nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,173 +0,0 @@
1
- # Copyright © Nexa AI
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import os
16
- import sys
17
- import numpy as np
18
- from pathlib import Path
19
-
20
- # Add parent path for imports
21
- sys.path.insert(0, str(Path(__file__).parent.parent))
22
-
23
- # Import from interface (uses the factory pattern with routing)
24
- from .interface import create_embedder
25
- from .interface import EmbeddingConfig
26
- from huggingface_hub import snapshot_download
27
-
28
-
29
- def download_model_if_needed(model_id, local_dir):
30
- """Download model from Hugging Face Hub if not present locally."""
31
- if not os.path.exists(os.path.join(local_dir, "config.json")):
32
- print(f"📥 Model not found locally. Downloading {model_id}...")
33
- os.makedirs(local_dir, exist_ok=True)
34
- try:
35
- snapshot_download(
36
- repo_id=model_id,
37
- local_dir=local_dir,
38
- resume_download=True,
39
- local_dir_use_symlinks=False
40
- )
41
- print("✅ Model download completed!")
42
- except Exception as e:
43
- print(f"❌ Failed to download model: {e}")
44
- raise
45
-
46
-
47
- def test_embedding_interface(model_path, is_local=False):
48
- """Test embedding model functionality using the interface."""
49
-
50
- print("=" * 70)
51
- print("TESTING EMBEDDING MODEL VIA INTERFACE")
52
- print("=" * 70)
53
-
54
- # Handle model path - download if it's a HF model ID
55
- if not is_local and "/" in model_path:
56
- # It's a HuggingFace model ID
57
- local_dir = f"./modelfiles/{model_path.replace('/', '_')}"
58
- download_model_if_needed(model_path, local_dir)
59
- model_path = local_dir
60
-
61
- # Create embedder using factory function (will auto-detect model type)
62
- print(f"\n🔍 Creating embedder for: {model_path}")
63
- embedder = create_embedder(model_path=model_path)
64
- print(f"✅ Created embedder type: {type(embedder).__name__}")
65
-
66
- # Load the model
67
- print("\n📚 Loading embedding model...")
68
- success = embedder.load_model(model_path)
69
-
70
- if not success:
71
- print("❌ Failed to load model!")
72
- return
73
-
74
- print("✅ Model loaded successfully!")
75
- print(f"📏 Embedding dimension: {embedder.embedding_dim()}")
76
-
77
- # Test texts
78
- test_texts = [
79
- "Hello, how are you?",
80
- "What is machine learning?",
81
- "The weather is nice today.",
82
- "Python is a programming language.",
83
- "Artificial intelligence is changing the world."
84
- ]
85
-
86
- # Configure embedding with different settings
87
- configs = [
88
- EmbeddingConfig(batch_size=2, normalize=True, normalize_method="l2"),
89
- EmbeddingConfig(batch_size=3, normalize=False),
90
- ]
91
-
92
- for config_idx, config in enumerate(configs):
93
- print(f"\n{'='*50}")
94
- print(f"TEST {config_idx + 1}: Config - Batch: {config.batch_size}, "
95
- f"Normalize: {config.normalize}, Method: {config.normalize_method}")
96
- print('='*50)
97
-
98
- # Generate embeddings
99
- embeddings = embedder.embed(test_texts, config)
100
-
101
- # Display results
102
- print(f"\n📊 Generated {len(embeddings)} embeddings")
103
-
104
- for i, (text, embedding) in enumerate(zip(test_texts[:3], embeddings[:3])):
105
- print(f"\n Text {i+1}: '{text}'")
106
- print(f" Dimension: {len(embedding)}")
107
- print(f" First 5 values: {[f'{v:.4f}' for v in embedding[:5]]}")
108
-
109
- # Calculate magnitude
110
- magnitude = np.linalg.norm(embedding)
111
- print(f" Magnitude: {magnitude:.6f}")
112
-
113
- # Compute similarity matrix for normalized embeddings
114
- print("\n" + "="*50)
115
- print("SIMILARITY MATRIX (L2 Normalized)")
116
- print("="*50)
117
-
118
- config = EmbeddingConfig(batch_size=len(test_texts), normalize=True, normalize_method="l2")
119
- embeddings = embedder.embed(test_texts, config)
120
-
121
- # Convert to numpy for easier computation
122
- embeddings_np = np.array(embeddings)
123
- similarity_matrix = np.dot(embeddings_np, embeddings_np.T)
124
-
125
- print("\nTexts:")
126
- for i, text in enumerate(test_texts):
127
- print(f" [{i}] {text[:30]}...")
