nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,243 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
|
|
8
|
-
from ..base import (
|
|
9
|
-
LanguageModelOutput,
|
|
10
|
-
create_attention_mask,
|
|
11
|
-
scaled_dot_product_attention,
|
|
12
|
-
)
|
|
13
|
-
from ..cache import KVCache
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
@dataclass
|
|
17
|
-
class TextConfig:
|
|
18
|
-
model_type: str = "molmo"
|
|
19
|
-
max_position_embeddings: int = 4096
|
|
20
|
-
d_model: int = 3584
|
|
21
|
-
n_heads: int = 28
|
|
22
|
-
n_kv_heads: int = 4
|
|
23
|
-
n_layers: int = 28
|
|
24
|
-
mlp_ratio: int = 4
|
|
25
|
-
max_sequence_length: int = 1024
|
|
26
|
-
act_output_multiplier: int = 0.5
|
|
27
|
-
mlp_hidden_size: int = 37888
|
|
28
|
-
vocab_size: int = 152064
|
|
29
|
-
embedding_size: Optional[int] = 152064
|
|
30
|
-
additional_vocab_size: Optional[int] = None
|
|
31
|
-
attention_dropout: float = 0.1
|
|
32
|
-
residual_dropout: float = 0.1
|
|
33
|
-
embedding_dropout: float = 0.1
|
|
34
|
-
layer_norm_eps: float = 1e-5
|
|
35
|
-
initializer_range: float = 0.02
|
|
36
|
-
pad_token_id: int = -1
|
|
37
|
-
rope: bool = True
|
|
38
|
-
rope_theta: float = 1000000.0
|
|
39
|
-
weight_tying: bool = False
|
|
40
|
-
rope_full_precision: bool = True
|
|
41
|
-
rope_impl: str = "interleave"
|
|
42
|
-
additional_vocab_size: Optional[int] = 128
|
|
43
|
-
|
|
44
|
-
@classmethod
|
|
45
|
-
def from_dict(cls, params):
|
|
46
|
-
return cls(
|
|
47
|
-
**{
|
|
48
|
-
k: v
|
|
49
|
-
for k, v in params.items()
|
|
50
|
-
if k in inspect.signature(cls).parameters
|
|
51
|
-
}
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
class SwiGLU(nn.Module):
|
|
56
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
57
|
-
x, gate = mx.split(x, 2, axis=-1)
|
|
58
|
-
return nn.silu(gate) * x
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
class MolmoBlock(nn.Module):
|
|
62
|
-
def __init__(self, config: TextConfig):
|
|
63
|
-
super().__init__()
|
|
64
|
-
self.attn_out = nn.Linear(config.d_model, config.d_model, bias=False)
|
|
65
|
-
self.ff_out = nn.Linear(
|
|
66
|
-
int(config.act_output_multiplier * config.mlp_hidden_size),
|
|
67
|
-
config.d_model,
|
|
68
|
-
bias=False,
|
|
69
|
-
)
|
|
70
|
-
self.attn_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
|
|
71
|
-
self.ff_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
|
|
72
|
-
self.ff_proj = nn.Linear(config.d_model, config.mlp_hidden_size, bias=False)
|
|
73
|
-
head_dim = config.d_model // config.n_heads
|
|
74
|
-
self.rotary_emb = nn.RoPE(head_dim, base=config.rope_theta)
|
|
75
|
-
self.scale = head_dim**-0.5
|
|
76
|
-
self.n_heads = config.n_heads
|
|
77
|
-
self.n_kv_heads = config.n_kv_heads
|
|
78
|
-
self.fused_dims = (
|
|
79
|
-
config.d_model,
|
|
80
|
-
config.n_kv_heads * head_dim,
|
|
81
|
-
config.n_kv_heads * head_dim,
|
|
82
|
-
)
|
|
83
|
-
self.att_proj = nn.Linear(config.d_model, sum(self.fused_dims), bias=True)
|
|
84
|
-
self.act = SwiGLU()
|
|
85
|
-
|
|
86
|
-
def __call__(self, x, mask=None, cache=None):
|
|
87
|
-
batch_size, seq_len, D = x.shape
|
|
88
|
-
attn_in = self.attn_norm(x)
|
|
89
|
-
|
|
90
|
-
qkv = self.att_proj(attn_in)
|
|
91
|
-
|
|
92
|
-
q, k, v = mx.split(
|
|
93
|
-
qkv, [self.fused_dims[0], self.fused_dims[0] + self.fused_dims[1]], axis=-1
|
|
94
|
-
)
|
|
95
|
-
|
|
96
|
-
