nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,472 +0,0 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
import inspect
|
|
3
|
-
import json
|
|
4
|
-
import math
|
|
5
|
-
from dataclasses import dataclass
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
from typing import List, Optional, Tuple, Union
|
|
8
|
-
|
|
9
|
-
import mlx.core as mx
|
|
10
|
-
import mlx.nn as nn
|
|
11
|
-
import numpy as np
|
|
12
|
-
from huggingface_hub import snapshot_download
|
|
13
|
-
from PIL import Image
|
|
14
|
-
from transformers import AutoProcessor
|
|
15
|
-
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
|
16
|
-
from transformers.image_utils import to_numpy_array
|
|
17
|
-
|
|
18
|
-
from ..base import expand2square
|
|
19
|
-
from .language import LanguageModel, TextConfig
|
|
20
|
-
from .processing_deepsek_vl_v2 import DeepseekVLV2Processor
|
|
21
|
-
from .vision import VisionConfig, VisionModel
|
|
22
|
-
|
|
23
|
-
AutoProcessor.register("deepseek_vl_v2", DeepseekVLV2Processor)
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
@dataclass
|
|
27
|
-
class ProjectorConfig:
|
|
28
|
-
projector_type: str = "downsample_mlp_gelu"
|
|
29
|
-
input_dim: int = 1152
|
|
30
|
-
n_embed: int = 2048
|
|
31
|
-
depth: int = 2
|
|
32
|
-
mlp_ratio: int = 1
|
|
33
|
-
downsample_ratio: int = 2
|
|
34
|
-
token_pooling: bool = False
|
|
35
|
-
|
|
36
|
-
@classmethod
|
|
37
|
-
def from_dict(cls, params):
|
|
38
|
-
return cls(
|
|
39
|
-
**{
|
|
40
|
-
k: v
|
|
41
|
-
for k, v in params.items()
|
|
42
|
-
if k in inspect.signature(cls).parameters
|
|
43
|
-
}
|
|
44
|
-
)
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
@dataclass
|
|
48
|
-
class ModelConfig:
|
|
49
|
-
text_config: TextConfig
|
|
50
|
-
vision_config: VisionConfig
|
|
51
|
-
projector_config: ProjectorConfig
|
|
52
|
-
model_type: str
|
|
53
|
-
ignore_index: int = -100
|
|
54
|
-
image_token_index: int = 100015
|
|
55
|
-
vision_feature_select_strategy: str = "default"
|
|
56
|
-
select_layer: int = -1
|
|
57
|
-
pad_id: int = 100001
|
|
58
|
-
num_image_tokens: int = 576
|
|
59
|
-
vocab_size: int = 32000
|
|
60
|
-
tile_tag: str = "2D"
|
|
61
|
-
global_view_pos: str = "head"
|
|
62
|
-
eos_token_id: Optional[List[int]] = None
|
|
63
|
-
|
|
64
|
-
@classmethod
|
|
65
|
-
def from_dict(cls, params):
|
|
66
|
-
if "language_config" in params:
|
|
67
|
-
params["text_config"] = params["language_config"]
|
|
68
|
-
del params["language_config"]
|
|
69
|
-
|
|
70
|
-
return cls(
|
|
71
|
-
**{
|
|
72
|
-
k: v
|
|
73
|
-
for k, v in params.items()
|
|
74
|
-
if k in inspect.signature(cls).parameters
|
|
75
|
-
}
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
class MlpProjector(nn.Module):
|
|
80
|
-
def __init__(self, config: ProjectorConfig):
|
|
81
|
-
super().__init__()
|
|
82
|
-
self.config = config
|
|
83
|
-
if config.projector_config.projector_type == "identity":
|
|
84
|
-
modules = nn.Identity()
|
|
85
|
-
elif config.projector_config.projector_type == "linear":
|
|
86
|
-
