nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,465 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass, field
3
- from typing import List, Optional, Tuple
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
-
9
- @dataclass
10
- class VisionConfig:
11
- model_type: str = "molmo"
12
- num_channels: int = 3
13
- image_default_input_size: Tuple[int, int] = (336, 336)
14
- image_patch_size: int = 14
15
- image_pos_patch_size: int = 14
16
- hidden_size: int = 18944
17
- image_emb_dim: int = 1024
18
- image_num_heads: int = 16
19
- image_num_key_value_heads: int = 16
20
- image_num_layers: int = 23
21
- image_head_dim: int = 64
22
- image_mlp_dim: int = 4096
23
- image_mlp_activations: str = "gelu"
24
- image_dropout_rate: float = 0.0
25
- image_num_pos: int = 577
26
- image_norm_eps: float = 1e-5
27
- attention_dropout: float = 0.0
28
- residual_dropout: float = 0.0
29
- initializer_range: float = 0.02
30
- d_model: int = 3584
31
- image_pooling_h: int = 2
32
- image_pooling_w: int = 2
33
- vit_layers: Optional[List[int]] = field(default_factory=lambda: [-2, -9])
34
- image_pooling_2d: str = "attention-meanq"
35
- image_padding_embed: str = "pad_and_partial_pad"
36
- intermediate_size: Optional[int] = None
37
-
38
- def __post_init__(self):
39
- if self.intermediate_size is None:
40
- self.intermediate_size = self.image_patch_size * self.image_patch_size * 3
41
-
42
- @property
43
- def image_num_patch(self):
44
- h, w = self.image_default_input_size
45
- return h // self.image_patch_size, w // self.image_patch_size
46
-
47
- @property
48
- def llm_patches_per_crop(self):
49
- h, w = self.image_num_patch
50
- # Round up in case we need to pad the image features for pooling
51
- h = (h + self.image_pooling_h - 1) // self.image_pooling_h
52
- w = (w + self.image_pooling_w - 1) // self.image_pooling_w
53
- return h, w
54
-
55
- @classmethod
56
- def from_dict(cls, params):
57
- return cls(
58
- **{
59
- k: v
60
- for k, v in params.items()
61
- if k in inspect.signature(cls).parameters
62
- }
63
- )
64
-
65
-
66
- class MLP(nn.Module):
67
- def __init__(self, config: VisionConfig, input_dim: int):
68
- super().__init__()
69
- self.config = config
70
- self.hidden_size = config.hidden_size
71
- self.w1 = nn.Linear(
72
- input_dim,
73
- self.hidden_size,
74
- bias=False,
75
- )
76
- self.w2 = nn.Linear(
77
- self.hidden_size,
78
- config.d_model,
79
- bias=False,
80
- )
81
- self.w3 = nn.Linear(
82
- input_dim,
83
- self.hidden_size,
84
- bias=False,
85
- )
86
-
87
- def __call__(self, x: mx.array) -> mx.array:
88
- x = self.w2(nn.silu(self.w1(x)) * self.w3(x))
89
- return x
90
-
91
-
92
- class ViTMLP(nn.Module):
93
- def __init__(self, config: VisionConfig):
94
- super().__init__()
95
- self.config = config
96
- self.w1 = nn.Linear(config.image_emb_dim, config.image_mlp_dim, bias=True)
97
- self.w2 = nn.Linear(config.image_mlp_dim, config.image_emb_dim, bias=True)
98
- self.act = nn.GELU(approx="fast")
99
-
100
- def __call__(self, x: mx.array) -> mx.array:
101
- x = self.w1(x)
102
- x = self.act(x)
103
- x = self.w2(x)
104
- return x
105
-
106
-
107
- class MultiHeadDotProductAttention(nn.Module):
108
- def __init__(self, config: VisionConfig, is_vit_layer: Optional[bool] = True):
109
- super().__init__()
110
- self.config = config
111
- self.embed_dim = config.image_emb_dim
112
