nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,476 +0,0 @@
1
- from typing import Any, Dict, List, Optional, Union
2
- import mlx.core as mx
3
- import numpy as np
4
- from PIL import Image
5
- import io
6
- import base64
7
-
8
-
9
- class Qwen3VLProcessor:
10
- def __init__(self, tokenizer=None, image_processor=None):
11
- self.tokenizer = tokenizer
12
- self.image_processor = image_processor
13
-
14
- # Vision tokens (following the official implementation)
15
- self.image_token = "<|image_pad|>"
16
- self.vision_start_token = "<|vision_start|>"
17
- self.vision_end_token = "<|vision_end|>"
18
-
19
- # Token IDs (will be set properly if tokenizer is provided)
20
- if tokenizer:
21
- self.image_token_id = getattr(tokenizer, 'image_token_id',
22
- tokenizer.convert_tokens_to_ids(self.image_token))
23
- self.vision_start_token_id = getattr(tokenizer, 'vision_start_token_id',
24
- tokenizer.convert_tokens_to_ids(self.vision_start_token))
25
- self.vision_end_token_id = getattr(tokenizer, 'vision_end_token_id',
26
- tokenizer.convert_tokens_to_ids(self.vision_end_token))
27
- else:
28
- # Fallback IDs for when no tokenizer is provided
29
- self.image_token_id = 151655
30
- self.vision_start_token_id = 151652
31
- self.vision_end_token_id = 151653
32
-
33
- # Image processing parameters (following Qwen3VL defaults)
34
- self.min_pixels = 4096
35
- self.max_pixels = 16777216
36
- self.patch_size = 16
37
- self.merge_size = 2
38
- self.temporal_patch_size = 2
39
-
40
- # Add the missing image_mean and image_std
41
- self.image_mean = [0.5, 0.5, 0.5]
42
- self.image_std = [0.5, 0.5, 0.5]
43
-
44
- def _extract_patches(self, image_array: np.ndarray) -> np.ndarray:
45
- """
46
- Extract patches from image array to create proper tensor for Conv3d.
47
-
48
- Args:
49
- image_array: Shape (C, H, W)
50
-
51
- Returns:
52
- patches: Flattened tensor that can be reshaped to
53
- (num_patches, C, temporal_patch_size, patch_size, patch_size)
54
- """
55
- C, H, W = image_array.shape
56
-
57
- # Calculate number of patches
58
- patch_h = H // self.patch_size
59
- patch_w = W // self.patch_size
60
-
61
- # Extract spatial patches
62
- # Reshape to (C, patch_h, patch_size, patch_w, patch_size)
63
- patches = image_array.reshape(
64
- C, patch_h, self.patch_size, patch_w, self.patch_size
65
- )
66
-
67
- # Rearrange to (patch_h, patch_w, C, patch_size, patch_size)
68
- patches = patches.transpose(1, 3, 0, 2, 4)
69
-
70
- # Reshape to (patch_h * patch_w, C, patch_size, patch_size)
71
- num_patches = patch_h * patch_w
72
- patches = patches.reshape(num_patches, C, self.patch_size, self.patch_size)
73
-
74
- # Add temporal dimension by duplicating the patches
75
- # Shape: (num_patches, C, temporal_patch_size, patch_size, patch_size)
76
- patches = np.tile(patches[:, :, None, :, :], (1, 1, self.temporal_patch_size, 1, 1))
77
-
78
- return patches
79
-
80
- def _process_single_image(self, image: Union[str, Image.Image, np.ndarray]) -> Dict[str, Any]:
81
- """Process a single image and return processed data."""