128
-
129
- print("\nSimilarity Matrix:")
130
- print(" ", end="")
131
- for i in range(len(test_texts)):
132
- print(f" [{i}] ", end="")
133
- print()
134
-
135
- for i in range(len(test_texts)):
136
- print(f" [{i}]", end="")
137
- for j in range(len(test_texts)):
138
- print(f" {similarity_matrix[i, j]:5.2f}", end="")
139
- print()
140
-
141
- # Find most similar pairs
142
- print("\n🔍 Most Similar Pairs (excluding self-similarity):")
143
- similarities = []
144
- for i in range(len(test_texts)):
145
- for j in range(i+1, len(test_texts)):
146
- similarities.append((similarity_matrix[i, j], i, j))
147
-
148
- similarities.sort(reverse=True)
149
- for sim, i, j in similarities[:3]:
150
- print(f" • Texts [{i}] and [{j}]: {sim:.4f}")
151
-
152
- # Cleanup
153
- embedder.close()
154
- print("\n✅ Interface test completed successfully!")
155
-
156
-
157
- if __name__ == "__main__":
158
- import argparse
159
- parser = argparse.ArgumentParser(description="Test embedding models via interface")
160
- parser.add_argument(
161
- "--model_path",
162
- type=str,
163
- default="nexaml/jina-v2-fp16-mlx",
164
- help="Model path (local) or HuggingFace model ID"
165
- )
166
- parser.add_argument(
167
- "--local",
168
- action="store_true",
169
- help="Indicate if model_path is a local directory"
170
- )
171
- args = parser.parse_args()
172
-
173
- test_embedding_interface(args.model_path, args.local)
@@ -1,399 +0,0 @@
1
- # Copyright © Nexa AI
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- from dataclasses import dataclass
17
- from typing import Any, Dict, List, Optional, Union
18
-
19
- import mlx.core as mx
20
- import mlx.nn as nn
21
-
22
- import os
23
- import sys
24
-
25
- curr_dir = os.path.dirname(os.path.abspath(__file__))
26
- llm_common_dir = os.path.join(curr_dir, "..", "..")
27
- sys.path.append(llm_common_dir)
28
-
29
- from mlx_lm.models.base import (
30
- BaseModelArgs,
31
- scaled_dot_product_attention,
32
- )
33
- from tokenizers import Tokenizer
34
-
35
- @dataclass
36
- class ModelArgs(BaseModelArgs):
37
- model_type: str = "bert"
38
- vocab_size: int = 61056 # Updated from config
39
- hidden_size: int = 768
40
- num_hidden_layers: int = 12
41
- num_attention_heads: int = 12
42
- intermediate_size: int = 3072
43
- hidden_act: str = "gelu"
44
- hidden_dropout_prob: float = 0.1
45
- attention_probs_dropout_prob: float = 0.1
46
- max_position_embeddings: int = 8192 # Updated from config
47
- type_vocab_size: int = 2
48
- initializer_range: float = 0.02
49
- layer_norm_eps: float = 1e-12
50
- pad_token_id: int = 0
51
- position_embedding_type: str = "alibi" # Updated from config
52
- use_cache: bool = True
53
- classifier_dropout: Optional[float] = None
54
- feed_forward_type: str = "geglu" # Updated from config
55
- emb_pooler: str = "mean" # Updated from config
56
- attn_implementation: str = "torch"
57
-
58
-
59
- class JinaBertEmbeddings(nn.Module):
60
- def __init__(self, config: ModelArgs):
61
- super().__init__()
62
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
63
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
64
- # Use PyTorch-style naming for weight loading compatibility
65
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
66
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
67
-
68
- def __call__(
69
- self,
70
- input_ids: Optional[mx.array] = None,
71
- token_type_ids: Optional[mx.array] = None,
72
- ) -> mx.array:
73
- if token_type_ids is None:
74
- input_shape = input_ids.shape
75
- token_type_ids = mx.zeros(input_shape, dtype=mx.int64)
76
-
77
- inputs_embeds = self.word_embeddings(input_ids)
78
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
79
-
80
- embeddings = inputs_embeds + token_type_embeddings
81
- embeddings = self.LayerNorm(embeddings)
82
- return embeddings
83
-
84
-
85
- class JinaBertSelfAttention(nn.Module):
86
- def __init__(self, config: ModelArgs, position_embedding_type=None):
87
- super().__init__()
88
