nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,701 +0,0 @@
1
- import contextlib
2
- import functools
3
- from dataclasses import dataclass
4
- from typing import (
5
- Any,
6
- Callable,
7
- Generator,
8
- List,
9
- Optional,
10
- Tuple,
11
- Union,
12
- )
13
-
14
- import mlx.core as mx
15
- import mlx.nn as nn
16
- from mlx.utils import tree_reduce
17
- from transformers import PreTrainedTokenizer
18
-
19
- from .cache import (
20
- QuantizedKVCache,
21
- load_prompt_cache,
22
- )
23
- from . import cache
24
- from .sample_utils import make_sampler
25
- from .tokenizer_utils import TokenizerWrapper
26
-
27
- DEFAULT_PROMPT = "hello"
28
- DEFAULT_MAX_TOKENS = 100
29
- DEFAULT_TEMP = 0.0
30
- DEFAULT_TOP_P = 1.0
31
- DEFAULT_MIN_P = 0.0
32
- DEFAULT_TOP_K = 0
33
- DEFAULT_XTC_PROBABILITY = 0.0
34
- DEFAULT_XTC_THRESHOLD = 0.0
35
- DEFAULT_MIN_TOKENS_TO_KEEP = 1
36
- DEFAULT_SEED = None
37
- DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
38
- DEFAULT_QUANTIZED_KV_START = 5000
39
-
40
-
41
- def str2bool(string):
42
- return string.lower() not in ["false", "f"]
43
-
44
-
45
- # A stream on the default device just for generation
46
- generation_stream = mx.new_stream(mx.default_device())
47
-
48
-
49
- @contextlib.contextmanager
50
- def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None):
51
- """
52
- A context manager to temporarily change the wired limit.
53
-
54
- Note, the wired limit should not be changed during an async eval. If an
55
- async eval could be running pass in the streams to synchronize with prior
56
- to exiting the context manager.
57
- """
58
- model_bytes = tree_reduce(
59
- lambda acc, x: acc + x.nbytes if isinstance(x, mx.array) else acc, model, 0
60
- )
61
- max_rec_size = mx.metal.device_info()["max_recommended_working_set_size"]
62
- if model_bytes > 0.9 * max_rec_size:
63
- model_mb = model_bytes // 2**20
64
- max_rec_mb = max_rec_size // 2**20
65
- print(
66
- f"[WARNING] Generating with a model that requires {model_mb} MB "
67
- f"which is close to the maximum recommended size of {max_rec_mb} "
68
- "MB. This can be slow. See the documentation for possible work-arounds: "
69
- "https://github.com/ml-explore/mlx-lm/tree/main#large-models"
70
- )
71
- old_limit = mx.set_wired_limit(max_rec_size)
72
- try:
73
- yield None
74
- finally:
75
- if streams is not None:
76
- for s in streams:
77
- mx.synchronize(s)
78
- else:
79
- mx.synchronize()
80
- mx.set_wired_limit(old_limit)
81
-
82
-
83
- @dataclass
84
- class GenerationResponse:
85
- """
86
- The output of :func:`stream_generate`.
87
-
88
- Args:
89
- text (str): The next segment of decoded text. This can be an empty string.
90
- token (int): The next token.
91
- from_draft (bool): Whether the token was generated by the draft model.
92
- logprobs (mx.array): A vector of log probabilities.
93
- prompt_tokens (int): The number of tokens in the prompt.
94
- prompt_tps (float): The prompt processing tokens-per-second.
95
- generation_tokens (int): The number of generated tokens.
96
- generation_tps (float): The tokens-per-second for generation.
97
- peak_memory (float): The peak memory used so far in GB.
