nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,139 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, List, Optional, Union
4
-
5
-
6
- @dataclass
7
- class AudioConfig:
8
- input_feat_size: int = 80
9
- hidden_size: int = 1536
10
- conf_attention_chunk_size: int = 12
11
- conf_attention_context_left: int = 13
12
- conf_attention_context_right: int = 0
13
- conf_attention_invalid_logits_value: float = -1e9
14
- conf_attention_logit_cap: float = 50.0
15
- conf_num_attention_heads: int = 8
16
- conf_num_hidden_layers: int = 12
17
- conf_conv_kernel_size: int = 5
18
- conf_positional_bias_size: int = 256
19
- conf_reduction_factor: int = 4
20
- conf_residual_weight: float = 0.5
21
- sscp_conv_channel_size: tuple[int, int] = (128, 32)
22
- sscp_conv_group_norm_eps: float = 1e-3
23
- sscp_conv_kernel_size: tuple[tuple[int, int], tuple[int, int]] = ((3, 3), (3, 3))
24
- sscp_conv_stride_size: tuple[tuple[int, int], tuple[int, int]] = ((2, 2), (2, 2))
25
- vocab_size: int = 128
26
- sscp_conv_eps: float = 1e-3
27
- rms_norm_eps: float = 1e-6
28
- gradient_clipping: float = 10000000000.0
29
- vocab_offset: int = 262_144 + 128 # text vocab size + vision vocab size
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
-
42
- @dataclass
43
- class VisionConfig:
44
- model_type: str = "gemma3n_vision"
45
- num_hidden_layers: int = 12
46
- hidden_size: int = 2048
47
- intermediate_size: int = 8192
48
- num_attention_heads: int = 16
49
- patch_size: int = 16
50
- image_size: int = 224
51
- num_channels: int = 3
52
- rms_norm_eps: float = 1e-6
53
- vocab_size: int = 128
54
- vocab_offset: int = 262_144
55
-
56
- @classmethod
57
- def from_dict(cls, params):
58
- return cls(
59
- **{
60
- k: v
61
- for k, v in params.items()
62
- if k in inspect.signature(cls).parameters
63
- }
64
- )
65
-
66
-
67
- @dataclass
68
- class TextConfig:
69
- model_type: str
70
- hidden_size: int
71
- num_hidden_layers: int
72
- intermediate_size: int
73
- num_attention_heads: int = 2
74
- head_dim: int = 256
75
- rms_norm_eps: float = 1.0e-6
76
- vocab_size: int = 262400
77
- vocab_size_per_layer_input: int = 262144
78
- num_key_value_heads: int = 4
79
- laurel_rank: int = 64
80
- frac_shared_layers: float = 0.5
81
- altup_active_idx: int = 0
82
- pad_token_id: int = 0
83
- altup_num_inputs: int = 4
84
- altup_coef_clip: Optional[float] = None
85
- altup_correct_scale: bool = True
86
- hidden_size_per_layer_input: int = 1024
87
- rope_local_base_freq: float = 10000.0
88
- rope_traditional: bool = False
89
- rope_theta: float = 1000000.0
90
- query_pre_attn_scalar: float = 0.0625
91
- sliding_window: int = 1024
92
- rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
93
- mm_tokens_per_image: int = 256
94
- sliding_window_pattern: int = 5
95
- activation_sparsity_pattern: Optional[List[float]] = None
96
- final_logit_softcapping: float = 30.0
97
- query_rescale_scalar: float = 1.0
98
- num_kv_shared_layers: int = 0
99
- max_position_embeddings: int = 32768
100
- attn_logit_softcapping: float = 0.0
101
- layer_types: List[str] = None
102
-
103
- @classmethod
104
- def from_dict(cls, params):
105
- return cls(
106
- **{
107
- k: v
108
- for k, v in params.items()
109
- if k in inspect.signature(cls).parameters
110
- }
111
- )
112
-
113
-
114
- @dataclass
115
- class ModelConfig:
116
- text_config: TextConfig
117
- vision_config: VisionConfig
118
- audio_config: AudioConfig
119
- model_type: str
120
- vocab_size: int = 257152
121
- ignore_index: int = -100
122
- image_token_index: int = 262145
123
- audio_token_id: int = 262273
124
- image_token_id: int = 262145
125
- hidden_size: int = 2048
126
- pad_token_id: int = 0
127
- vision_soft_tokens_per_image: int = 256
128