modules = nn.Linear(
|
|
87
|
-
config.projector_config.input_dim, config.projector_config.n_embed
|
|
88
|
-
)
|
|
89
|
-
elif config.projector_config.projector_type == "mlp_gelu":
|
|
90
|
-
mlp_depth = config.projector_config.depth
|
|
91
|
-
modules = [
|
|
92
|
-
nn.Linear(
|
|
93
|
-
config.projector_config.input_dim, config.projector_config.n_embed
|
|
94
|
-
)
|
|
95
|
-
]
|
|
96
|
-
for _ in range(1, mlp_depth):
|
|
97
|
-
modules.append(nn.GELU())
|
|
98
|
-
modules.append(
|
|
99
|
-
nn.Linear(
|
|
100
|
-
config.projector_config.n_embed, config.projector_config.n_embed
|
|
101
|
-
)
|
|
102
|
-
)
|
|
103
|
-
elif config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
104
|
-
mlp_depth = config.projector_config.depth
|
|
105
|
-
mlp_ratio = config.projector_config.mlp_ratio
|
|
106
|
-
modules = [
|
|
107
|
-
nn.Linear(
|
|
108
|
-
config.projector_config.input_dim
|
|
109
|
-
* config.projector_config.downsample_ratio
|
|
110
|
-
* config.projector_config.downsample_ratio,
|
|
111
|
-
config.projector_config.n_embed * mlp_ratio,
|
|
112
|
-
)
|
|
113
|
-
]
|
|
114
|
-
for _ in range(1, mlp_depth - 1):
|
|
115
|
-
modules.append(nn.GELU())
|
|
116
|
-
modules.append(
|
|
117
|
-
nn.Linear(
|
|
118
|
-
config.projector_config.n_embed * mlp_ratio,
|
|
119
|
-
config.projector_config.n_embed * mlp_ratio,
|
|
120
|
-
)
|
|
121
|
-
)
|
|
122
|
-
modules.append(nn.GELU())
|
|
123
|
-
modules.append(
|
|
124
|
-
nn.Linear(
|
|
125
|
-
config.projector_config.n_embed * mlp_ratio,
|
|
126
|
-
config.projector_config.n_embed,
|
|
127
|
-
)
|
|
128
|
-
)
|
|
129
|
-
else:
|
|
130
|
-
raise ValueError(
|
|
131
|
-
f"Unknown projector type: {config.projector_config.projector_type}"
|
|
132
|
-
)
|
|
133
|
-
|
|
134
|
-
if config.projector_config.token_pooling:
|
|
135
|
-
self.token_pooling_layer = nn.Linear(
|
|
136
|
-
config.projector_config.input_dim * 4, config.projector_config.input_dim
|
|
137
|
-
)
|
|
138
|
-
self.layers = modules
|
|
139
|
-
|
|
140
|
-
def __call__(self, x):
|
|
141
|
-
if self.config.projector_config.token_pooling:
|
|
142
|
-
batch_size, wxh, channels = x.shape
|
|
143
|
-
w = h = int(math.sqrt(wxh))
|
|
144
|
-
x = mx.reshape(x, (batch_size, w, h, channels))
|
|
145
|
-
x = mx.transpose(x, (0, 3, 1, 2)) # B, C, H, W
|
|
146
|
-
|
|
147
|
-
# Implement unfold operation manually since MLX doesn't have unfold
|
|
148
|
-
patches = []
|
|
149
|
-
for i in range(0, h - 1, 2):
|
|
150
|
-
for j in range(0, w - 1, 2):
|
|
151
|
-
patch = x[:, :, i : i + 2, j : j + 2]
|
|
152
|
-
patches.append(patch)
|
|
153
|
-
|
|
154
|
-
patches = mx.stack(patches, axis=2) # B, C, N_patches, 2, 2
|
|
155
|
-
batch_size, channels, n_patches, _, _ = patches.shape
|
|
156
|
-
|
|
157
|
-
# Reshape and concatenate
|
|
158
|
-
patches = mx.reshape(patches, (batch_size, channels, n_patches, -1))
|
|
159
|
-
patches = mx.transpose(patches, (0, 2, 1, 3))
|
|
160
|
-
patches = mx.reshape(patches, (batch_size, n_patches, channels * 4))
|
|
161
|
-
x = self.token_pooling_layer(patches)
|