- if config.hidden_size % config.num_attention_heads != 0:
89
- raise ValueError(
90
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
91
- f"heads ({config.num_attention_heads})"
92
- )
93
-
94
- self.attn_implementation = config.attn_implementation
95
- self.num_attention_heads = config.num_attention_heads
96
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
97
- self.all_head_size = self.num_attention_heads * self.attention_head_size
98
-
99
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
100
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
101
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
102
-
103
- self.position_embedding_type = position_embedding_type or getattr(
104
- config, "position_embedding_type", "absolute"
105
- )
106
-
107
- def transpose_for_scores(self, x: mx.array) -> mx.array:
108
- new_x_shape = x.shape[:-1] + (self.num_attention_heads, self.attention_head_size)
109
- x = x.reshape(new_x_shape)
110
- return x.transpose(0, 2, 1, 3)
111
-
112
- def __call__(
113
- self,
114
- hidden_states: mx.array,
115
- attention_mask: Optional[mx.array] = None,
116
- bias: Optional[mx.array] = None,
117
- ) -> mx.array:
118
- mixed_query_layer = self.query(hidden_states)
119
-
120
- key_layer = self.transpose_for_scores(self.key(hidden_states))
121
- value_layer = self.transpose_for_scores(self.value(hidden_states))
122
- query_layer = self.transpose_for_scores(mixed_query_layer)
123
-
124
- scale = 1.0 / math.sqrt(self.attention_head_size)
125
-
126
- mask = None
127
- if attention_mask is not None or bias is not None:
128
- if attention_mask is not None and bias is not None:
129
- mask = attention_mask + bias
130
- elif attention_mask is not None:
131
- mask = attention_mask
132
- else:
133
- mask = bias
134
-
135
- # Cast mask to same dtype as hidden_states
136
- if mask is not None:
137
- mask = mask.astype(hidden_states.dtype)
138
-
139
- context_layer = scaled_dot_product_attention(
140
- query_layer, key_layer, value_layer, cache=None, scale=scale, mask=mask
141
- )
142
-
143
- context_layer = context_layer.transpose(0, 2, 1, 3)
144
- new_context_layer_shape = context_layer.shape[:-2] + (self.all_head_size,)
145
- context_layer = context_layer.reshape(new_context_layer_shape)
146
- return context_layer
147
-
148
-
149
- class JinaBertSelfOutput(nn.Module):
150
- def __init__(self, config):
151
- super().__init__()
152
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
153
- # Use PyTorch-style naming for weight loading compatibility
154
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
155
-
156
- def __call__(self, hidden_states: mx.array, input_tensor: mx.array) -> mx.array:
157
- hidden_states = self.dense(hidden_states)
158
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
159
- return hidden_states
160
-
161
-
162
- class JinaBertAttention(nn.Module):
163
- def __init__(self, config, position_embedding_type=None):
164
- super().__init__()
165
- self.self = JinaBertSelfAttention(config, position_embedding_type=position_embedding_type)
166
- self.output = JinaBertSelfOutput(config)
167
-
168
- def __call__(
169
- self,
170
- hidden_states: mx.array,
171
- attention_mask: Optional[mx.array] = None,
172
- bias: Optional[mx.array] = None,
173
- ) -> mx.array:
174
- self_outputs = self.self(hidden_states, attention_mask, bias)
175
- attention_output = self.output(self_outputs, hidden_states)
176
- return attention_output
177
-
178
-
179
- class JinaBertGLUMLP(nn.Module):
180
- def __init__(self, config: ModelArgs):
181
- super().__init__()
182
- self.config = config
183
- self.gated_layers = nn.Linear(config.hidden_size, config.intermediate_size * 2, bias=False)
184
- self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
185
- # Use PyTorch-style naming for weight loading compatibility
186
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
187
-
188
- def __call__(self, hidden_states: mx.array) -> mx.array:
189
- residual_connection = hidden_states
190