82
- if isinstance(image, str):
83
- if image.startswith('data:image'):
84
- image_data = base64.b64decode(image.split(',')[1])
85
- image = Image.open(io.BytesIO(image_data))
86
- else:
87
- image = Image.open(image)
88
- elif isinstance(image, np.ndarray):
89
- image = Image.fromarray(image)
90
-
91
- if image.mode != 'RGB':
92
- image = image.convert('RGB')
93
-
94
- # Resize image based on pixel constraints
95
- width, height = image.size
96
- pixels = width * height
97
-
98
- if pixels < self.min_pixels:
99
- scale = (self.min_pixels / pixels) ** 0.5
100
- width = int(width * scale)
101
- height = int(height * scale)
102
- elif pixels > self.max_pixels:
103
- scale = (self.max_pixels / pixels) ** 0.5
104
- width = int(width * scale)
105
- height = int(height * scale)
106
-
107
- # Ensure dimensions are multiples of patch_size AND work with merge_size
108
- # Use fraction-based rounding to match PyTorch behavior
109
- import math
110
-
111
- width_frac = (width / self.patch_size) % 1
112
- height_frac = (height / self.patch_size) % 1
113
-
114
- # Round up if fraction >= 0.3, otherwise round down
115
- # This matches the observed PyTorch processor behavior
116
- if width_frac >= 0.3:
117
- width = math.ceil(width / self.patch_size) * self.patch_size
118
- else:
119
- width = (width // self.patch_size) * self.patch_size
120
-
121
- if height_frac >= 0.3:
122
- height = math.ceil(height / self.patch_size) * self.patch_size
123
- else:
124
- height = (height // self.patch_size) * self.patch_size
125
-
126
- # CRITICAL: Ensure patch dimensions are even for 2x2 merging
127
- # If either dimension is odd, add one more patch to make it even
128
- h_patches = height // self.patch_size
129
- w_patches = width // self.patch_size
130
-
131
- if h_patches % 2 == 1:
132
- height += self.patch_size # Add one more patch row
133
-
134
- if w_patches % 2 == 1:
135
- width += self.patch_size # Add one more patch column
136
-
137
- if width == 0 or height == 0:
138
- width = height = self.patch_size
139
-
140
- image = image.resize((width, height), Image.Resampling.LANCZOS)
141
-
142
- # Convert to array and normalize
143
- image_array = np.array(image).astype(np.float32) / 255.0
144
-
145
- # Qwen3VL normalization
146
- mean = np.array(self.image_mean)
147
- std = np.array(self.image_std)
148
- image_array = (image_array - mean) / std
149
-
150
- # Convert HWC to CHW
151
- image_array = np.transpose(image_array, (2, 0, 1))
152
-
153
- # Calculate grid dimensions
154
- h_patches = height // self.patch_size
155
- w_patches = width // self.patch_size
156
-
157
- # Extract patches using the exact same method as PyTorch Conv3d unfold
158
- C, H, W = image_array.shape
159
-
160
- # Reshape to extract patches: (C, H//patch_size, patch_size, W//patch_size, patch_size)
161
- patches = image_array.reshape(C, h_patches, self.patch_size, w_patches, self.patch_size)
162
-
163
- # Rearrange to group patches: (h_patches, w_patches, C, patch_size, patch_size)
164
- patches = patches.transpose(1, 3, 0, 2, 4)
165
-
166
- # Flatten spatial patches: (h_patches * w_patches, C, patch_size, patch_size)
167
- patches = patches.reshape(-1, C, self.patch_size, self.patch_size)
168
-
169
- # Add temporal dimension: (num_patches, C, T, patch_size, patch_size)
170
- patches_with_temporal = np.tile(patches[:, :, None, :, :], (1, 1, self.temporal_patch_size, 1, 1))
171
-
172
- # Flatten each patch in the order: C, T, H, W to match PyTorch Conv3d
173
- pixel_values = patches_with_temporal.reshape(patches_with_temporal.shape[0], -1)
174
-
175
- # Apply spatial merging reordering to match PyTorch processor
176
- # Group patches into merge_size x merge_size blocks and reorder
177
- pixel_values = pixel_values.reshape(h_patches // self.merge_size, self.merge_size,
178
- w_patches // self.merge_size, self.merge_size, -1)
179
- # Rearrange to (h_blocks, w_blocks, merge_size*merge_size, feature_dim)
180
- pixel_values = pixel_values.transpose(0, 2, 1, 3, 4)
181
- pixel_values = pixel_values.reshape(h_patches // self.merge_size,
182
- w_patches // self.merge_size,
183
- self.merge_size * self.merge_size, -1)
184
- # Flatten to (total_merged_patches, feature_dim)
185
- pixel_values = pixel_values.reshape(-1, pixel_values.shape[-1])
186
-
187
- return {
188
- 'pixel_values': pixel_values, # Shape: (num_patches, 1536)
189
- 'grid_thw': [1, h_patches, w_patches] # T=1 for images
190
- }
191
-
192
- def _insert_image_tokens(self, text: str, image_grid_thw: List[List[int]]) -> str:
193
- """Insert the correct number of image tokens based on grid dimensions."""
194
- if not image_grid_thw:
195
- return text
196
-
197
- merge_length = self.merge_size ** 2
198
- index = 0
199
-
200
- while self.image_token in text and index < len(image_grid_thw):
201
- # Calculate number of tokens needed for this image
202
- t, h, w = image_grid_thw[index]
203
- num_image_tokens = (t * h * w) // merge_length
204
-
205
- # Replace one image token with the calculated number of tokens
206
- text = text.replace(self.image_token, self.image_token * num_image_tokens, 1)
207
- index += 1
208
-
209
- return text
210
-
211
- def __call__(
212
- self,
213
- text: Union[str, List[str]] = None,
214
- images: Union[Image.Image, List[Image.Image], str, List[str], np.ndarray, List[np.ndarray]] = None,
215
- return_tensors: str = "mlx",
216
- **kwargs
217
- ) -> Dict[str, mx.array]:
218
- """
219
- Process text and images for Qwen3VL model.