|
162
|
-
|
|
163
|
-
elif self.config.projector_config.projector_type == "downsample_mlp_gelu":
|
|
164
|
-
bs, hw, input_dim = x.shape
|
|
165
|
-
h = w = int(math.sqrt(hw))
|
|
166
|
-
|
|
167
|
-
# Compute padding
|
|
168
|
-
pad = (
|
|
169
|
-
0
|
|
170
|
-
if h % self.config.projector_config.downsample_ratio == 0
|
|
171
|
-
else self.config.projector_config.downsample_ratio
|
|
172
|
-
- h % self.config.projector_config.downsample_ratio
|
|
173
|
-
)
|
|
174
|
-
|
|
175
|
-
x = mx.reshape(x, (bs, h, w, input_dim))
|
|
176
|
-
if pad > 0:
|
|
177
|
-
x = mx.pad(x, [(0, 0), (0, pad), (0, pad), (0, 0)], constant_values=0)
|
|
178
|
-
|
|
179
|
-
x = mx.transpose(x, (0, 3, 1, 2)) # B, C, H, W
|
|
180
|
-
|
|
181
|
-
# Manual implementation of unfold for downsampling
|
|
182
|
-
h_pad, w_pad = x.shape[2], x.shape[3]
|
|
183
|
-
ds = self.config.projector_config.downsample_ratio
|
|
184
|
-
patches = []
|
|
185
|
-
|
|
186
|
-
for i in range(0, h_pad - ds + 1, ds):
|
|
187
|
-
for j in range(0, w_pad - ds + 1, ds):
|
|
188
|
-
patch = x[:, :, i : i + ds, j : j + ds]
|
|
189
|
-
patches.append(mx.reshape(patch, (bs, -1)))
|
|
190
|
-
|
|
191
|
-
x = mx.stack(patches, axis=1) # B, N_patches, C*ds*ds
|
|
192
|
-
|
|
193
|
-
for layer in self.layers:
|
|
194
|
-
x = layer(x)
|
|
195
|
-
return x
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
class Model(nn.Module):
|
|
199
|
-
def __init__(self, config: ModelConfig):
|
|
200
|
-
super().__init__()
|
|
201
|
-
self.config = config
|
|
202
|
-
self.vision = VisionModel(config.vision_config)
|
|
203
|
-
self.language_model = LanguageModel(config.text_config)
|
|
204
|
-
self.projector = MlpProjector(config)
|
|
205
|
-
self.vision_feature_layer = config.select_layer
|
|
206
|
-
self.vision_feature_select_strategy = config.vision_feature_select_strategy
|
|
207
|
-
|
|
208
|
-
self.tile_tag = config.tile_tag
|
|
209
|
-
self.global_view_pos = config.global_view_pos
|
|
210
|
-
|
|
211
|
-
# 用于format image token sequence的特殊token
|
|
212
|
-
embed_std = 1 / mx.sqrt(
|
|
213
|
-
mx.array(config.projector_config.n_embed, dtype=mx.float32)
|
|
214
|
-
)
|
|
215
|
-
if self.tile_tag == "2D":
|
|
216
|
-
# <|view_separator|>, <|\n|>
|
|
217
|
-
self.image_newline = mx.array(
|
|
218
|
-
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
219
|
-
)
|
|
220
|
-
# fix the typo: view_seperater
|
|
221
|
-
self.view_separator = mx.array(
|
|
222
|
-
mx.random.normal((config.projector_config.n_embed,)) * embed_std
|
|
223
|
-
)
|
|
224
|
-
elif self.tile_tag == "1D":
|
|
225
|
-
# <|tile_x|>, <|tile_global|>
|
|
226
|
-
candidate_resolutions = config.candidate_resolutions
|
|
227
|
-
if len(candidate_resolutions) == 0:
|
|
228
|
-
raise ValueError(
|
|
229
|
-
f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}"
|
|
230
|
-
)
|
|
231
|
-
tile_variants_num = len(candidate_resolutions)
|
|
232
|
-
self.tile_indicators = mx.array(
|
|
233
|
-
mx.random.normal(
|
|
234
|
-
(tile_variants_num + 1, config.projector_config.n_embed)
|
|
235
|
-
)