98
- finish_reason (str): The reason the response is being sent: "length", "stop" or `None`
99
- """
100
-
101
- text: str
102
- token: int
103
- logprobs: mx.array
104
- from_draft: bool
105
- prompt_tokens: int
106
- prompt_tps: float
107
- generation_tokens: int
108
- generation_tps: float
109
- peak_memory: float
110
- finish_reason: Optional[str] = None
111
-
112
-
113
- def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
114
- if (
115
- kv_bits is not None
116
- and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
117
- and prompt_cache[0].offset > quantized_kv_start
118
- ):
119
- for i in range(len(prompt_cache)):
120
- if isinstance(prompt_cache[i], cache.KVCache):
121
- prompt_cache[i] = prompt_cache[i].to_quantized(
122
- group_size=kv_group_size, bits=kv_bits
123
- )
124
-
125
-
126
- def generate_step(
127
- prompt: mx.array,
128
- model: nn.Module,
129
- *,
130
- max_tokens: int = 256,
131
- sampler: Optional[Callable[mx.array, mx.array]] = None,
132
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
133
- max_kv_size: Optional[int] = None,
134
- prompt_cache: Optional[Any] = None,
135
- prefill_step_size: int = 2048,
136
- kv_bits: Optional[int] = None,
137
- kv_group_size: int = 64,
138
- quantized_kv_start: int = 0,
139
- prompt_progress_callback: Optional[Callable[int, int]] = None,
140
- input_embeddings: Optional[mx.array] = None,
141
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
142
- """
143
- A generator producing token ids based on the given prompt from the model.
144
-
145
- Args:
146
- prompt (mx.array): The input prompt.
147
- model (nn.Module): The model to use for generation.
148
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
149
- generator. Default: ``256``.
150
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
151
- token from a vector of log probabilities. Default: ``None``.
152
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
153
- A list of functions that take tokens and logits and return the processed
154
- logits. Default: ``None``.
155
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
156
- entries (except the first 4 tokens) will be overwritten.
157
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
158
- provided, the cache will be updated in place.
159
- prefill_step_size (int): Step size for processing the prompt.
160
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
161
- None implies no cache quantization. Default: ``None``.
162
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
163
- quantized_kv_start (int): Step to begin using a quantized KV cache.
164
- when ``kv_bits`` is non-None. Default: ``0``.
165
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
166
- prompt tokens processed so far and the total number of prompt tokens.
167
- input_embeddings (mx.array, optional): Input embeddings to use in place of
168
- prompt tokens. Default: ``None``.
169
-
170
- Yields:
171
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
172
- """
173
- assert (prompt is not None) ^ (
174
- input_embeddings is not None
175
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
176
-
177
- tokens = None
178
-
179
- # Create the KV cache for generation
180
- if prompt_cache is None:
181
- prompt_cache = cache.make_prompt_cache(
182
- model,
183
- max_kv_size=max_kv_size,
184
- )
185
-
186
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
187
-
188
- quantize_cache_fn = functools.partial(
189
- maybe_quantize_kv_cache,
190
- quantized_kv_start=quantized_kv_start,
191
- kv_group_size=kv_group_size,
192
- kv_bits=kv_bits,
193
- )
194
-
195
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
196
-
197
- def _model_call(y):
198
- if y.ndim == 3:
199
- return model(None, cache=prompt_cache, input_embeddings=y)
200
- else:
201
- return model(y, cache=prompt_cache)
202
-
203
- def _step(y):
204
- nonlocal tokens
205
-
206
- with mx.stream(generation_stream):
207
- logits = _model_call(y[None])
208
-
209
- logits = logits[:, -1, :]
210
-
211
- if logits_processors and input_embeddings is None:
212
- tokens = mx.concat([tokens, y]) if tokens is not None else y
213
- for processor in logits_processors:
214
- logits = processor(tokens, logits)
215
-
216
- quantize_cache_fn(prompt_cache)
217
-
218
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
