nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,312 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Optional
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
|
|
8
|
-
from .config import VisionConfig
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def check_array_shape(arr):
|
|
12
|
-
shape = arr.shape
|
|
13
|
-
|
|
14
|
-
# Check if the shape has 4 dimensions
|
|
15
|
-
if len(shape) not in [4, 5]:
|
|
16
|
-
return False
|
|
17
|
-
|
|
18
|
-
B, out_channels, kH, KW, t = shape
|
|
19
|
-
|
|
20
|
-
if t == 3:
|
|
21
|
-
return True
|
|
22
|
-
|
|
23
|
-
# Check if out_channels is the largest, and kH and KW are the same
|
|
24
|
-
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
25
|
-
return True
|
|
26
|
-
else:
|
|
27
|
-
return False
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def rotate_half(x):
|
|
31
|
-
"""Rotates half the hidden dims of the input."""
|
|
32
|
-
x1 = x[..., : x.shape[-1] // 2]
|
|
33
|
-
x2 = x[..., x.shape[-1] // 2 :]
|
|
34
|
-
return mx.concatenate([-x2, x1], axis=-1)
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def apply_rotary_pos_emb_vision(tensor, freqs) -> mx.array:
|
|
38
|
-
orig_dtype = tensor.dtype
|
|
39
|
-
|
|
40
|
-
cos = mx.cos(freqs)
|
|
41
|
-
sin = mx.sin(freqs)
|
|
42
|
-
|
|
43
|
-
cos = mx.expand_dims(cos, axis=1) # Equivalent to unsqueeze(1)
|
|
44
|
-
cos = mx.tile(cos, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
|
|
45
|
-
cos = mx.expand_dims(cos, axis=0) # Equivalent to [None, ...]
|
|
46
|
-
|
|
47
|
-
sin = mx.expand_dims(sin, axis=1) # Equivalent to unsqueeze(1)
|
|
48
|
-
sin = mx.tile(sin, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
|
|
49
|
-
sin = mx.expand_dims(sin, axis=0) # Equivalent to [None, ...]
|
|
50
|
-
|
|
51
|
-
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
|
52
|
-
return output.astype(orig_dtype)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
class VisionRotaryEmbedding(nn.Module):
|
|
56
|
-
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
57
|
-
super().__init__()
|
|
58
|
-
self.dim = dim
|
|
59
|
-
self.theta = theta
|
|
60
|
-
|
|
61
|
-
def __call__(self, seqlen: int) -> mx.array:
|
|
62
|
-
inv_freq = 1.0 / (
|
|
63
|
-
self.theta ** (mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim)
|
|
64
|
-
)
|
|
65
|
-
seq = mx.arange(seqlen.tolist(), dtype=inv_freq.dtype)
|
|
66
|
-
freqs = mx.outer(seq, inv_freq)
|
|
67
|
-
return freqs
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
class PatchEmbed(nn.Module):
|
|
71
|
-
def __init__(
|
|
72
|
-
self,
|
|
73
|
-
patch_size: int = 14,
|
|
74
|
-
temporal_patch_size: int = 2,
|
|
75
|
-
in_channels: int = 3,
|
|
76
|
-
embed_dim: int = 1152,
|
|
77
|
-
) -> None:
|
|
78
|
-
super().__init__()
|
|
79
|
-
self.patch_size = patch_size
|
|
80
|
-
self.temporal_patch_size = temporal_patch_size
|
|
81
|
-
self.in_channels = in_channels
|
|
82
|
-
self.embed_dim = embed_dim
|
|
83
|
-
|
|
84
|
-
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
|
85
|
-
self.proj = nn.Conv3d(
|
|
86
|
-
in_channels,
|
|
87
|
-
embed_dim,
|
|
88
|
-
kernel_size=kernel_size,
|
|
89
|
-
stride=kernel_size,
|
|
90
|
-
bias=False,
|
|
91
|
-
)
|
|
92
|
-
|
|
93
|
-
def __call__(self, hidden_states: mx.array) -> mx.array:
|
|
94
|
-