|
|
236
|
-
* embed_std
|
|
237
|
-
)
|
|
238
|
-
else:
|
|
239
|
-
raise ValueError(
|
|
240
|
-
f"tile tag should be either 1D or 2D, but got {self.tile_tag}"
|
|
241
|
-
)
|
|
242
|
-
|
|
243
|
-
def process_image_features(
|
|
244
|
-
self,
|
|
245
|
-
input_embeds,
|
|
246
|
-
images_embeds,
|
|
247
|
-
images_spatial_crop,
|
|
248
|
-
images_seq_mask,
|
|
249
|
-
h,
|
|
250
|
-
w,
|
|
251
|
-
n_dim,
|
|
252
|
-
):
|
|
253
|
-
tile_index = 0
|
|
254
|
-
all_batch_features = []
|
|
255
|
-
|
|
256
|
-
for idx in range(images_spatial_crop.shape[0]):
|
|
257
|
-
images_in_this_batch = []
|
|
258
|
-
for jdx in range(images_spatial_crop.shape[1]):
|
|
259
|
-
# Extract global & local features
|
|
260
|
-
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
|
|
261
|
-
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
262
|
-
break
|
|
263
|
-
|
|
264
|
-
num_tiles_in_image = (num_width_tiles * num_height_tiles).tolist()
|
|
265
|
-
|
|
266
|
-
# Get global features [hw, D]
|
|
267
|
-
global_features = images_embeds[tile_index]
|
|
268
|
-
|
|
269
|
-
# Get local features [num_height_tiles * num_width_tiles, hw, D]
|
|
270
|
-
local_features = images_embeds[
|
|
271
|
-
tile_index + 1 : tile_index + 1 + num_tiles_in_image
|
|
272
|
-
]
|
|
273
|
-
|
|
274
|
-
tile_index += num_tiles_in_image + 1
|
|
275
|
-
|
|
276
|
-
# Format global and local features
|
|
277
|
-
if self.tile_tag == "2D":
|
|
278
|
-
# ----------------- global view add newline -----------------
|
|
279
|
-
# [hw, D] -> [h, w, D]
|
|
280
|
-
global_features = mx.reshape(global_features, (h, w, n_dim))
|
|
281
|
-
|
|
282
|
-
# [D] -> [h, 1, D]
|
|
283
|
-
new_lines_in_global = mx.expand_dims(self.image_newline, axis=0)
|
|
284
|
-
new_lines_in_global = mx.repeat(
|
|
285
|
-
new_lines_in_global, repeats=h, axis=0
|
|
286
|
-
)
|
|
287
|
-
new_lines_in_global = mx.expand_dims(new_lines_in_global, axis=1)
|
|
288
|
-
|
|
289
|
-
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
|
290
|
-
global_features = mx.concatenate(
|
|
291
|
-
[global_features, new_lines_in_global], axis=1
|
|
292
|
-
)
|
|
293
|
-
|
|
294
|
-
# [h, w + 1, D] -> [h * (w + 1), D]
|
|
295
|
-
global_features = mx.reshape(global_features, (-1, n_dim))
|
|
296
|
-
|
|
297
|
-
# ----------------- local view add newline -----------------
|
|
298
|
-
# Rearrange local features
|
|
299
|
-
# [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
|
|
300
|
-
local_features = mx.reshape(
|
|
301
|
-
local_features, (num_height_tiles, num_width_tiles, h, w, n_dim)
|
|
302
|
-
)
|
|
303
|
-
local_features = mx.transpose(local_features, (0, 2, 1, 3, 4))
|
|
304
|
-
local_features = mx.reshape(
|
|
305
|
-
local_features,
|
|
306
|
-
(num_height_tiles * h, num_width_tiles * w, n_dim),
|
|
307
|
-
)
|
|
308
|
-
|
|
309
|
-
# Create newlines for local features
|
|
310
|
-
# [D] -> [num_height_tiles * h, 1, D]
|
|
311
|
-
new_lines_in_local = mx.repeat(
|
|
312
|
-
mx.expand_dims(self.image_newline, axis=0),
|
|
313
|
-
repeats=num_height_tiles * h,
|