- self.num_heads = config.image_num_heads
113
- self.head_dim = config.image_head_dim
114
- self.num_key_value_heads = config.image_num_key_value_heads
115
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
116
- self.scale = self.head_dim**-0.5
117
- self.is_vit_layer = is_vit_layer
118
-
119
- n_layers = (
120
- 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
121
- )
122
-
123
- self.wq = nn.Linear(
124
- n_layers * self.embed_dim, self.num_heads * self.head_dim, bias=True
125
- )
126
- self.wk = nn.Linear(
127
- n_layers * self.embed_dim,
128
- self.num_key_value_heads * self.head_dim,
129
- bias=True,
130
- )
131
- self.wv = nn.Linear(
132
- n_layers * self.embed_dim,
133
- self.num_key_value_heads * self.head_dim,
134
- bias=True,
135
- )
136
- self.wo = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=True)
137
-
138
- def _split_heads(self, hidden_states, num_heads) -> mx.array:
139
- return hidden_states.reshape(
140
- hidden_states.shape[:2] + (num_heads, self.head_dim)
141
- )
142
-
143
- def _merge_heads(self, hidden_states) -> mx.array:
144
- return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
145
-
146
- def __call__(self, x: mx.array, kv: mx.array = None) -> mx.array:
147
- batch_size, seq_len, _ = x.shape
148
-
149
- if kv is None:
150
- k = x
151
- v = x
152
- else:
153
- k = kv
154
- v = kv
155
- q = self._split_heads(self.wq(x), self.num_heads).transpose(0, 2, 1, 3)
156
-
157
- k = self._split_heads(self.wk(k), self.num_key_value_heads).transpose(
158
- 0, 2, 1, 3
159
- )
160
- v = self._split_heads(self.wv(v), self.num_key_value_heads).transpose(
161
- 0, 2, 1, 3
162
- )
163
-
164
- attn = mx.fast.scaled_dot_product_attention(q, k, v, scale=self.scale)
165
- out = attn.transpose(0, 2, 1, 3)
166
- out = self._merge_heads(out)
167
- out = self.wo(out)
168
- return out
169
-
170
-
171
- class ResidualAttentionBlock(nn.Module):
172
- def __init__(self, config: VisionConfig):
173
- super().__init__()
174
- self.config = config
175
- self.attention = MultiHeadDotProductAttention(config)
176
- self.feed_forward = ViTMLP(config)
177
- self.attention_norm = nn.LayerNorm(
178
- config.image_emb_dim, eps=config.image_norm_eps
179
- )
180
- self.ffn_norm = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
181
-
182
- def __call__(self, x: mx.array) -> mx.array:
183
- x = x + self.attention(self.attention_norm(x))
184
- x = x + self.feed_forward(self.ffn_norm(x))
185
- return x
186
-
187
-
188
- class ResidualAttentionBlocks(nn.Module):
189
- def __init__(self, config: VisionConfig):
190
- super().__init__()
191
- self.resblocks = [
192
- ResidualAttentionBlock(config) for _ in range(config.image_num_layers)
193
- ]
194
-
195
- def __call__(self, x: mx.array) -> mx.array:
196
- h = []
197
- for block in self.resblocks:
198
- x = block(x)
199
- h.append(x)
200
- return h
201
-
202
-
203
- def _expand_token(token, batch_size: int):
204
- return mx.broadcast_to(
205
- mx.reshape(token, (1, 1, -1)), (batch_size, 1, token.shape[-1])
206
- )
207
-
208
-
209
- def pad_to_multiple(x, target_size, pad_mode="edge", pad_value=0):
210
- """
211
- Pad the last dimension of input tensor to match target size.
212
-
213
- Args:
214
- x: Input tensor with shape [..., D]
215
- target_size: Desired size for the last dimension
216
- pad_mode: Padding mode ('constant', 'reflect', etc.)