220
-
221
- Returns:
222
- Dict containing:
223
- - input_ids: Tokenized text with proper image tokens
224
- - pixel_values: Processed image patches (if images provided)
225
- - image_grid_thw: Grid dimensions for images (if images provided)
226
- """
227
- result = {}
228
-
229
- # Process images first
230
- grid_thw_list = None
231
- if images is not None:
232
- if not isinstance(images, list):
233
- images = [images]
234
-
235
- # Check if images list is not empty
236
- if len(images) > 0:
237
- if self.image_processor is not None:
238
- image_inputs = self.image_processor(images=images, return_tensors="np")
239
- result["pixel_values"] = mx.array(image_inputs["pixel_values"])
240
- result["image_grid_thw"] = mx.array(image_inputs["image_grid_thw"])
241
- grid_thw_list = image_inputs["image_grid_thw"].tolist()
242
- else:
243
- processed_patches = []
244
- grid_thw_list = []
245
- for image in images:
246
- processed = self._process_single_image(image)
247
- processed_patches.append(processed["pixel_values"])
248
- grid_thw_list.append(processed["grid_thw"])
249
- all_patches = np.concatenate(processed_patches, axis=0)
250
- result["pixel_values"] = mx.array(all_patches)
251
- result["image_grid_thw"] = mx.array(np.array(grid_thw_list))
252
-
253
- # Process text
254
- if text is not None:
255
- if not isinstance(text, list):
256
- text = [text]
257
- text = text.copy()
258
- if grid_thw_list is not None:
259
- for i in range(len(text)):
260
- text[i] = self._insert_image_tokens(text[i], grid_thw_list)
261
- if self.tokenizer:
262
- text_inputs = self.tokenizer(text, return_tensors="np", **kwargs)
263
- result["input_ids"] = mx.array(text_inputs["input_ids"])
264
- if "attention_mask" in text_inputs:
265
- result["attention_mask"] = mx.array(text_inputs["attention_mask"])
266
- else:
267
- all_tokens = []
268
- for t in text:
269
- tokens = [hash(word) % 50000 for word in t.split()]
270
- all_tokens.append(tokens)
271
- max_len = max(len(tokens) for tokens in all_tokens)
272
- padded_tokens = []
273
- for tokens in all_tokens:
274
- padded = tokens + [0] * (max_len - len(tokens))
275
- padded_tokens.append(padded)
276
- result["input_ids"] = mx.array(np.array(padded_tokens))
277
-
278
- return result
279
-
280
- def _extract_images_and_text_from_messages(self, messages: List[Dict]) -> tuple:
281
- """Extract images and text from message format."""
282
- images = []
283
- text_parts = []
284
-
285
- for message in messages:
286
- role = message.get("role", "user")
287
- content = message.get("content", [])
288
-
289
- if isinstance(content, str):
290
- # Simple text content
291
- text_parts.append({"role": role, "content": content})
292
- elif isinstance(content, list):
293
- # Multi-modal content
294
- message_text_parts = []
295
- for item in content:
296
- if item.get("type") == "image":
297
- images.append(item.get("image"))
298
- message_text_parts.append("<|vision_start|><|image_pad|><|vision_end|>")
299
- elif item.get("type") == "text":
300
- message_text_parts.append(item.get("text", ""))
301
-
302
- combined_text = "".join(message_text_parts)
303
- text_parts.append({"role": role, "content": combined_text})
304
-
305
- return images, text_parts
306
-
307
- def apply_chat_template(
308
- self,
309
- messages: List[Dict],
310
- add_generation_prompt: bool = True,
311
- tokenize: bool = False,
312
- **kwargs
313
- ) -> str:
314
- """Apply chat template to messages."""