|
314
|
-
axis=0,
|
|
315
|
-
)
|
|
316
|
-
new_lines_in_local = mx.expand_dims(new_lines_in_local, axis=1)
|
|
317
|
-
|
|
318
|
-
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
319
|
-
local_features = mx.concatenate(
|
|
320
|
-
[local_features, new_lines_in_local], axis=1
|
|
321
|
-
)
|
|
322
|
-
|
|
323
|
-
# [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
|
324
|
-
local_features = mx.reshape(local_features, (-1, n_dim))
|
|
325
|
-
|
|
326
|
-
# ----------------- merge global and local tiles -----------------
|
|
327
|
-
view_separator = mx.expand_dims(self.view_separator, axis=0)
|
|
328
|
-
|
|
329
|
-
if self.global_view_pos == "head":
|
|
330
|
-
global_local_features = mx.concatenate(
|
|
331
|
-
[global_features, view_separator, local_features], axis=0
|
|
332
|
-
)
|
|
333
|
-
else:
|
|
334
|
-
global_local_features = mx.concatenate(
|
|
335
|
-
[local_features, view_separator, global_features], axis=0
|
|
336
|
-
)
|
|
337
|
-
|
|
338
|
-
else:
|
|
339
|
-
# 1D processing (legacy path)
|
|
340
|
-
global_features = mx.concatenate(
|
|
341
|
-
[
|
|
342
|
-
mx.expand_dims(self.tile_indicators[0], axis=0),
|
|
343
|
-
global_features,
|
|
344
|
-
],
|
|
345
|
-
axis=0,
|
|
346
|
-
)
|
|
347
|
-
|
|
348
|
-
local_indicators = mx.expand_dims(
|
|
349
|
-
self.tile_indicators[1 : num_tiles_in_image + 1], axis=1
|
|
350
|
-
)
|
|
351
|
-
local_features = mx.concatenate(
|
|
352
|
-
[local_indicators, local_features], axis=1
|
|
353
|
-
)
|
|
354
|
-
local_features = mx.reshape(local_features, (-1, n_dim))
|
|
355
|
-
|
|
356
|
-
if self.global_view_pos == "head":
|
|
357
|
-
global_local_features = mx.concatenate(
|
|
358
|
-
[global_features, local_features], axis=0
|
|
359
|
-
)
|
|
360
|
-
else:
|
|
361
|
-
global_local_features = mx.concatenate(
|
|
362
|
-
[local_features, global_features], axis=0
|
|
363
|
-
)
|
|
364
|
-
|
|
365
|
-
images_in_this_batch.append(global_local_features)
|
|
366
|
-
|
|
367
|
-
if images_in_this_batch:
|
|
368
|
-
images_in_this_batch = mx.concatenate(images_in_this_batch, axis=0)
|
|
369
|
-
# Find positions where images should be placed
|
|
370
|
-
image_indices = np.where(images_seq_mask[idx])[0].tolist()
|
|
371
|
-
# Directly assign the image features to those positions
|
|
372
|
-
input_embeds[idx, image_indices] = images_in_this_batch
|
|
373
|
-
|
|
374
|
-
return input_embeds
|
|
375
|
-
|
|
376
|
-
def get_input_embeddings(
|
|
377
|
-
self,
|
|
378
|
-
input_ids: Optional[mx.array] = None,
|
|
379
|
-
pixel_values: Optional[mx.array] = None,
|
|
380
|
-
images_spatial_crop: Optional[mx.array] = None,
|
|
381
|
-
image_seq_mask: Optional[mx.array] = None,
|
|
382
|
-
):
|
|
383
|
-
if pixel_values is None:
|
|
384
|
-
return self.language_model.model.embed_tokens(input_ids)
|
|
385
|
-
|
|
386
|
-
bs = pixel_values.shape[0]
|
|
387
|
-
max_n_images = pixel_values.shape[1]
|
|
388
|
-
|
|
389
|
-
batch_num_tiles = [0 for _ in range(bs)]
|
|
390
|
-
total_tiles = []
|
|
391
|
-
|
|
392
|
-
# Total number of tiles in each batch
|