217
- pad_value: Value to use for constant padding
218
-
219
- Returns:
220
- Padded tensor with shape [..., target_size]
221
- """
222
- current_size = x.shape[-1]
223
-
224
- # Return early if no padding needed
225
- if current_size == target_size:
226
- return x
227
-
228
- # Ensure target size is larger
229
- if current_size > target_size:
230
- raise ValueError(
231
- f"Current size {current_size} is larger than target size {target_size}"
232
- )
233
-
234
- # Calculate padding needed
235
- pad_size = target_size - current_size
236
-
237
- # Create padding configuration
238
- # No padding for batch and channel dimensions (0,0), only pad the last dim
239
- pad_config = [(0, 0)] * (len(x.shape) - 1) + [(0, pad_size)]
240
-
241
- return mx.pad(x, pad_width=pad_config, mode=pad_mode, constant_values=pad_value)
242
-
243
-
244
- class VisionTransformer(nn.Module):
245
- def __init__(self, config: VisionConfig):
246
- super().__init__()
247
- self.config = config
248
- self.class_embedding = mx.zeros((config.image_emb_dim,))
249
- self.positional_embedding = mx.zeros(
250
- (config.image_num_pos, config.image_emb_dim)
251
- )
252
- self.patch_embedding = nn.Linear(
253
- config.intermediate_size,
254
- config.image_emb_dim,
255
- bias=False,
256
- )
257
- self.pre_ln = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
258
- self.transformer = ResidualAttentionBlocks(config)
259
-
260
- def add_pos_emb(self, x: mx.array, patch_num: int) -> mx.array:
261
- cls_emb = self.positional_embedding[0:1]
262
- pos_emb = self.positional_embedding[1:]
263
-
264
- # Reshape into 2D grid
265
- pos_emb_size = int(pos_emb.shape[0] ** 0.5)
266
- pos_emb = mx.reshape(pos_emb, (pos_emb_size, pos_emb_size, pos_emb.shape[1]))
267
-
268
- (patch_num_0, patch_num_1) = patch_num
269
-
270
- if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
271
- # Reshape for upsampling (add batch and channel dims)
272
- pos_emb = mx.expand_dims(pos_emb, 0)
273
- pos_emb = mx.transpose(pos_emb, (0, 3, 1, 2))
274
-
275
- # Create and apply upsampler
276
- upsampler = nn.Upsample(
277
- scale_factor=(
278
- patch_num_0 / pos_emb.shape[2],
279
- patch_num_1 / pos_emb.shape[3],
280
- ),
281
- mode="linear", # MLX doesn't have bicubic, using linear as closest alternative
282
- align_corners=False,
283
- )
284
- pos_emb = upsampler(pos_emb)
285
-
286
- # Restore original dimensions
287
- pos_emb = mx.transpose(pos_emb, (0, 2, 3, 1))
288
- pos_emb = mx.squeeze(pos_emb, 0)
289
-
290
- pos_emb = mx.reshape(pos_emb, (-1, pos_emb.shape[-1]))
291
-
292
- # Expand cls_emb and pos_emb
293
- expanded_cls = cls_emb[None, :, :]
294
- expanded_pos = pos_emb[None, :, :]
295
-
296
- # Concatenate and add to x
297
- pos_embedding = mx.concatenate([expanded_cls, expanded_pos], axis=1)
298
- x = x + pos_embedding
299
- return x
300
-
301
- def __call__(self, x: mx.array, patch_num: int = None) -> List[mx.array]:
302
- """
303
- : param x: (batch_size, num_patch, n_pixels)
304
- """
305
- if patch_num is None:
306
- patch_num = self.config.image_num_patch
307
- B, N, D = x.shape
308
-
309
- # (Optional) Due to quantization, pad around the image to match intermediate_size
310
- x = pad_to_multiple(x, self.config.intermediate_size)
311
-
312
- x = self.patch_embedding(x)
313
-
314
- # class embeddings and positional embeddings
315
- expanded_class_emb = _expand_token(self.class_embedding, x.shape[0])
316
- expanded_class_emb = expanded_class_emb
317
-
318
- x = mx.concatenate([expanded_class_emb, x], axis=1)
319
- x = self.add_pos_emb(x, patch_num)
320
-
321
- x = self.pre_ln(x)
322
-
323
- hidden_states = self.transformer(x)
324
- return hidden_states
325
-
326
-
327