hidden_states = hidden_states.reshape(
|
|
95
|
-
-1,
|
|
96
|
-
self.in_channels,
|
|
97
|
-
self.temporal_patch_size,
|
|
98
|
-
self.patch_size,
|
|
99
|
-
self.patch_size,
|
|
100
|
-
).moveaxis(1, 4)
|
|
101
|
-
|
|
102
|
-
hidden_states = self.proj(hidden_states)
|
|
103
|
-
hidden_states = hidden_states.reshape(-1, self.embed_dim)
|
|
104
|
-
return hidden_states
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
class PatchMerger(nn.Module):
|
|
108
|
-
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
|
109
|
-
super().__init__()
|
|
110
|
-
self.hidden_size = context_dim * (spatial_merge_size**2)
|
|
111
|
-
self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
|
|
112
|
-
self.mlp = [
|
|
113
|
-
nn.Linear(self.hidden_size, self.hidden_size),
|
|
114
|
-
nn.GELU(),
|
|
115
|
-
nn.Linear(self.hidden_size, dim),
|
|
116
|
-
]
|
|
117
|
-
|
|
118
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
119
|
-
x = self.ln_q(x).reshape(-1, self.hidden_size)
|
|
120
|
-
for layer in self.mlp:
|
|
121
|
-
x = layer(x)
|
|
122
|
-
return x
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
class Attention(nn.Module):
|
|
126
|
-
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
127
|
-
super().__init__()
|
|
128
|
-
self.num_heads = num_heads
|
|
129
|
-
self.head_dim = head_dim = dim // num_heads
|
|
130
|
-
self.scale = head_dim**-0.5
|
|
131
|
-
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
132
|
-
self.proj = nn.Linear(dim, dim)
|
|
133
|
-
|
|
134
|
-
def __call__(
|
|
135
|
-
self, x: mx.array, cu_seqlens: mx.array, rotary_pos_emb: mx.array = None
|
|
136
|
-
) -> mx.array:
|
|
137
|
-
seq_length = x.shape[0]
|
|
138
|
-
qkv = (
|
|
139
|
-
self.qkv(x).reshape(seq_length, 3, self.num_heads, -1).transpose(1, 0, 2, 3)
|
|
140
|
-
)
|
|
141
|
-
q, k, v = mx.split(qkv, 3)
|
|
142
|
-
|
|
143
|
-
q = apply_rotary_pos_emb_vision(mx.expand_dims(q, 0), rotary_pos_emb)[0]
|
|
144
|
-
k = apply_rotary_pos_emb_vision(mx.expand_dims(k, 0), rotary_pos_emb)[0]
|
|
145
|
-
attention_mask = mx.ones((1, seq_length, seq_length), dtype=x.dtype)
|
|
146
|
-
|
|
147
|
-
for i in range(1, len(cu_seqlens)):
|
|
148
|
-
start = int(cu_seqlens[i - 1])
|
|
149
|
-
end = int(cu_seqlens[i])
|
|
150
|
-
attention_mask[start:end, start:end] = 0
|
|
151
|
-
|
|
152
|
-
q = q.transpose(0, 2, 1, 3)
|
|
153
|
-
k = k.transpose(0, 2, 1, 3)
|
|
154
|
-
v = v.transpose(0, 2, 1, 3)
|
|
155
|
-
|
|
156
|
-
output = mx.fast.scaled_dot_product_attention(
|
|
157
|
-
q, k, v, scale=self.scale, mask=attention_mask
|
|
158
|
-
)
|
|
159
|
-
output = output.transpose(0, 2, 1, 3)
|
|
160
|
-
output = output.reshape(seq_length, -1)
|
|
161
|
-
return self.proj(output)
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
class MLP(nn.Module):
|
|
165
|
-
def __init__(self, dim, hidden_dim):
|
|
166
|
-
super().__init__()
|
|
167
|
-
self.activation_fn = nn.GELU(approx="fast")
|
|
168
|
-
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
169
|
-
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
170
|
-
|
|
171
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
172
|
-
x = self.activation_fn(self.fc1(x))
|
|
173
|
-
x = self.fc2(x)
|
|
174
|
-
return x
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
class Qwen2VLVisionBlock(nn.Module):