219
- y = sampler(logprobs)
220
- return y, logprobs.squeeze(0)
221
-
222
- using_embeddings = input_embeddings is not None
223
-
224
- y = input_embeddings if using_embeddings else prompt
225
- with mx.stream(generation_stream):
226
- total_prompt_tokens = y.shape[0]
227
- prompt_processed_tokens = 0
228
- while y.shape[0] > prefill_step_size:
229
- _model_call(y[:prefill_step_size][None])
230
- quantize_cache_fn(prompt_cache)
231
- mx.eval([c.state for c in prompt_cache])
232
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
233
- prompt_processed_tokens += prefill_step_size
234
- y = y[prefill_step_size:]
235
- mx.clear_cache()
236
-
237
- y, logprobs = _step(y)
238
-
239
- mx.async_eval(y, logprobs)
240
- n = 0
241
- while True:
242
- if n != max_tokens:
243
- next_y, next_logprobs = _step(y)
244
- mx.async_eval(next_y, next_logprobs)
245
- if n == 0:
246
- mx.eval(y)
247
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
248
- if n == max_tokens:
249
- break
250
- yield y.item(), logprobs
251
- if n % 256 == 0:
252
- mx.clear_cache()
253
- y, logprobs = next_y, next_logprobs
254
- n += 1
255
-
256
-
257
- def nexa_generate_step(
258
- model: nn.Module,
259
- *, # enforces explicit parameter naming
260
- prompt: Optional[mx.array] = None,
261
- max_tokens: int = 256,
262
- sampler: Optional[Callable[mx.array, mx.array]] = None,
263
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
264
- max_kv_size: Optional[int] = None,
265
- prompt_cache: Optional[Any] = None,
266
- prefill_step_size: int = 2048,
267
- kv_bits: Optional[int] = None,
268
- kv_group_size: int = 64,
269
- quantized_kv_start: int = 0,
270
- prompt_progress_callback: Optional[Callable[int, int]] = None,
271
- input_embeddings: Optional[mx.array] = None,
272
- visual_pos_masks: Optional[mx.array] = None,
273
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
274
- cos: Optional[mx.array] = None,
275
- sin: Optional[mx.array] = None,
276
- rope_deltas: Optional[mx.array] = None,
277
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
278
- """
279
- A generator producing token ids based on the given prompt from the model.
280
-
281
- Args:
282
- prompt (mx.array): The input prompt.
283
- model (nn.Module): The model to use for generation.
284
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
285
- generator. Default: ``256``.
286
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
287
- token from a vector of log probabilities. Default: ``None``.
288
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
289
- A list of functions that take tokens and logits and return the processed
290
- logits. Default: ``None``.
291
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
292
- entries (except the first 4 tokens) will be overwritten.
293
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
294
- provided, the cache will be updated in place.
295
- prefill_step_size (int): Step size for processing the prompt.
296
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
297
- None implies no cache quantization. Default: ``None``.
298
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
299
- quantized_kv_start (int): Step to begin using a quantized KV cache.
300
- when ``kv_bits`` is non-None. Default: ``0``.
301
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
302
- prompt tokens processed so far and the total number of prompt tokens.
303
- input_embeddings (mx.array, optional): Input embeddings to use in place of
304
- prompt tokens. Default: ``None``.
305
-
306
- Yields:
307
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
308
- """
309
- assert (prompt is not None) ^ (
310
- input_embeddings is not None
311
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
312
-
313
- tokens = None
314
-
315
- # Create the KV cache for generation
316
- if prompt_cache is None:
317
- prompt_cache = cache.make_prompt_cache(
318
- model,
319
- max_kv_size=max_kv_size,
320
- )
321
-
322
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
323
-
324
- quantize_cache_fn = functools.partial(
325
- maybe_quantize_kv_cache,
326
- quantized_kv_start=quantized_kv_start,
327
- kv_group_size=kv_group_size,
328
- kv_bits=kv_bits,
329
- )
330
-
331
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
332
-