- class VisionModel(nn.Module):
328
- def __init__(self, config):
329
- super().__init__()
330
- self.config = config
331
- self.model_type = config.model_type
332
- if self.model_type != "molmo":
333
- raise ValueError(
334
- f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
335
- )
336
- self.image_vit = VisionTransformer(config)
337
- self.num_prefix_tokens = 1
338
-
339
- self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
340
- self.image_projector = MLP(config, config.image_emb_dim)
341
- self.pad_embed = mx.zeros((2, config.image_emb_dim * 2))
342
-
343
- def encode_image(self, images: mx.array) -> mx.array:
344
- """
345
- : param images: (batch_size, num_crops, num_patch, n_pixels)
346
- """
347
- cfg = self.config
348
- B, T, N, D = images.shape
349
-
350
- # Check for -1 values across dimensions 1 and 2
351
- reshaped_images = mx.reshape(images, (B * T, N, D))
352
- mask = ~mx.all(reshaped_images == -1, axis=(1, 2), keepdims=True)
353
-
354
- # Output all hidden states
355
- images = reshaped_images
356
- image_features = self.image_vit(images)
357
-
358
- if cfg.vit_layers is not None:
359
- features = []
360
- for layer in cfg.vit_layers:
361
- features.append(image_features[layer])
362
- image_features = mx.concatenate(features, axis=-1)
363
- else:
364
- image_features = image_features[-1]
365
-
366
- cls_embed = None
367
- if self.num_prefix_tokens > 0:
368
- cls_embed = image_features[:, 0]
369
- image_features = image_features[:, 1:]
370
-
371
- image_features = image_features * mask
372
- image_features = mx.reshape(image_features, (B, T, N, -1))
373
-
374
- cls_embed = mx.reshape(cls_embed, (B, T, -1)) if cls_embed is not None else None
375
-
376
- return image_features, cls_embed
377
-
378
- def __call__(
379
- self, images: mx.array, image_masks: mx.array
380
- ) -> Tuple[mx.array, Optional[mx.array]]:
381
- cfg = self.config
382
-
383
- batch_size, num_image = images.shape[:2]
384
- image_features, cls_embed = self.encode_image(images)
385
-
386
- if cfg.image_padding_embed:
387
- assert image_masks is not None
388
- if cfg.image_padding_embed == "pad_embed":
389
- all_pad = image_masks == 0
390
- pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
391
- image_features = image_features + pad_embed * mx.expand_dims(
392
- all_pad, -1
393
- )
394
- elif cfg.image_padding_embed == "regress":
395
- pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
396
- image_features = image_features + pad_embed * mx.expand_dims(
397
- mx.maximum(image_masks, mx.zeros_like(image_masks)), -1
398
- )
399
- elif cfg.image_padding_embed == "pad_and_partial_pad":
400
- pad_embed = mx.reshape(self.pad_embed, (2, 1, 1, 1, -1))
401
- all_pad = image_masks == 0
402
- partial_pad = mx.logical_and(image_masks < 1, mx.logical_not(all_pad))
403
- partial_pad = partial_pad
404
- all_pad = all_pad
405
- image_features = image_features + pad_embed[0] * mx.expand_dims(
406
- all_pad, -1
407
- )
408
- image_features = image_features + pad_embed[1] * mx.expand_dims(
409
- partial_pad, -1
410
- )
411
- else:
412
- raise ValueError(cfg.image_padding_embed)
413
-
414
- image_features = mx.reshape(
415
- image_features, (batch_size, num_image) + cfg.image_num_patch + (-1,)
416
- )
417
-
418
- if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
419
- # Pad so we can still pool 2x2 patches
420
- image_features = mx.pad(
421
- image_features, [(0, 0), (0, 0), (0, 1), (0, 1), (0, 0)]
422
- )
423
-
424
- # image pooling
425
- # MLX equivalent of einops rearrange
426
- h_blocks = image_features.shape[2] // cfg.image_pooling_h
427
- w_blocks = image_features.shape[3] // cfg.image_pooling_w
428
- image_features = mx.reshape(
429
- mx.transpose(