|
|
178
|
-
def __init__(self, config: VisionConfig) -> None:
|
|
179
|
-
super().__init__()
|
|
180
|
-
self.norm1 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
181
|
-
self.norm2 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
182
|
-
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
|
183
|
-
|
|
184
|
-
self.attn = Attention(dim=config.embed_dim, num_heads=config.num_heads)
|
|
185
|
-
self.mlp = MLP(dim=config.embed_dim, hidden_dim=mlp_hidden_dim)
|
|
186
|
-
|
|
187
|
-
def __call__(self, hidden_states, cu_seqlens, rotary_pos_emb) -> mx.array:
|
|
188
|
-
hidden_states = hidden_states + self.attn(
|
|
189
|
-
self.norm1(hidden_states),
|
|
190
|
-
cu_seqlens=cu_seqlens,
|
|
191
|
-
rotary_pos_emb=rotary_pos_emb,
|
|
192
|
-
)
|
|
193
|
-
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
194
|
-
return hidden_states
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
class VisionModel(nn.Module):
|
|
198
|
-
|
|
199
|
-
def __init__(self, config: VisionConfig) -> None:
|
|
200
|
-
super().__init__()
|
|
201
|
-
self.config = config
|
|
202
|
-
self.model_type = config.model_type
|
|
203
|
-
if self.model_type != "qwen2_vl":
|
|
204
|
-
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
205
|
-
self.spatial_merge_size = config.spatial_merge_size
|
|
206
|
-
|
|
207
|
-
self.patch_embed = PatchEmbed(
|
|
208
|
-
patch_size=config.patch_size,
|
|
209
|
-
temporal_patch_size=config.temporal_patch_size,
|
|
210
|
-
in_channels=config.in_channels,
|
|
211
|
-
embed_dim=config.embed_dim,
|
|
212
|
-
)
|
|
213
|
-
|
|
214
|
-
head_dim = config.embed_dim // config.num_heads
|
|
215
|
-
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
|
216
|
-
|
|
217
|
-
self.blocks = [Qwen2VLVisionBlock(config) for _ in range(config.depth)]
|
|
218
|
-
self.merger = PatchMerger(dim=config.hidden_size, context_dim=config.embed_dim)
|
|
219
|
-
|
|
220
|
-
def rot_pos_emb(self, grid_thw):
|
|
221
|
-
pos_ids = []
|
|
222
|
-
|
|
223
|
-
for t, h, w in grid_thw:
|
|
224
|
-
h, w = int(h), int(w) # Ensure h and w are integers
|
|
225
|
-
hpos_ids = mx.expand_dims(mx.arange(h), 1)
|
|
226
|
-
hpos_ids = mx.repeat(hpos_ids, w, axis=1)
|
|
227
|
-
hpos_ids = hpos_ids.reshape(
|
|
228
|
-
h // self.spatial_merge_size,
|
|
229
|
-
self.spatial_merge_size,
|
|
230
|
-
w // self.spatial_merge_size,
|
|
231
|
-
self.spatial_merge_size,
|
|
232
|
-
)
|
|
233
|
-
hpos_ids = mx.transpose(hpos_ids, (0, 2, 1, 3))
|
|
234
|
-
hpos_ids = hpos_ids.flatten()
|
|
235
|
-
|
|
236
|
-
wpos_ids = mx.expand_dims(mx.arange(w), 0)
|
|
237
|
-
wpos_ids = mx.repeat(wpos_ids, h, axis=0)
|
|
238
|
-
wpos_ids = wpos_ids.reshape(
|
|
239
|
-
h // self.spatial_merge_size,
|
|
240
|
-
self.spatial_merge_size,
|
|
241
|
-
w // self.spatial_merge_size,
|
|
242
|
-
self.spatial_merge_size,
|
|
243
|
-
)
|
|
244
|
-
wpos_ids = mx.transpose(wpos_ids, (0, 2, 1, 3))
|
|
245
|
-
wpos_ids = wpos_ids.flatten()
|
|
246
|
-
|
|
247
|
-
stacked_pos_ids = mx.stack([hpos_ids, wpos_ids], axis=-1)
|
|
248
|
-
pos_ids.append(mx.tile(stacked_pos_ids, (t, 1)))
|
|
249
|
-
|
|
250
|
-
pos_ids = mx.concatenate(pos_ids, axis=0)
|
|
251
|
-
max_grid_size = mx.max(grid_thw[:, 1:])
|
|
252
|
-
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
253
|
-
|
|
254
|
-