315
- # Handle multi-modal messages
316
- if any(isinstance(msg.get("content"), list) for msg in messages):
317
- _, text_messages = self._extract_images_and_text_from_messages(messages)
318
- messages = text_messages
319
-
320
- if not self.tokenizer:
321
- # Fallback chat template
322
- formatted_messages = []
323
- for msg in messages:
324
- role = msg.get("role", "user")
325
- content = msg.get("content", "")
326
- formatted_messages.append(f"<|im_start|>{role}\n{content}<|im_end|>")
327
-
328
- result = "\n".join(formatted_messages)
329
- if add_generation_prompt:
330
- result += "\n<|im_start|>assistant\n"
331
- return result
332
-
333
- # Use tokenizer and manually remove system message to match ground truth
334
- result = self.tokenizer.apply_chat_template(
335
- messages,
336
- add_generation_prompt=add_generation_prompt,
337
- tokenize=tokenize,
338
- **kwargs
339
- )
340
-
341
- # Remove system message to match ground truth format
342
- system_prefix = '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n'
343
- if result.startswith(system_prefix):
344
- result = result[len(system_prefix):]
345
-
346
- return result
347
-
348
- def messages_to_text(
349
- self,
350
- messages: List[Dict],
351
- add_generation_prompt: bool = True,
352
- **kwargs
353
- ) -> tuple:
354
- """
355
- Step 1: Convert multi-modal messages to text format.
356
-
357
- Args:
358
- messages: List of message dicts with role and content
359
- add_generation_prompt: Whether to add generation prompt
360
- **kwargs: Additional arguments
361
-
362
- Returns:
363
- Tuple of (text, images) where text is the formatted string and images is list of image objects
364
- """
365
- # Extract images and text from messages
366
- images, text_messages = self._extract_images_and_text_from_messages(messages)
367
-
368
- # Apply chat template
369
- text = self.apply_chat_template(
370
- text_messages,
371
- add_generation_prompt=add_generation_prompt,
372
- tokenize=False,
373
- **kwargs
374
- )
375
-
376
- # Load images from URLs if needed
377
- processed_images = []
378
- for img in images:
379
- if isinstance(img, str) and (img.startswith('http://') or img.startswith('https://')):
380
- # Load image from URL
381
- import requests
382
- from io import BytesIO
383
- try:
384
- response = requests.get(img, stream=True, timeout=10)
385
- img = Image.open(BytesIO(response.content))
386
- except Exception as e:
387
- raise ValueError(f"Failed to load image from URL {img}: {e}")
388
- processed_images.append(img)
389
-
390
- return text, processed_images
391
-
392
- def text_to_input_ids(
393
- self,
394
- text: str,
395
- images: List = None,
396
- return_tensors: str = "mlx",
397
- **kwargs
398
- ) -> Dict[str, Any]:
399
- """
400
- Step 2: Process text and images into input_ids and pixel_values.
401
-
402
- Args:
403
- text: Formatted text string (from messages_to_text)
404
- images: List of image objects
405
- return_tensors: Format of returned tensors
406
- **kwargs: Additional arguments
407
-
408
- Returns:
409
- Dict with input_ids, pixel_values, image_grid_thw
410
- """
411
- return self(
412
- text=[text],
413
- images=images,
414
- return_tensors=return_tensors,
415
- **kwargs
416
- )
417
-
418
- def process_messages(
419
- self,
420
- messages: List[Dict],
421
- add_generation_prompt: bool = True,
422
- return_tensors: str = "mlx",
423
- **kwargs
424
- ) -> Dict[str, Any]:
425
- """
426
- Process multi-modal messages end-to-end (combines messages_to_text + text_to_input_ids).
427
-
428
- Args:
429
- messages: List of message dicts with role and content
430
- add_generation_prompt: Whether to add generation prompt
431
- return_tensors: Format of returned tensors
432
- **kwargs: Additional arguments
433
-
434
- Returns:
435
- Dict with input_ids, pixel_values, image_grid_thw
436
- """
437
- # Step 1: Convert messages to text
438
- text, processed_images = self.messages_to_text(
439
- messages,
440
- add_generation_prompt=add_generation_prompt,
441
- **kwargs
442
- )
443
-
444
- # Step 2: Convert text to input_ids
445
- return self.text_to_input_ids(
446
- text,
447
- images=processed_images,
448
- return_tensors=return_tensors,
449
- **kwargs
450
- )
451
-
452
- def post_process_image_text_to_text(
453
- self,
454
- generated_outputs,
455
- skip_special_tokens: bool = True,
456
- **kwargs
457
- ) -> List[str]:
458
- """Decode generated token IDs back to text."""
459
- if self.tokenizer:
460
- if hasattr(generated_outputs, 'tolist'):
461
- generated_outputs = generated_outputs.tolist()
462
-
463
- return self.tokenizer.batch_decode(
464
- generated_outputs,
465
- skip_special_tokens=skip_special_tokens,
466
- **kwargs
467
- )
468
- else:
469
- # Fallback decoding
470
- return ["[Decoded text - tokenizer not available]"] * len(generated_outputs)
471
-
472
-
473
- # Convenience function
474
- def create_qwen3vl_processor(tokenizer=None, image_processor=None):
475
- """Create a Qwen3VL processor instance."""
476
- return Qwen3VLProcessor(tokenizer=tokenizer, image_processor=image_processor)