430
- mx.reshape(
431
- image_features,
432
- (
433
- batch_size,
434
- num_image,
435
- h_blocks,
436
- cfg.image_pooling_h,
437
- w_blocks,
438
- cfg.image_pooling_w,
439
- -1,
440
- ),
441
- ),
442
- (0, 1, 2, 4, 3, 5, 6),
443
- ),
444
- (
445
- batch_size * num_image * h_blocks * w_blocks,
446
- cfg.image_pooling_h * cfg.image_pooling_w,
447
- -1,
448
- ),
449
- )
450
-
451
- if cfg.image_pooling_2d == "attention-meanq":
452
- query = mx.mean(image_features, axis=-2, keepdims=True)
453
- image_features = self.image_pooling_2d(query, image_features)
454
- elif cfg.image_pooling_2d not in {"none", "stack"}:
455
- image_features = self.image_pooling_2d(
456
- image_features[:, :1, :], image_features
457
- )
458
-
459
- h, w = cfg.llm_patches_per_crop
460
- image_features = mx.reshape(image_features, (batch_size, num_image, h * w, -1))
461
-
462
- # # MLP layer to map the feature
463
- image_features = self.image_projector(image_features)
464
-
465
- return image_features, cls_embed
@@ -1,10 +0,0 @@
1
- from .multi_modality import (
2
- ImageProcessor,
3
- LanguageModel,
4
- Model,
5
- ModelConfig,
6
- ProjectorConfig,
7
- TextConfig,
8
- VisionConfig,
9
- VisionModel,
10
- )
@@ -1,230 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 4096
20
- num_hidden_layers: int = 32
21
- intermediate_size: int = 11008
22
- num_attention_heads: int = 32
23
- rms_norm_eps: float = 1e-6
24
- vocab_size: int = 102400
25
- num_key_value_heads: int = None
26
- rope_theta: float = 10000
27
- rope_traditional: bool = False
28
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
- max_position_embeddings: int = 4096
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
- def __post_init__(self):
42
- if self.num_key_value_heads is None:
43
- self.num_key_value_heads = self.num_attention_heads
44
-
45
- if self.rope_scaling:
46
- required_keys = {"factor", "type"}
47
- if not all(key in self.rope_scaling for key in required_keys):
48
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
49
-
50
- if self.rope_scaling["type"] != "linear":
51
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
52
-
53
-
54
- class Attention(nn.Module):
55
- def __init__(self, config: TextConfig):
56
- super().__init__()
57
-
58
- dim = config.hidden_size
59
- self.n_heads = n_heads = config.num_attention_heads
60
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
-
62
- self.repeats = n_heads // n_kv_heads
63
-
64
- head_dim = config.hidden_size // n_heads
65
- self.scale = head_dim**-0.5
66
-
67
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
68
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
70
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
71
-
72
- rope_scale = (
73
- 1 / config.rope_scaling["factor"]
74
- if config.rope_scaling is not None
75
- and config.rope_scaling["type"] == "linear"
76
- else 1
77
- )
78
- self.rope = nn.RoPE(
79
- head_dim,
80
- traditional=config.rope_traditional,
81
- base=config.rope_theta,
82
- scale=rope_scale,
83
- )
84
-
85
- def __call__(
86
- self,
87
- x: mx.array,
88
- mask: Optional[mx.array] = None,
89
- cache: Optional[KVCache] = None,
90
- ) -> mx.array:
91
- B, L, D = x.shape
92
-
93
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
94
-
95
- # Prepare the queries, keys and values for the attention computation
96
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
97
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
99
-
100
- if cache is not None:
101
- queries = self.rope(queries, offset=cache.offset)
102
- keys = self.rope(keys, offset=cache.offset)
103
- keys, values = cache.update_and_fetch(keys, values)
104
- else:
105
- queries = self.rope(queries)
106
- keys = self.rope(keys)