- hidden_states = self.gated_layers(hidden_states)
191
-
192
- if self.config.feed_forward_type == "geglu":
193
- gated = hidden_states[..., : self.config.intermediate_size]
194
- non_gated = hidden_states[..., self.config.intermediate_size :]
195
- hidden_states = nn.gelu(gated) * non_gated
196
- else:
197
- # Original GLU
198
- gated = hidden_states[..., : self.config.intermediate_size]
199
- non_gated = hidden_states[..., self.config.intermediate_size :]
200
- hidden_states = nn.gelu(gated) * non_gated
201
-
202
- hidden_states = self.wo(hidden_states)
203
- hidden_states = self.layernorm(hidden_states + residual_connection)
204
- return hidden_states
205
-
206
-
207
- class JinaBertLayer(nn.Module):
208
- def __init__(self, config: ModelArgs):
209
- super().__init__()
210
- self.attention = JinaBertAttention(config)
211
- self.feed_forward_type = config.feed_forward_type
212
- self.mlp = JinaBertGLUMLP(config)
213
-
214
- def __call__(
215
- self,
216
- hidden_states: mx.array,
217
- attention_mask: Optional[mx.array] = None,
218
- bias: Optional[mx.array] = None,
219
- ) -> mx.array:
220
- attention_output = self.attention(hidden_states, attention_mask, bias=bias)
221
- layer_output = self.mlp(attention_output)
222
- return layer_output
223
-
224
-
225
- class JinaBertEncoder(nn.Module):
226
- def __init__(self, config: ModelArgs):
227
- super().__init__()
228
- self.config = config
229
- # Use list instead of ModuleList for PyTorch compatibility
230
- self.layer = [JinaBertLayer(config) for _ in range(config.num_hidden_layers)]
231
- self.gradient_checkpointing = False
232
- self.num_attention_heads = config.num_attention_heads
233
- self._current_alibi_size = config.max_position_embeddings
234
-
235
- # Build ALiBi tensor
236
- # self.alibi = self.rebuild_alibi_tensor(size=config.max_position_embeddings)
237
-
238
- def rebuild_alibi_tensor(self, size: int) -> mx.array:
239
- """Build ALiBi bias tensor"""
240
- n_heads = self.num_attention_heads
241
-
242
- def _get_alibi_head_slopes(n_heads: int) -> List[float]:
243
- def get_slopes_power_of_2(n):
244
- start = 2 ** (-(2 ** -(math.log2(n) - 3)))
245
- ratio = start
246
- return [start * ratio**i for i in range(n)]
247
-
248
- if math.log2(n_heads).is_integer():
249
- return get_slopes_power_of_2(n_heads)
250
- else:
251
- closest_power_of_2 = 2 ** math.floor(math.log2(n_heads))
252
- return (
253
- get_slopes_power_of_2(closest_power_of_2)
254
- + _get_alibi_head_slopes(2 * closest_power_of_2)[0::2][
255
- : n_heads - closest_power_of_2
256
- ]
257
- )
258
-
259
- context_position = mx.arange(size)[:, None]
260
- memory_position = mx.arange(size)[None, :]
261
- relative_position = mx.abs(memory_position - context_position)
262
- relative_position = mx.expand_dims(relative_position, axis=0)
263
- relative_position = mx.repeat(relative_position, n_heads, axis=0)
264
-
265
- slopes = mx.array(_get_alibi_head_slopes(n_heads)) * -1
266
- slopes = mx.expand_dims(mx.expand_dims(slopes, axis=1), axis=2)
267
- alibi = slopes * relative_position
268
- alibi = mx.expand_dims(alibi, axis=0)
269
-
270
- self._current_alibi_size = size
271
- return alibi
272
-
273
- def __call__(
274
- self,
275
- hidden_states: mx.array,
276
- attention_mask: Optional[mx.array] = None,
277
- ) -> mx.array:
278
- _, seqlen, _ = hidden_states.shape
279
- alibi_bias = self.rebuild_alibi_tensor(seqlen)
280
-
281
- for i, layer_module in enumerate(self.layer):
282
- layer_outputs = layer_module(hidden_states, attention_mask, alibi_bias)
283
- hidden_states = layer_outputs
284
-
285
- return hidden_states
286
-
287
-
288
- class JinaBertPooler(nn.Module):
289
- def __init__(self, config):
290
- super().__init__()
291
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
292
- self.activation = nn.tanh
293
-
294
- def __call__(self, hidden_states: mx.array) -> mx.array:
295
- # We "pool" the model by simply taking the hidden state corresponding
296
- # to the first token.
