type != "molmo":
213
- raise ValueError(
214
- f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
215
- )
216
- self.model = Molmo(config)
217
-
218
- def __call__(
219
- self,
220
- input_ids: mx.array,
221
- inputs_embeds: Optional[mx.array] = None,
222
- mask: Optional[mx.array] = None,
223
- cache: Optional[KVCache] = None,
224
- ) -> LanguageModelOutput:
225
- outputs = self.model(input_ids, inputs_embeds, mask, cache)
226
- return outputs
227
-
228
- @staticmethod
229
- def sanitize(weights):
230
- # Remove unused precomputed rotary freqs
231
- return {k: v for k, v in weights.items() if "rotary_emb.inv_freq" not in k}
232
-
233
- @property
234
- def layers(self):
235
- return self.model.blocks
236
-
237
- @property
238
- def head_dim(self):
239
- return self.config.d_model // self.config.n_heads
240
-
241
- @property
242
- def n_kv_heads(self):
243
- return self.config.n_kv_heads
@@ -1,133 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass, field
5
- from pathlib import Path
6
- from typing import Dict, List, Optional, Tuple, Union
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig = field(default_factory=TextConfig)
20
- vision_config: VisionConfig = field(default_factory=VisionConfig)
21
- model_type: str = "molmo"
22
- image_feature_dropout: float = 0.0
23
- image_pooling_h: int = 2
24
- image_pooling_w: int = 2
25
- image_pooling_2d: str = "attention"
26
- image_projector: str = "mlp"
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class Model(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.config = config
44
- self.language_model = LanguageModel(config.text_config)
45
- self.vision_tower = VisionModel(config.vision_config)
46
-
47
- @property
48
- def layers(self):
49
- return self.language_model.model.layers
50
-
51
- def __call__(
52
- self,
53
- input_ids: mx.array,
54
- pixel_values: mx.array,
55
- mask: mx.array,
56
- cache=None,
57
- **kwargs,
58
- ) -> Dict[str, Union[mx.array, List[Tuple[mx.array, mx.array]]]]:
59
- if input_ids.ndim == 1:
60
- input_ids = input_ids[None, :]
61
-
62
- batch_size, seq_len = input_ids.shape
63
-
64
- image_input_idx = kwargs.get("image_input_idx", None)
65
- image_masks = kwargs.get("image_masks", None)
66
-
67
- if pixel_values is not None:
68
- assert (
69
- image_masks is not None and image_input_idx is not None
70
- ), "image_masks and image_input_idx must be provided when images are given"
71
-
72
- dtype = self.vision_tower.image_vit.patch_embedding.weight.dtype
73
- pixel_values = pixel_values.astype(dtype)
74
-
75
- # Process images
76
- if pixel_values.ndim == 3:
77
- pixel_values = mx.expand_dims(pixel_values, 0)
78
- image_masks = (
79
- mx.expand_dims(image_masks, 0) if image_masks is not None else None
80
- )
81
- image_input_idx = (
82
- mx.expand_dims(image_input_idx, 0)
83
- if image_input_idx is not None
84
- else None
85
- )
86
-
87
- image_features, cls_embed = self.vision_tower(pixel_values, image_masks)
88
-
89
- # Insert image features into the input embeddings
90
- num_image, num_patch = image_features.shape[1:3]
91
-
92
- assert image_input_idx.shape == (
93
- batch_size,
94
- num_image,
95
- num_patch,
96
- ), f"image_input_idx.shape: {image_input_idx.shape}, expected: {(batch_size, num_image, num_patch)}"
97
-
98
- # Insert image features into the input embeddings
99
- image_features = image_features.reshape(
100
- batch_size, num_image * num_patch, -1
101
- )
102
- image_input_idx = image_input_idx.reshape(batch_size, num_image * num_patch)
103
-
104
- valid = np.where(image_input_idx >= 0)[0].tolist()
105
- batch_idx = mx.arange(batch_size)
106
- batch_idx = mx.tile(batch_idx[:, None], [1, image_features.shape[1]])
107
-
108
- input_embeddings = self.language_model.model.wte(input_ids)
109
- input_embeddings[
110
- batch_idx[valid], image_input_idx[valid]
111
- ] += image_features[valid]
112
- else:
113
- input_embeddings = None
114
-
115
- # Forward pass through the language model
116
- logits = self.language_model(
117
- input_ids,
118
- inputs_embeds=input_embeddings,
119
- mask=mask,
120
- cache=cache,
121
- )
122
-
123
- return logits
124
-
125
- def sanitize(self, weights):
126
- def transform_key(key):
127
- if "model.transformer" in key:
128
- key = key.replace("model.transformer", "language_model.model")
129
- if "model.vision_backbone" in key:
130
- key = key.replace("model.vision_backbone", "vision_tower")
131
- return key
132
-
133
- return {transform_key(k): v for k, v in weights.items()}