q = q.reshape(batch_size, seq_len, self.n_heads, D // self.n_heads).transpose(
|
|
97
|
-
0, 2, 1, 3
|
|
98
|
-
)
|
|
99
|
-
k = k.reshape(
|
|
100
|
-
batch_size, seq_len, self.n_kv_heads, D // self.n_heads
|
|
101
|
-
).transpose(0, 2, 1, 3)
|
|
102
|
-
v = v.reshape(
|
|
103
|
-
batch_size, seq_len, self.n_kv_heads, D // self.n_heads
|
|
104
|
-
).transpose(0, 2, 1, 3)
|
|
105
|
-
|
|
106
|
-
if cache is not None:
|
|
107
|
-
q = self.rotary_emb(q, offset=cache.offset)
|
|
108
|
-
k = self.rotary_emb(k, offset=cache.offset)
|
|
109
|
-
k, v = cache.update_and_fetch(k, v)
|
|
110
|
-
else:
|
|
111
|
-
q = self.rotary_emb(q)
|
|
112
|
-
k = self.rotary_emb(k)
|
|
113
|
-
|
|
114
|
-
# Perform attention
|
|
115
|
-
att = scaled_dot_product_attention(q, k, v, cache, scale=self.scale, mask=mask)
|
|
116
|
-
att = att.transpose(0, 2, 1, 3).reshape(batch_size, seq_len, D)
|
|
117
|
-
att = self.attn_out(att)
|
|
118
|
-
|
|
119
|
-
# Add attention scores
|
|
120
|
-
# shape: (batch_size, seq_len, d_model)
|
|
121
|
-
x = x + att
|
|
122
|
-
|
|
123
|
-
# Feed-forward layer
|
|
124
|
-
og_x = x
|
|
125
|
-
x = self.ff_norm(x)
|
|
126
|
-
x = self.ff_proj(x)
|
|
127
|
-
x = self.act(x)
|
|
128
|
-
x = self.ff_out(x)
|
|
129
|
-
x = og_x + x
|
|
130
|
-
|
|
131
|
-
return x
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
class Embedding(nn.Module):
|
|
135
|
-
def __init__(
|
|
136
|
-
self,
|
|
137
|
-
num_embeddings: int,
|
|
138
|
-
num_new_embeddings: int,
|
|
139
|
-
features: int,
|
|
140
|
-
initializer_range: float = 0.02,
|
|
141
|
-
new_embed_initializer_range: float = 0.02,
|
|
142
|
-
):
|
|
143
|
-
super().__init__()
|
|
144
|
-
self.initializer_range = initializer_range
|
|
145
|
-
self.new_embed_initializer_range = new_embed_initializer_range
|
|
146
|
-
|
|
147
|
-
# Initialize embeddings
|
|
148
|
-
self.embedding = mx.random.normal(
|
|
149
|
-
(num_embeddings, features), scale=self.initializer_range
|
|
150
|
-
)
|
|
151
|
-
self.new_embedding = mx.random.normal(
|
|
152
|
-
(num_new_embeddings, features), scale=self.new_embed_initializer_range
|
|
153
|
-
)
|
|
154
|
-
|
|
155
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
156
|
-
return mx.concat([self.embedding, self.new_embedding], axis=0)[x]
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
class Molmo(nn.Module):
|
|
160
|
-
def __init__(self, config: TextConfig):
|
|
161
|
-
super().__init__()
|
|
162
|
-
self.config = config
|
|
163
|
-
|
|
164
|
-
self.wte = Embedding(
|
|
165
|
-
config.embedding_size, config.additional_vocab_size, config.d_model
|
|
166
|
-
)
|
|
167
|
-
|
|
168
|
-
self.blocks = [MolmoBlock(config) for _ in range(config.n_layers)]
|
|
169
|
-
|
|
170
|
-
self.ln_f = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
|
|
171
|
-
|
|
172
|
-
if not config.weight_tying:
|
|
173
|
-
self.ff_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
|
174
|
-
|
|
175
|
-
def __call__(
|
|
176
|
-
self,
|
|
177
|
-
input_ids: mx.array,
|
|
178
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
179
|
-
mask: Optional[mx.array] = None,
|
|
180
|
-
cache: Optional[KVCache] = None,
|
|
181
|
-
) -> LanguageModelOutput:
|
|
182
|
-
|
|
183
|
-
if inputs_embeds is None:
|
|
184
|
-
h = self.wte(input_ids)
|
|
185
|
-
else:
|
|
186
|
-
h = inputs_embeds
|
|
187
|
-
|
|
188
|
-
if cache is None:
|
|
189
|
-
cache = [None] * self.config.n_layers
|
|
190
|
-