- audio_soft_tokens_per_image: int = 188
129
- eos_token_id: Optional[List[int]] = None
130
-
131
- @classmethod
132
- def from_dict(cls, params):
133
- return cls(
134
- **{
135
- k: v
136
- for k, v in params.items()
137
- if k in inspect.signature(cls).parameters
138
- }
139
- )
@@ -1,322 +0,0 @@
1
- from typing import Optional
2
-
3
- import mlx.core as mx
4
- import mlx.nn as nn
5
-
6
- from .audio import AudioModel
7
- from .config import ModelConfig, TextConfig
8
- from .language import Gemma3nRMSNorm, LanguageModel
9
- from .vision import VisionModel
10
-
11
-
12
- def masked_scatter(input_tensor, mask, source):
13
- """MLX implementation of PyTorch's masked_scatter"""
14
-
15
- # Convert mask to boolean once
16
- mask = mask.astype(mx.bool_)
17
-
18
- # Early exit
19
- if not mask.any():
20
- return mx.broadcast_to(input_tensor, mask.shape)
21
-
22
- # Flatten everything once
23
- input_shape = mask.shape
24
- result_flat = mx.broadcast_to(input_tensor, input_shape).flatten()
25
- mask_flat = mask.flatten()
26
- source_flat = source.flatten()
27
-
28
- # Create selection indices using cumulative sum
29
- selection_mask = mx.cumsum(mask_flat.astype(mx.int32)) - 1
30
-
31
- # Bound check and create source selection
32
- source_len = len(source_flat)
33
- bounded_indices = selection_mask % source_len
34
-
35
- # Vectorized selection from source
36
- selected_values = source_flat[bounded_indices]
37
-
38
- result_flat = mx.where(mask_flat, selected_values, result_flat)
39
-
40
- return result_flat.reshape(input_shape)
41
-
42
-
43
- class Gemma3nMultimodalEmbedder(nn.Module):
44
- """Embeds token ids or soft tokens into language model space."""
45
-
46
- def __init__(self, multimodal_config: ModelConfig, text_config: TextConfig):
47
- super().__init__()
48
-
49
- self.multimodal_hidden_size = multimodal_config.hidden_size
50
- self.eps = multimodal_config.rms_norm_eps
51
- self.vocab_offset = multimodal_config.vocab_offset
52
- self.vocab_size = multimodal_config.vocab_size
53
- self.text_hidden_size = text_config.hidden_size
54
-
55
- self.embedding = nn.Embedding(self.vocab_size, self.multimodal_hidden_size)
56
- self.hard_embedding_norm = Gemma3nRMSNorm(
57
- self.multimodal_hidden_size, eps=self.eps
58
- )
59
- self.soft_embedding_norm = Gemma3nRMSNorm(
60
- self.multimodal_hidden_size, eps=self.eps
61
- )
62
- self.embedding_projection = nn.Linear(
63
- self.multimodal_hidden_size, self.text_hidden_size, bias=False
64
- )
65
- self.embedding_post_projection_norm = Gemma3nRMSNorm(
66
- self.text_hidden_size, eps=self.eps, with_scale=False
67
- )
68
-
69
- def __call__(
70
- self, input_ids: mx.array = None, inputs_embeds: mx.array = None
71
- ) -> mx.array:
72
- if (input_ids is None) ^ (inputs_embeds is not None):
73
- raise ValueError(
74
- "You must specify exactly one of input_ids or inputs_embeds"
75
- )
76
-
77
- if inputs_embeds is not None:
78
- emb_norm = self.soft_embedding_norm(inputs_embeds)
79
- else:
80
-
81
- hard_emb = self.embedding(input_ids - self.vocab_offset)
82
- emb_norm = self.hard_embedding_norm(hard_emb)
83
-
84
- emb_norm_proj = self.embedding_projection(emb_norm)
85
- projected = self.embedding_post_projection_norm(emb_norm_proj)
86
- return projected
87
-
88
-
89
- class Model(nn.Module):
90
- def __init__(self, config: ModelConfig):
91
- super().__init__()
92
- self.model_type = config.model_type
93
- self.config = config
94
-
95
- # Text
96
- self.language_model = LanguageModel(config.text_config)
97
- self.vocab_size = config.text_config.vocab_size
98
- self.vocab_size_per_layer_input = config.text_config.vocab_size_per_layer_input
99
-
100
- # Vision
101
- self.vision_tower = VisionModel(config.vision_config)
102