333
- def _model_call(y):
334
- if y.ndim == 4:
335
- y = y[0]
336
- return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
337
- elif y.ndim == 3:
338
- return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
339
- else:
340
- return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
341
-
342
- def _step(y):
343
- nonlocal tokens
344
-
345
- with mx.stream(generation_stream):
346
- logits = _model_call(y[None])
347
-
348
- logits = logits[:, -1, :]
349
-
350
- if logits_processors and input_embeddings is None:
351
- tokens = mx.concat([tokens, y]) if tokens is not None else y
352
- for processor in logits_processors:
353
- logits = processor(tokens, logits)
354
-
355
- quantize_cache_fn(prompt_cache)
356
-
357
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
358
- y = sampler(logprobs)
359
- return y, logprobs.squeeze(0)
360
-
361
- using_embeddings = input_embeddings is not None
362
-
363
- y = input_embeddings if using_embeddings else prompt
364
- with mx.stream(generation_stream):
365
- total_prompt_tokens = y.shape[0]
366
- prompt_processed_tokens = 0
367
- while y.shape[0] > prefill_step_size:
368
- _model_call(y[:prefill_step_size][None])
369
- quantize_cache_fn(prompt_cache)
370
- mx.eval([c.state for c in prompt_cache])
371
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
372
- prompt_processed_tokens += prefill_step_size
373
- y = y[prefill_step_size:]
374
- mx.clear_cache()
375
-
376
- y, logprobs = _step(y)
377
-
378
- mx.async_eval(y, logprobs)
379
- n = 0
380
- while True:
381
- if n != max_tokens:
382
- next_y, next_logprobs = _step(y)
383
- mx.async_eval(next_y, next_logprobs)
384
- if n == 0:
385
- mx.eval(y)
386
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
387
- if n == max_tokens:
388
- break
389
- yield y.item(), logprobs
390
- if n % 256 == 0:
391
- mx.clear_cache()
392
- y, logprobs = next_y, next_logprobs
393
- n += 1
394
-
395
-
396
-
397
- ## Explicit parameter naming means we need to specify the parameter names.
398
- def nexa_multimodal_generate_step(
399
- model: nn.Module,
400
- *, # enforces explicit parameter naming
401
- prompt: Optional[mx.array] = None,
402
- max_tokens: int = 256,
403
- sampler: Optional[Callable[mx.array, mx.array]] = None,
404
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
405
- max_kv_size: Optional[int] = None,
406
- prompt_cache: Optional[Any] = None,
407
- prefill_step_size: int = 2048,
408
- kv_bits: Optional[int] = None,
409
- kv_group_size: int = 64,
410
- quantized_kv_start: int = 0,
411
- prompt_progress_callback: Optional[Callable[int, int]] = None,
412
- input_embeddings: Optional[mx.array] = None,
413
- cos: Optional[mx.array] = None,
414
- sin: Optional[mx.array] = None,
415
- rope_deltas: Optional[mx.array] = None,
416
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
417
- """
418
- A generator producing token ids based on the given prompt from the model.
419
-
420
- Args:
421
- prompt (mx.array): The input prompt.
422
- model (nn.Module): The model to use for generation.
423
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
424
- generator. Default: ``256``.
425
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
426
- token from a vector of log probabilities. Default: ``None``.
427
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
428
- A list of functions that take tokens and logits and return the processed
429
- logits. Default: ``None``.
430
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
431
- entries (except the first 4 tokens) will be overwritten.
432
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
433
- provided, the cache will be updated in place.
434
- prefill_step_size (int): Step size for processing the prompt.
435
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
436
- None implies no cache quantization. Default: ``None``.
437
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
438
- quantized_kv_start (int): Step to begin using a quantized KV cache.
439
- when ``kv_bits`` is non-None. Default: ``0``.
440
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
441
- prompt tokens processed so far and the total number of prompt tokens.
442
- input_embeddings (mx.array, optional): Input embeddings to use in place of
443
- prompt tokens. Default: ``None``.