|
|
191
|
-
if mask is None:
|
|
192
|
-
mask = create_attention_mask(h, cache)
|
|
193
|
-
|
|
194
|
-
for block, c in zip(self.blocks, cache):
|
|
195
|
-
h = block(h, mask, c)
|
|
196
|
-
|
|
197
|
-
h = self.ln_f(h)
|
|
198
|
-
|
|
199
|
-
if self.config.weight_tying:
|
|
200
|
-
logits = mx.matmul(h, self.wte.weight.T)
|
|
201
|
-
else:
|
|
202
|
-
logits = self.ff_out(h)
|
|
203
|
-
|
|
204
|
-
return LanguageModelOutput(logits=logits)
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
class LanguageModel(nn.Module):
|
|
208
|
-
def __init__(self, config: TextConfig):
|
|
209
|
-
super().__init__()
|
|
210
|
-
self.config = config
|
|
211
|
-
self.model_type = config.model_type
|
|
212
|
-
if self.model_type != "molmo":
|
|
213
|
-
raise ValueError(
|
|
214
|
-
f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
|
|
215
|
-
)
|
|
216
|
-
self.model = Molmo(config)
|
|
217
|
-
|
|
218
|
-
def __call__(
|
|
219
|
-
self,
|
|
220
|
-
input_ids: mx.array,
|
|
221
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
222
|
-
mask: Optional[mx.array] = None,
|
|
223
|
-
cache: Optional[KVCache] = None,
|
|
224
|
-
) -> LanguageModelOutput:
|
|
225
|
-
outputs = self.model(input_ids, inputs_embeds, mask, cache)
|
|
226
|
-
return outputs
|
|
227
|
-
|
|
228
|
-
@staticmethod
|
|
229
|
-
def sanitize(weights):
|
|
230
|
-
# Remove unused precomputed rotary freqs
|
|
231
|
-
return {k: v for k, v in weights.items() if "rotary_emb.inv_freq" not in k}
|
|
232
|
-
|
|
233
|
-
@property
|
|
234
|
-
def layers(self):
|
|
235
|
-
return self.model.blocks
|
|
236
|
-
|
|
237
|
-
@property
|
|
238
|
-
def head_dim(self):
|
|
239
|
-
return self.config.d_model // self.config.n_heads
|
|
240
|
-
|
|
241
|
-
@property
|
|
242
|
-
def n_kv_heads(self):
|
|
243
|
-
return self.config.n_kv_heads
|
|
@@ -1,133 +0,0 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
import inspect
|
|
3
|
-
import json
|
|
4
|
-
from dataclasses import dataclass, field
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from typing import Dict, List, Optional, Tuple, Union
|
|
7
|
-
|
|
8
|
-
import mlx.core as mx
|
|
9
|
-
import mlx.nn as nn
|
|
10
|
-
import numpy as np
|
|
11
|
-
from huggingface_hub import snapshot_download
|
|
12
|
-
|
|
13
|
-
from .language import LanguageModel, TextConfig
|
|
14
|
-
from .vision import VisionConfig, VisionModel
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
@dataclass
|
|
18
|
-
class ModelConfig:
|
|
19
|
-
text_config: TextConfig = field(default_factory=TextConfig)
|
|
20
|
-
vision_config: VisionConfig = field(default_factory=VisionConfig)
|
|
21
|
-
model_type: str = "molmo"
|
|
22
|
-
image_feature_dropout: float = 0.0
|
|
23
|
-
image_pooling_h: int = 2
|
|
24
|
-
image_pooling_w: int = 2
|
|
25
|
-
image_pooling_2d: str = "attention"
|
|
26
|
-
image_projector: str = "mlp"
|
|
27
|
-
eos_token_id: Optional[List[int]] = None
|
|
28
|
-
|
|
29
|
-
@classmethod
|
|
30
|
-
def from_dict(cls, params):
|
|
31
|
-
return cls(
|
|
32
|
-
**{
|
|
33
|
-
k: v
|
|
34
|
-
for k, v in params.items()
|
|
35
|
-
if k in inspect.signature(cls).parameters
|
|
36
|
-
}
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
class Model(nn.Module):
|
|
41
|
-
def __init__(self, config: ModelConfig):
|
|
42
|
-
super().__init__()
|
|
43
|
-
self.config = config
|
|
44
|
-
self.language_model = LanguageModel(config.text_config)