- self.embed_vision = Gemma3nMultimodalEmbedder(
103
- config.vision_config, text_config=config.text_config
104
- )
105
-
106
- # Audio
107
- self.audio_tower = AudioModel(config.audio_config)
108
- self.embed_audio = Gemma3nMultimodalEmbedder(
109
- config.audio_config, text_config=config.text_config
110
- )
111
-
112
- def get_input_embeddings(
113
- self,
114
- input_ids: Optional[mx.array] = None,
115
- pixel_values: Optional[mx.array] = None,
116
- input_features: Optional[mx.array] = None,
117
- input_features_mask: Optional[mx.array] = None,
118
- **kwargs,
119
- ):
120
-
121
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
122
-
123
- per_layer_inputs_mask = mx.logical_and(
124
- input_ids >= 0, input_ids < self.vocab_size_per_layer_input
125
- )
126
- per_layer_inputs_tokens = mx.where(
127
- per_layer_inputs_mask, input_ids, mx.zeros_like(input_ids)
128
- )
129
- per_layer_inputs = self.language_model.model.get_per_layer_inputs(
130
- per_layer_inputs_tokens
131
- )
132
- if pixel_values is None and input_features is None:
133
- return inputs_embeds, per_layer_inputs
134
-
135
- if input_ids is not None:
136
-
137
- # Handle vision tokens (>= embed_vision.vocab_offset and < embed_audio.vocab_offset)
138
- vision_mask = mx.logical_and(
139
- input_ids >= self.embed_vision.vocab_offset,
140
- input_ids < self.embed_audio.vocab_offset,
141
- )
142
- dummy_vision_token_id = (
143
- self.embed_vision.vocab_offset + self.embed_vision.vocab_size - 1
144
- )
145
- vision_tokens = mx.where(vision_mask, input_ids, dummy_vision_token_id)
146
- vision_embeds_flat = self.embed_vision(input_ids=vision_tokens)
147
- inputs_embeds = mx.where(
148
- vision_mask[..., None], vision_embeds_flat, inputs_embeds
149
- )
150
-
151
- # Handle audio tokens (>= embed_audio.vocab_offset)
152
- audio_mask = input_ids >= self.embed_audio.vocab_offset
153
- dummy_audio_token_id = (
154
- self.embed_audio.vocab_offset + self.embed_audio.vocab_size - 1
155
- )
156
-
157
- audio_tokens = mx.where(audio_mask, input_ids, dummy_audio_token_id)
158
- audio_embeds_flat = self.embed_audio(input_ids=audio_tokens)
159
- inputs_embeds = mx.where(
160
- audio_mask[..., None], audio_embeds_flat, inputs_embeds
161
- )
162
- else:
163
- per_layer_inputs = None
164
-
165
- # Vision features
166
- if pixel_values is not None:
167
- image_features = self.get_image_features(
168
- pixel_values, self.vision_tower, self.config, self.embed_vision
169
- )
170
-
171
- modality = "image"
172
- inputs_embeds = self.merge_multimodal_and_text(
173
- inputs_embeds,
174
- image_features,
175
- self.construct_special_modality_mask(
176
- input_ids,
177
- inputs_embeds,
178
- self.config.image_token_id,
179
- modality=modality,
180
- ),
181
- modality=modality,
182
- )
183
-
184
- # Audio features
185
- if input_features is not None:
186
- audio_features, audio_mask = self.get_audio_features(
187
- input_features, ~input_features_mask
188
- )
189
- audio_padding_ids = mx.array([[self.vocab_size - 1]])
190
- audio_padding_embs = self.embed_audio(input_ids=audio_padding_ids)
191
- audio_features = mx.where(
192
- audio_mask[..., None], audio_padding_embs, audio_features
193
- )
194
-
195
- audio_batch_size, audio_seq_len, audio_embed_dim = audio_features.shape
196
- extra_padding_tokens = (
197
- self.config.audio_soft_tokens_per_image - audio_seq_len
198
- )
199
- extra_padding_features = mx.broadcast_to(
200
- audio_padding_embs,
201
- (audio_batch_size, extra_padding_tokens, audio_embed_dim),
202
- )
203
-
204
- audio_features = mx.concatenate(
205
- (audio_features, extra_padding_features), axis=1
206
- )
207
- modality = "audio"
208
- inputs_embeds = self.merge_multimodal_and_text(
209
- inputs_embeds,
210
- audio_features,