107
-
108
- output = scaled_dot_product_attention(
109
- queries, keys, values, cache, scale=self.scale, mask=mask
110
- )
111
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
112
- return self.o_proj(output)
113
-
114
-
115
- class MLP(nn.Module):
116
- def __init__(self, dim, hidden_dim):
117
- super().__init__()
118
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
119
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
120
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
121
-
122
- def __call__(self, x) -> mx.array:
123
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
124
-
125
-
126
- class TransformerBlock(nn.Module):
127
- def __init__(self, config: TextConfig):
128
- super().__init__()
129
- self.num_attention_heads = config.num_attention_heads
130
- self.hidden_size = config.hidden_size
131
- self.self_attn = Attention(config)
132
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
133
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
134
- self.post_attention_layernorm = nn.RMSNorm(
135
- config.hidden_size, eps=config.rms_norm_eps
136
- )
137
- self.config = config
138
-
139
- def __call__(
140
- self,
141
- x: mx.array,
142
- mask: Optional[mx.array] = None,
143
- cache: Optional[KVCache] = None,
144
- ) -> mx.array:
145
- r = self.self_attn(self.input_layernorm(x), mask, cache)
146
- h = x + r
147
- r = self.mlp(self.post_attention_layernorm(h))
148
- out = h + r
149
- return out
150
-
151
-
152
- class Llama(nn.Module):
153
- def __init__(self, config: TextConfig):
154
- super().__init__()
155
- self.config = config
156
- self.vocab_size = config.vocab_size
157
- self.num_hidden_layers = config.num_hidden_layers
158
- assert self.vocab_size > 0
159
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
160
- self.layers = [
161
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
162
- ]
163
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
-
165
- def __call__(
166
- self,
167
- inputs: mx.array,
168
- inputs_embeds: Optional[mx.array] = None,
169
- mask: Optional[mx.array] = None,
170
- cache=None,
171
- ):
172
- # for passing merged input embeddings
173
- if inputs_embeds is None:
174
- h = self.embed_tokens(inputs)
175
- else:
176
- h = inputs_embeds
177
-
178
- if cache is None:
179
- cache = [None] * len(self.layers)
180
-
181
- if mask is None:
182
- mask = create_attention_mask(h, cache)
183
-
184
- for layer, c in zip(self.layers, cache):
185
- h = layer(h, mask, c)
186
-
187
- return self.norm(h)
188
-
189
-
190
- class LanguageModel(nn.Module):
191
- def __init__(self, config: TextConfig):
192
- super().__init__()
193
- self.config = config
194
- self.model_type = config.model_type
195
- if self.model_type != "llama":
196
- raise ValueError(
197
- f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
198
- )
199
- self.model = Llama(config)
200
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
201
-
202
- def __call__(
203
- self,
204
- inputs: mx.array,
205
- inputs_embeds: Optional[mx.array] = None,
206
- mask: Optional[mx.array] = None,
207
- cache=None,
208
- ):
209
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
210
- logits = self.lm_head(out)
211
- return LanguageModelOutput(logits=logits)
212
-
213
- @staticmethod
214
- def sanitize(weights):
215
- # Remove unused precomputed rotary freqs
216
- return {
217
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
218
- }
219
-
220
- @property
221
- def layers(self):
222
- return self.model.layers
223
-
224
- @property
225
- def head_dim(self):
226
- return self.config.hidden_size // self.config.num_attention_heads
227
-
228
- @property
229
- def n_kv_heads(self):
230
- return self.config.num_key_value_heads