|
393
|
-
for idx in range(bs):
|
|
394
|
-
for jdx in range(max_n_images):
|
|
395
|
-
num_width_tiles, num_height_tiles = images_spatial_crop[idx][jdx]
|
|
396
|
-
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
397
|
-
break
|
|
398
|
-
batch_num_tiles[idx] += (
|
|
399
|
-
1 + num_width_tiles * num_height_tiles
|
|
400
|
-
).tolist()
|
|
401
|
-
|
|
402
|
-
total_tiles.append(pixel_values[idx, : batch_num_tiles[idx]])
|
|
403
|
-
|
|
404
|
-
total_tiles = mx.concatenate(total_tiles, axis=0)
|
|
405
|
-
|
|
406
|
-
if total_tiles.shape[0] == 0:
|
|
407
|
-
return self.language_model.model.embed_tokens(input_ids)
|
|
408
|
-
|
|
409
|
-
# Get the input embeddings from the language model
|
|
410
|
-
input_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
411
|
-
|
|
412
|
-
# Get the ouptut hidden states from the vision model
|
|
413
|
-
hidden_states, *_ = self.vision(
|
|
414
|
-
total_tiles.transpose(0, 2, 3, 1), output_hidden_states=True
|
|
415
|
-
)
|
|
416
|
-
|
|
417
|
-
# Pass image features through the multi-modal projector
|
|
418
|
-
image_features = self.projector(hidden_states)
|
|
419
|
-
|
|
420
|
-
_, hw, n_dim = image_features.shape
|
|
421
|
-
h = w = int(hw**0.5)
|
|
422
|
-
|
|
423
|
-
image_features = self.process_image_features(
|
|
424
|
-
input_embeds,
|
|
425
|
-
image_features,
|
|
426
|
-
images_spatial_crop,
|
|
427
|
-
image_seq_mask,
|
|
428
|
-
h,
|
|
429
|
-
w,
|
|
430
|
-
n_dim,
|
|
431
|
-
)
|
|
432
|
-
|
|
433
|
-
return image_features
|
|
434
|
-
|
|
435
|
-
@property
|
|
436
|
-
def layers(self):
|
|
437
|
-
return self.language_model.model.layers
|
|
438
|
-
|
|
439
|
-
def __call__(
|
|
440
|
-
self,
|
|
441
|
-
input_ids: mx.array,
|
|
442
|
-
pixel_values: Optional[mx.array] = None,
|
|
443
|
-
mask: Optional[mx.array] = None,
|
|
444
|
-
cache=None,
|
|
445
|
-
**kwargs,
|
|
446
|
-
):
|
|
447
|
-
|
|
448
|
-
images_spatial_crop = kwargs.get("images_spatial_crop", None)
|
|
449
|
-
images_seq_mask = kwargs.get("images_seq_mask", None)
|
|
450
|
-
input_embeddings = self.get_input_embeddings(
|
|
451
|
-
input_ids, pixel_values, images_spatial_crop, images_seq_mask
|
|
452
|
-
)
|
|
453
|
-
logits = self.language_model(
|
|
454
|
-
input_ids, cache=cache, inputs_embeds=input_embeddings
|
|
455
|
-
)
|
|
456
|
-
return logits
|
|
457
|
-
|
|
458
|
-
@staticmethod
|
|
459
|
-
def sanitize(weights):
|
|
460
|
-
def transform_key(key):
|
|
461
|
-
if "language" in key and "language_model" not in key:
|
|
462
|
-
if ".model" in key:
|
|
463
|
-
key = key.replace("language.model", "language_model.model")
|
|
464
|
-
if ".lm_head" in key:
|
|
465
|
-
key = key.replace("language", "language_model")
|
|
466
|
-
if "vision" in key and "vision_tower" not in key:
|
|
467
|
-
key = key.replace("vision", "vision.vision_tower")
|
|
468
|
-
if "view_seperator" in key:
|
|
469
|
-
key = key.replace("view_seperator", "view_separator")
|
|
470
|
-
return key
|
|
471
|
-
|
|
472
|
-
return {transform_key(k): v for k, v in weights.items()}
|