444
-
445
- Yields:
446
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
447
- """
448
- assert (prompt is not None) ^ (
449
- input_embeddings is not None
450
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
451
-
452
- tokens = None
453
-
454
- # Create the KV cache for generation
455
- if prompt_cache is None:
456
- prompt_cache = cache.make_prompt_cache(
457
- model,
458
- max_kv_size=max_kv_size,
459
- )
460
-
461
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
462
-
463
- quantize_cache_fn = functools.partial(
464
- maybe_quantize_kv_cache,
465
- quantized_kv_start=quantized_kv_start,
466
- kv_group_size=kv_group_size,
467
- kv_bits=kv_bits,
468
- )
469
-
470
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
471
-
472
- def _model_call(y):
473
- if y.ndim == 3:
474
- return model(None, cache=prompt_cache, input_embeddings=y, cos=cos, sin=sin, rope_deltas=rope_deltas)
475
- else:
476
- return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
477
-
478
- def _step(y):
479
- nonlocal tokens
480
-
481
- with mx.stream(generation_stream):
482
- logits = _model_call(y[None])
483
-
484
- logits = logits[:, -1, :]
485
-
486
- if logits_processors and input_embeddings is None:
487
- tokens = mx.concat([tokens, y]) if tokens is not None else y
488
- for processor in logits_processors:
489
- logits = processor(tokens, logits)
490
-
491
- quantize_cache_fn(prompt_cache)
492
-
493
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
494
- y = sampler(logprobs)
495
- return y, logprobs.squeeze(0)
496
-
497
- using_embeddings = input_embeddings is not None
498
-
499
- y = input_embeddings if using_embeddings else prompt
500
- with mx.stream(generation_stream):
501
- total_prompt_tokens = y.shape[0]
502
- prompt_processed_tokens = 0
503
- while y.shape[0] > prefill_step_size:
504
- _model_call(y[:prefill_step_size][None])
505
- quantize_cache_fn(prompt_cache)
506
- mx.eval([c.state for c in prompt_cache])
507
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
508
- prompt_processed_tokens += prefill_step_size
509
- y = y[prefill_step_size:]
510
- mx.clear_cache()
511
-
512
- y, logprobs = _step(y)
513
-
514
- mx.async_eval(y, logprobs)
515
- n = 0
516
- while True:
517
- if n != max_tokens:
518
- next_y, next_logprobs = _step(y)
519
- mx.async_eval(next_y, next_logprobs)
520
- if n == 0:
521
- mx.eval(y)
522
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
523
- if n == max_tokens:
524
- break
525
- yield y.item(), logprobs
526
- if n % 256 == 0:
527
- mx.clear_cache()
528
- y, logprobs = next_y, next_logprobs
529
- n += 1
530
-
531
-
532
-
533
-
534
-
535
- def speculative_generate_step(
536
- prompt: mx.array,
537
- model: nn.Module,
538
- draft_model: nn.Module,
539
- *,
540
- num_draft_tokens=2,
541
- max_tokens: int = 256,
542
- sampler: Optional[Callable[mx.array, mx.array]] = None,
543
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
544
- prompt_cache: Optional[Any] = None,
545
- prefill_step_size: int = 512,
546
- kv_bits: Optional[int] = None,
547
- kv_group_size: int = 64,
548
- quantized_kv_start: int = 0,
549
- ) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
550
- """
551
- A generator producing token ids based on the given prompt from the model.
552
-
553
- Args:
554
- prompt (mx.array): The input prompt.
555
- model (nn.Module): The model to use for generation.
556
- draft_model (nn.Module): The draft model for speculative decoding.
557
- num_draft_tokens (int, optional): The number of draft tokens for
558
- speculative decoding. Default: ``2``.
559
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
560
- generator. Default: ``256``.
561
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
562
- token from a vector of log probabilities. Default: ``None``.
563
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
564
- A list of functions that take tokens and logits and return the processed
565
- logits. Default: ``None``.
566
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
567
- provided, the cache will be updated in place. The cache must be trimmable.
568
- prefill_step_size (int): Step size for processing the prompt.
569
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
570
- None implies no cache quantization. Default: ``None``.
571
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
572
- quantized_kv_start (int): Step to begin using a quantized KV cache.
573
- when ``kv_bits`` is non-None. Default: ``0``.