rotary_pos_emb_full = rotary_pos_emb_full[pos_ids]
|
|
255
|
-
|
|
256
|
-
return rotary_pos_emb_full.reshape(pos_ids.shape[0], -1)
|
|
257
|
-
|
|
258
|
-
def __call__(
|
|
259
|
-
self,
|
|
260
|
-
hidden_states: mx.array,
|
|
261
|
-
grid_thw: mx.array,
|
|
262
|
-
output_hidden_states: Optional[bool] = None,
|
|
263
|
-
) -> mx.array:
|
|
264
|
-
|
|
265
|
-
hidden_states = self.patch_embed(hidden_states)
|
|
266
|
-
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
|
267
|
-
|
|
268
|
-
# Assuming grid_thw has shape (batch_size, 3)
|
|
269
|
-
batch_size = grid_thw.shape[0]
|
|
270
|
-
|
|
271
|
-
# Calculate cu_seqlens for each item in the batch
|
|
272
|
-
cu_seqlens = []
|
|
273
|
-
for i in range(batch_size):
|
|
274
|
-
seq_len = grid_thw[i, 1] * grid_thw[i, 2]
|
|
275
|
-
cu_seqlens.append(mx.repeat(seq_len, grid_thw[i, 0]))
|
|
276
|
-
|
|
277
|
-
# Concatenate the cu_seqlens for all items in the batch
|
|
278
|
-
cu_seqlens = mx.concatenate(cu_seqlens)
|
|
279
|
-
|
|
280
|
-
cu_seqlens = mx.cumsum(cu_seqlens.astype(mx.int32), axis=0)
|
|
281
|
-
cu_seqlens = mx.pad(cu_seqlens, (1, 0), mode="constant", constant_values=0)
|
|
282
|
-
|
|
283
|
-
encoder_states = (hidden_states,) if output_hidden_states else None
|
|
284
|
-
|
|
285
|
-
for blk in self.blocks:
|
|
286
|
-
hidden_states = blk(
|
|
287
|
-
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
|
288
|
-
)
|
|
289
|
-
if output_hidden_states:
|
|
290
|
-
encoder_states = encoder_states + (hidden_states,)
|
|
291
|
-
|
|
292
|
-
return self.merger(hidden_states)
|
|
293
|
-
|
|
294
|
-
def sanitize(self, weights):
|
|
295
|
-
sanitized_weights = {}
|
|
296
|
-
for k, v in weights.items():
|
|
297
|
-
if "position_ids" in k:
|
|
298
|
-
# Remove unused position_ids
|
|
299
|
-
continue
|
|
300
|
-
elif "patch_embed.proj.weight" in k:
|
|
301
|
-
# PyTorch conv2d weight tensors have shape:
|
|
302
|
-
# [out_channels, in_channels, kH, KW]
|
|
303
|
-
# MLX conv2d expects the weight be of shape:
|
|
304
|
-
# [out_channels, kH, KW, in_channels]
|
|
305
|
-
if check_array_shape(v):
|
|
306
|
-
sanitized_weights[k] = v
|
|
307
|
-
else:
|
|
308
|
-
sanitized_weights[k] = v.transpose(0, 2, 3, 4, 1)
|
|
309
|
-
else:
|
|
310
|
-
sanitized_weights[k] = v
|
|
311
|
-
|
|
312
|
-
return sanitized_weights
|
|
File without changes
|
|
@@ -1,117 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Any, Optional
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
from mlx.utils import tree_map
|
|
7
|
-
|
|
8
|
-
from .cache import QuantizedKVCache
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
@dataclass
|
|
12
|
-
class BaseModelArgs:
|
|
13
|
-
@classmethod
|
|
14
|
-
def from_dict(cls, params):
|
|
15
|
-
return cls(**{k: v for k, v in params.items() if k in inspect.signature(cls).parameters})
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def create_causal_mask(
|
|
19
|
-
N: int,
|
|
20
|
-
offset: int = 0,
|
|
21
|
-
window_size: Optional[int] = None,
|
|
22
|
-
lengths: Optional[mx.array] = None,
|
|
23
|
-
):
|
|
24
|
-
rinds = mx.arange(offset + N)
|
|
25
|
-
linds = mx.arange(offset, offset + N) if offset else rinds
|
|
26
|
-
linds = linds[:, None]
|
|
27
|
-
rinds = rinds[None]
|
|
28
|
-
mask = linds >= rinds
|
|
29
|
-
if window_size is not None:
|
|