297
- first_token_tensor = hidden_states[:, 0]
298
- pooled_output = self.dense(first_token_tensor)
299
- pooled_output = self.activation(pooled_output)
300
- return pooled_output
301
-
302
-
303
- class JinaBertModel(nn.Module):
304
- def __init__(self, config: ModelArgs):
305
- super().__init__()
306
- self.config = config
307
- self.embeddings = JinaBertEmbeddings(config)
308
- self.encoder = JinaBertEncoder(config)
309
- # Add pooler layer for weight compatibility
310
- self.pooler = JinaBertPooler(config)
311
-
312
- def get_extended_attention_mask(self, attention_mask: mx.array, input_shape: tuple) -> mx.array:
313
- """Convert attention mask to extended format"""
314
- if attention_mask.ndim == 3:
315
- extended_attention_mask = attention_mask[:, None, :, :]
316
- elif attention_mask.ndim == 2:
317
- extended_attention_mask = attention_mask[:, None, None, :]
318
- else:
319
- raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")
320
-
321
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
322
- return extended_attention_mask
323
-
324
- def mean_pooling(self, token_embeddings: mx.array, attention_mask: mx.array) -> mx.array:
325
- input_mask_expanded = mx.expand_dims(attention_mask, axis=-1) * mx.ones_like(
326
- token_embeddings
327
- )
328
- return mx.sum(token_embeddings * input_mask_expanded, axis=1) / mx.clip(
329
- mx.sum(input_mask_expanded, axis=1), 1e-9, None
330
- )
331
-
332
- def __call__(
333
- self,
334
- input_ids: Optional[mx.array] = None,
335
- attention_mask: Optional[mx.array] = None,
336
- token_type_ids: Optional[mx.array] = None,
337
- ) -> mx.array:
338
- input_shape = input_ids.shape
339
-
340
- if attention_mask is not None:
341
- extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
342
- else:
343
- extended_attention_mask = None
344
-
345
- embedding_output = self.embeddings(input_ids=input_ids, token_type_ids=token_type_ids)
346
- encoder_outputs = self.encoder(embedding_output, attention_mask=extended_attention_mask)
347
-
348
- return encoder_outputs
349
-
350
- def encode(
351
- self,
352
- input_ids: mx.array,
353
- attention_mask: mx.array,
354
- token_type_ids: Optional[mx.array] = None,
355
- ) -> mx.array:
356
- """Encode inputs and return mean-pooled embeddings"""
357
- token_embs = self(
358
- input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids
359
- )
360
- embeddings = self.mean_pooling(token_embs, attention_mask)
361
- return embeddings
362
-
363
-
364
- class Model(nn.Module):
365
- def __init__(self, args: ModelArgs):
366
- super().__init__()
367
- self.args = args
368
- self.model_type = args.model_type
369
- self.model = JinaBertModel(args)
370
-
371
- def __call__(
372
- self,
373
- input_ids: mx.array,
374
- attention_mask: Optional[mx.array] = None,
375
- token_type_ids: Optional[mx.array] = None,
376
- ) -> mx.array:
377
- return self.model(
378
- input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids
379
- )
380
-
381
- def encode(
382
- self,
383
- input_ids: mx.array,
384
- attention_mask: mx.array,
385
- token_type_ids: Optional[mx.array] = None,
386
- ) -> mx.array:
387
- """Encode inputs and return mean-pooled embeddings"""
388
- return self.model.encode(
389
- input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids
390
- )
391
-
392
- def sanitize(self, weights):
393
- """Remove parameters that don't exist in our model"""
394
- # No longer need to remove pooler weights since we now have them
395
- return weights
396
-
397
- @property
398
- def layers(self):
399
- return self.model.encoder.layer
@@ -1 +0,0 @@
1
- # Image generation module for MLX backend