211
- self.construct_special_modality_mask(
212
- input_ids,
213
- inputs_embeds,
214
- self.config.audio_token_id,
215
- modality=modality,
216
- ),
217
- modality=modality,
218
- )
219
-
220
- return inputs_embeds, per_layer_inputs
221
-
222
- def get_audio_features(self, input_features, input_features_mask):
223
- audio_outputs, audio_mask = self.audio_tower(
224
- input_features, input_features_mask
225
- )
226
- return self.embed_audio(inputs_embeds=audio_outputs), audio_mask
227
-
228
- @staticmethod
229
- def get_image_features(pixel_values, vision_tower, config, embed_vision):
230
- vision_outputs = vision_tower(
231
- pixel_values,
232
- output_hidden_states=True,
233
- )
234
- vision_outputs = vision_outputs.transpose(0, 3, 1, 2)
235
- vision_outputs = vision_outputs.reshape(
236
- vision_outputs.shape[0],
237
- config.vision_config.hidden_size,
238
- config.vision_soft_tokens_per_image,
239
- ).transpose(0, 2, 1)
240
-
241
- # Normalize and embed the soft tokens into language model space.
242
- vision_outputs *= config.vision_config.hidden_size**0.5
243
- return embed_vision(inputs_embeds=vision_outputs)
244
-
245
- def construct_special_modality_mask(
246
- self, input_ids, inputs_embeds, token_id, modality="image"
247
- ):
248
- if input_ids is None:
249
- embed_fn = (
250
- self.embed_audio
251
- if modality == "audio"
252
- else self.language_model.model.embed_tokens
253
- )
254
- special_modality_mask = inputs_embeds == embed_fn(
255
- input_ids=mx.array([token_id])
256
- )
257
- else:
258
- special_modality_mask = mx.expand_dims(input_ids == token_id, -1)
259
- special_modality_mask = mx.broadcast_to(
260
- special_modality_mask, inputs_embeds.shape
261
- )
262
- return special_modality_mask
263
-
264
- @staticmethod
265
- def merge_multimodal_and_text(
266
- inputs_embeds, features, special_modality_mask, modality="image"
267
- ):
268
- # Count special tokens by summing the mask
269
- modality_tokens_in_text = special_modality_mask.sum()
270
- feature_tokens = features.size
271
-
272
- if modality_tokens_in_text != feature_tokens:
273
- raise ValueError(
274
- f"Number of {modality}s does not match number of special {modality} tokens in the input text. "
275
- f"Got {modality_tokens_in_text} {modality} tokens in the text and "
276
- f"{feature_tokens} tokens from {modality} embeddings."
277
- )
278
- features = features.astype(inputs_embeds.dtype)
279
-
280
- inputs_embeds = masked_scatter(inputs_embeds, special_modality_mask, features)
281
- return inputs_embeds
282
-
283
- def __call__(
284
- self,
285
- input_ids: mx.array,
286
- pixel_values: mx.array,
287
- mask: Optional[mx.array] = None,
288
- cache: Optional[mx.array] = None,
289
- **kwargs,
290
- ):
291
- # Audio features
292
- input_features = kwargs.pop("input_features", None)
293
- input_features_mask = kwargs.pop("input_features_mask", None)
294
- inputs_embeds, per_layer_inputs = self.get_input_embeddings(
295
- input_ids=input_ids,
296
- pixel_values=pixel_values,
297
- input_features=input_features,
298
- input_features_mask=input_features_mask,
299
- **kwargs,
300
- )
301
-
302
- logits = self.language_model(
303
- input_ids=None,
304
- cache=cache,
305
- inputs_embeds=inputs_embeds,
306
- per_layer_inputs=per_layer_inputs,
307
- )
308
- return logits
309
-
310
- def sanitize(self, weights):
311
- sanitized_weights = {}
312
- for k, v in weights.items():
313
- # if "vision_tower" not in k and "embed_vision" not in k:
314
- if k.startswith("model."):
315
- sanitized_weights[".".join(k.split(".")[1:])] = v
316
- else:
317
- sanitized_weights[k] = v
318
- return sanitized_weights
319
-
320
- @property
321
- def layers(self):
322
- return self.language_model.model.layers