574
-
575
- Yields:
576
- Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
577
- and a bool indicating if the token was generated by the draft model
578
- """
579
-
580
- y = prompt.astype(mx.uint32)
581
- prev_tokens = None
582
-
583
- # Create the KV cache for generation
584
- if prompt_cache is None:
585
- model_cache = cache.make_prompt_cache(model)
586
- draft_cache = cache.make_prompt_cache(draft_model)
587
- else:
588
- model_cache = prompt_cache[: len(model.layers)]
589
- draft_cache = prompt_cache[len(model.layers) :]
590
-
591
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
592
-
593
- quantize_cache_fn = functools.partial(
594
- maybe_quantize_kv_cache,
595
- quantized_kv_start=quantized_kv_start,
596
- kv_group_size=kv_group_size,
597
- kv_bits=kv_bits,
598
- )
599
-
600
- def _process_and_sample(tokens, logits):
601
- if logits_processors:
602
- for processor in logits_processors:
603
- logits = processor(tokens, logits)
604
-
605
- logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
606
- y = sampler(logprobs)
607
- return y, logprobs
608
-
609
- def _step(model, cache, y, n_predict=1):
610
- with mx.stream(generation_stream):
611
- logits = model(y[None], cache=cache)
612
- logits = logits[:, -n_predict:, :]
613
-
614
- quantize_cache_fn(cache)
615
- if logits_processors:
616
- nonlocal prev_tokens
617
- out_y, out_logprobs = [], []
618
- if n_predict > 1:
619
- y = y[: -(n_predict - 1)]
620
- for i in range(n_predict):
621
- prev_tokens = mx.concat([prev_tokens, y]) if prev_tokens is not None else y
622
- y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
623
- out_y.append(y)
624
- out_logprobs.append(logprobs)
625
- return mx.concatenate(out_y, axis=0), mx.concatenate(out_logprobs, axis=0)
626
- else:
627
- return _process_and_sample(None, logits.squeeze(0))
628
-
629
- def _prefill(model, cache, y):
630
- while y.size > prefill_step_size:
631
- model(y[:prefill_step_size][None], cache=cache)
632
- quantize_cache_fn(cache)
633
- mx.eval([c.state for c in cache])
634
- y = y[prefill_step_size:]
635
- mx.clear_cache()
636
- return y
637
-
638
- def _rewind_cache(num_draft, num_accept):
639
- cache.trim_prompt_cache(model_cache, num_draft - num_accept)
640
- cache.trim_prompt_cache(draft_cache, max(num_draft - num_accept - 1, 0))
641
-
642
- def _draft_generate(y, num_draft):
643
- if num_draft == 0:
644
- return mx.array([], mx.uint32)
645
- ys = []
646
- for _ in range(num_draft):
647
- y, _ = _step(draft_model, draft_cache, y)
648
- mx.async_eval(y)
649
- ys.append(y)
650
- return mx.concatenate(ys)
651
-
652
- with mx.stream(generation_stream):
653
- draft_y = _prefill(draft_model, draft_cache, y)
654
- y = _prefill(model, model_cache, y)
655
-
656
- ntoks = 0
657
- # Set these so the finally block doesn't raise
658
- num_draft = 0
659
- n = 0
660
- try:
661
- while True:
662
- num_draft = min(max_tokens - ntoks, num_draft_tokens)
663
- draft_tokens = _draft_generate(draft_y, num_draft)
664
- if prev_tokens is not None:
665
- prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
666
- y = mx.concatenate([y, draft_tokens])
667
- tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
668
- mx.eval(tokens, draft_tokens)
669
- draft_tokens = draft_tokens.tolist()
670
- tokens = tokens.tolist()
671
- n = 0
672
- while n < num_draft:
673
- tn, dtn, lpn = tokens[n], draft_tokens[n], logprobs[n]
674
- if tn != dtn:
675
- break
676
- n += 1
677
- ntoks += 1
678
- yield tn, lpn, True
679
- if ntoks == max_tokens:
680
- break
681
- if ntoks < max_tokens:
682
- ntoks += 1
683
- yield tokens[n], logprobs[n], False
684
-
685
- if ntoks == max_tokens:
686
- break
687
-
688
- y = mx.array([tokens[n]], mx.uint32)
689
- draft_y = y
690
-
691
- # If we accepted all the draft tokens, include the last
692
- # draft token in the next draft step since it hasn't been
693
- # processed yet by the draft model
694
- if n == num_draft:
695
- draft_y = mx.concatenate([mx.array(draft_tokens[-1:], mx.uint32), draft_y])
696
-
697
- if prev_tokens is not None:
698
- prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
699
- _rewind_cache(num_draft, n)
700
- finally:
701
- _rewind_cache(num_draft, n)