|
|
45
|
-
self.vision_tower = VisionModel(config.vision_config)
|
|
46
|
-
|
|
47
|
-
@property
|
|
48
|
-
def layers(self):
|
|
49
|
-
return self.language_model.model.layers
|
|
50
|
-
|
|
51
|
-
def __call__(
|
|
52
|
-
self,
|
|
53
|
-
input_ids: mx.array,
|
|
54
|
-
pixel_values: mx.array,
|
|
55
|
-
mask: mx.array,
|
|
56
|
-
cache=None,
|
|
57
|
-
**kwargs,
|
|
58
|
-
) -> Dict[str, Union[mx.array, List[Tuple[mx.array, mx.array]]]]:
|
|
59
|
-
if input_ids.ndim == 1:
|
|
60
|
-
input_ids = input_ids[None, :]
|
|
61
|
-
|
|
62
|
-
batch_size, seq_len = input_ids.shape
|
|
63
|
-
|
|
64
|
-
image_input_idx = kwargs.get("image_input_idx", None)
|
|
65
|
-
image_masks = kwargs.get("image_masks", None)
|
|
66
|
-
|
|
67
|
-
if pixel_values is not None:
|
|
68
|
-
assert (
|
|
69
|
-
image_masks is not None and image_input_idx is not None
|
|
70
|
-
), "image_masks and image_input_idx must be provided when images are given"
|
|
71
|
-
|
|
72
|
-
dtype = self.vision_tower.image_vit.patch_embedding.weight.dtype
|
|
73
|
-
pixel_values = pixel_values.astype(dtype)
|
|
74
|
-
|
|
75
|
-
# Process images
|
|
76
|
-
if pixel_values.ndim == 3:
|
|
77
|
-
pixel_values = mx.expand_dims(pixel_values, 0)
|
|
78
|
-
image_masks = (
|
|
79
|
-
mx.expand_dims(image_masks, 0) if image_masks is not None else None
|
|
80
|
-
)
|
|
81
|
-
image_input_idx = (
|
|
82
|
-
mx.expand_dims(image_input_idx, 0)
|
|
83
|
-
if image_input_idx is not None
|
|
84
|
-
else None
|
|
85
|
-
)
|
|
86
|
-
|
|
87
|
-
image_features, cls_embed = self.vision_tower(pixel_values, image_masks)
|
|
88
|
-
|
|
89
|
-
# Insert image features into the input embeddings
|
|
90
|
-
num_image, num_patch = image_features.shape[1:3]
|
|
91
|
-
|
|
92
|
-
assert image_input_idx.shape == (
|
|
93
|
-
batch_size,
|
|
94
|
-
num_image,
|
|
95
|
-
num_patch,
|
|
96
|
-
), f"image_input_idx.shape: {image_input_idx.shape}, expected: {(batch_size, num_image, num_patch)}"
|
|
97
|
-
|
|
98
|
-
# Insert image features into the input embeddings
|
|
99
|
-
image_features = image_features.reshape(
|
|
100
|
-
batch_size, num_image * num_patch, -1
|
|
101
|
-
)
|
|
102
|
-
image_input_idx = image_input_idx.reshape(batch_size, num_image * num_patch)
|
|
103
|
-
|
|
104
|
-
valid = np.where(image_input_idx >= 0)[0].tolist()
|
|
105
|
-
batch_idx = mx.arange(batch_size)
|
|
106
|
-
batch_idx = mx.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
|
107
|
-
|
|
108
|
-
input_embeddings = self.language_model.model.wte(input_ids)
|
|
109
|
-
input_embeddings[
|
|
110
|
-
batch_idx[valid], image_input_idx[valid]
|
|
111
|
-
] += image_features[valid]
|
|
112
|
-
else:
|
|
113
|
-
input_embeddings = None
|
|
114
|
-
|
|
115
|
-
# Forward pass through the language model
|
|
116
|
-
logits = self.language_model(
|
|
117
|
-
input_ids,
|
|
118
|
-
inputs_embeds=input_embeddings,
|
|
119
|
-
mask=mask,
|
|
120
|
-
cache=cache,
|
|
121
|
-
)
|
|
122
|
-
|
|
123
|
-
return logits
|
|
124
|
-
|
|
125
|
-
def sanitize(self, weights):
|
|
126
|
-
def transform_key(key):
|
|
127
|
-
if "model.transformer" in key:
|
|
128
|
-
key = key.replace("model.transformer", "language_model.model")
|
|
129
|
-
if "model.vision_backbone" in key:
|
|
130
|
-
key = key.replace("model.vision_backbone", "vision_tower")
|
|
131
|
-
return key
|
|
132
|
-
|
|
133
|
-
return {transform_key(k): v for k, v in weights.items()}
|