30
|
-
mask = mask & (linds <= rinds + window_size)
|
|
31
|
-
if lengths is not None:
|
|
32
|
-
lengths = lengths[:, None, None, None]
|
|
33
|
-
mask = mask & (rinds < lengths)
|
|
34
|
-
return mask
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def create_attention_mask(h: mx.array, cache: Optional[Any] = None, return_array: bool = False):
|
|
38
|
-
T = h.shape[1]
|
|
39
|
-
if T > 1:
|
|
40
|
-
offset = 0
|
|
41
|
-
window_size = None
|
|
42
|
-
if cache is not None and cache[0] is not None:
|
|
43
|
-
c = cache[0]
|
|
44
|
-
offset = c.offset
|
|
45
|
-
if hasattr(c, "max_size"):
|
|
46
|
-
window_size = c.max_size
|
|
47
|
-
offset = min(window_size, offset)
|
|
48
|
-
return_array = return_array or offset + T > window_size
|
|
49
|
-
if return_array:
|
|
50
|
-
return create_causal_mask(T, offset, window_size=window_size)
|
|
51
|
-
else:
|
|
52
|
-
return "causal"
|
|
53
|
-
else:
|
|
54
|
-
mask = None
|
|
55
|
-
return mask
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def quantized_scaled_dot_product_attention(
|
|
59
|
-
queries: mx.array,
|
|
60
|
-
q_keys: tuple[mx.array, mx.array, mx.array],
|
|
61
|
-
q_values: tuple[mx.array, mx.array, mx.array],
|
|
62
|
-
scale: float,
|
|
63
|
-
mask: Optional[mx.array],
|
|
64
|
-
group_size: int = 64,
|
|
65
|
-
bits: int = 8,
|
|
66
|
-
) -> mx.array:
|
|
67
|
-
B, n_q_heads, L, D = queries.shape
|
|
68
|
-
n_kv_heads = q_keys[0].shape[-3]
|
|
69
|
-
n_repeats = n_q_heads // n_kv_heads
|
|
70
|
-
|
|
71
|
-
queries *= scale
|
|
72
|
-
|
|
73
|
-
if n_repeats > 1:
|
|
74
|
-
queries = mx.reshape(queries, (B, n_kv_heads, n_repeats, L, D))
|
|
75
|
-
q_keys = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_keys)
|
|
76
|
-
q_values = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_values)
|
|
77
|
-
|
|
78
|
-
scores = mx.quantized_matmul(queries, *q_keys, transpose=True, group_size=group_size, bits=bits)
|
|
79
|
-
if mask is not None:
|
|
80
|
-
if isinstance(mask, str):
|
|
81
|
-
qL, kL = scores.shape[-2:]
|
|
82
|
-
q_indices = mx.arange(kL - qL, kL)
|
|
83
|
-
k_indices = mx.arange(kL)
|
|
84
|
-
mask = q_indices[:, None] >= k_indices[None]
|
|
85
|
-
if mask.dtype == mx.bool_:
|
|
86
|
-
scores = mx.where(mask, scores, mx.finfo(scores.dtype).min)
|
|
87
|
-
else:
|
|
88
|
-
scores += mask
|
|
89
|
-
scores = mx.softmax(scores, axis=-1, precise=True)
|
|
90
|
-
out = mx.quantized_matmul(scores, *q_values, transpose=False, group_size=group_size, bits=bits)
|
|
91
|
-
|
|
92
|
-
if n_repeats > 1:
|
|
93
|
-
out = mx.reshape(out, (B, n_q_heads, L, D))
|
|
94
|
-
|
|
95
|
-
return out
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
def scaled_dot_product_attention(
|
|
99
|
-
queries,
|
|
100
|
-
keys,
|
|
101
|
-
values,
|
|
102
|
-
cache,
|
|
103
|
-
scale: float,
|
|
104
|
-
mask: Optional[mx.array],
|
|
105
|
-
) -> mx.array:
|
|
106
|
-
if isinstance(cache, QuantizedKVCache):
|
|
107
|
-
return quantized_scaled_dot_product_attention(
|
|
108
|
-
queries,
|
|
109
|
-
keys,
|
|
110
|
-
values,
|
|
111
|
-
scale=scale,
|
|
112
|
-
mask=mask,
|
|
113
|
-
group_size=cache.group_size,
|
|
114
|
-
bits=cache.bits,
|
|
115
|
-
)
|
|
116
|
-
else:
|
|
117
|
-
return mx.fast.scaled_dot_product_attention(queries, keys, values, scale=scale, mask=mask)
|