nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,21 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
-
4
-
5
- @dataclass
6
- class TextConfig:
7
- max_position_embeddings: int = 4096
8
-
9
- @classmethod
10
- def from_dict(cls, params):
11
- return cls(
12
- **{
13
- k: v
14
- for k, v in params.items()
15
- if k in inspect.signature(cls).parameters
16
- }
17
- )
18
-
19
-
20
- class LanguageModel:
21
- pass
@@ -1,243 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from types import SimpleNamespace
5
- from typing import Dict, List, Optional, Tuple, Union
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
- import numpy as np
10
-
11
- from ..base import LanguageModelOutput, create_attention_mask
12
- from ..cache import KVCache
13
- from .language import LanguageModel, TextConfig
14
- from .su_rope import Phi3SuScaledRotaryEmbedding
15
- from .vision import VisionConfig, VisionModel
16
-
17
-
18
- @dataclass
19
- class ModelConfig:
20
- text_config: TextConfig
21
- vision_config: VisionConfig
22
- model_type: str
23
- vocab_size: int
24
-
25
- num_hidden_layers: int
26
- intermediate_size: int
27
- num_attention_heads: int
28
- rms_norm_eps: float
29
-
30
- ignore_index: int = -100
31
- image_token_index: int = 257152
32
- hidden_size: int = 2048
33
- pad_token_id: int = 0
34
-
35
- num_key_value_heads: int = None
36
- rope_theta: float = 10000
37
- rope_traditional: bool = False
38
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
39
- max_position_embeddings: int = 131072
40
- original_max_position_embeddings: int = 4096
41
- eos_token_id: Optional[List[int]] = None
42
-
43
- @classmethod
44
- def from_dict(cls, params):
45
- return cls(
46
- **{
47
- k: v
48
- for k, v in params.items()
49
- if k in inspect.signature(cls).parameters
50
- }
51
- )
52
-
53
-
54
- class Attention(nn.Module):
55
- def __init__(self, config: TextConfig):
56
- super().__init__()
57
-
58
- dim = config.hidden_size
59
- self.n_heads = n_heads = config.num_attention_heads
60
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
- self.num_hidden_layers = config.num_hidden_layers
62
-
63
- self.head_dim = head_dim = config.hidden_size // n_heads
64
- self.scale = head_dim**-0.5
65
-
66
- op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
67
- self.qkv_proj = nn.Linear(dim, op_size, bias=False)
68
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
69
-
70
- rope_scale = 1.0
71
- if config.rope_scaling and config.rope_scaling["type"] == "su":
72
- self.rope = Phi3SuScaledRotaryEmbedding(
73
- head_dim,
74
- traditional=False,
75
- base=config.rope_theta,
76
- scale=rope_scale,
77
- max_position_embeddings=config.max_position_embeddings,
78
- original_max_position_embeddings=config.original_max_position_embeddings,
79
- short_factor=config.rope_scaling["short_factor"],
80
- long_factor=config.rope_scaling["long_factor"],
81
- )
82
- else:
83
- if config.rope_scaling and config.rope_scaling["type"] == "linear":
84
- rope_scale = 1 / config.rope_scaling["factor"]
85
- self.rope = nn.RoPE(
86
- head_dim,
87
- traditional=config.rope_traditional,
88
- base=config.rope_theta,
89
- scale=rope_scale,
90
- )
91
-
92
- def __call__(
93
- self,
94
- x: mx.array,
95
- mask: Optional[mx.array] = None,
96
- cache: Optional[KVCache] = None,
97
- ) -> mx.array:
98
- B, L, D = x.shape
99
-
100
- qkv = self.qkv_proj(x)
101
- query_pos = self.n_heads * self.head_dim
102
- queries, keys, values = mx.split(
103
- qkv, [query_pos, query_pos + self.n_kv_heads * self.head_dim], axis=-1
104
- )
105
-
106
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
107
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
108
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
109
-
110
- if cache is not None:
111
- queries = self.rope(queries, offset=cache.offset)
112
- keys = self.rope(keys, offset=cache.offset)
113
- keys, values = cache.update_and_fetch(keys, values)
114
- else:
115
- queries = self.rope(queries)
116
- keys = self.rope(keys)
117
-
118
- output = mx.fast.scaled_dot_product_attention(
119
- queries, keys, values, scale=self.scale, mask=mask
120
- )
121
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
122
- return self.o_proj(output)
123
-
124
-
125
- class MLP(nn.Module):
126
- def __init__(self, dim, hidden_dim):
127
- super().__init__()
128
- self.gate_up_proj = nn.Linear(dim, 2 * hidden_dim, bias=False)
129
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
130
-
131
- def __call__(self, x) -> mx.array:
132
- x = self.gate_up_proj(x)
133
- gate, x = mx.split(x, 2, axis=-1)
134
- return self.down_proj(nn.silu(gate) * x)
135
-
136
-
137
- class TransformerBlock(nn.Module):
138
- def __init__(self, config: TextConfig):
139
- super().__init__()
140
- self.num_attention_heads = config.num_attention_heads
141
- self.hidden_size = config.hidden_size
142
- self.self_attn = Attention(config)
143
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
144
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
145
- self.post_attention_layernorm = nn.RMSNorm(
146
- config.hidden_size, eps=config.rms_norm_eps
147
- )
148
- self.config = config
149
-
150
- def __call__(
151
- self,
152
- x: mx.array,
153
- mask: Optional[mx.array] = None,
154
- cache: Optional[KVCache] = None,
155
- ) -> mx.array:
156
- r = self.self_attn(self.input_layernorm(x), mask, cache)
157
- h = x + r
158
- r = self.mlp(self.post_attention_layernorm(h))
159
- out = h + r
160
- return out
161
-
162
-
163
- class Phi3V(nn.Module):
164
- def __init__(self, config: TextConfig):
165
- super().__init__()
166
- self.config = config
167
- self.vocab_size = config.vocab_size
168
- self.num_hidden_layers = config.num_hidden_layers
169
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
170
- self.vision_embed_tokens = VisionModel(config)
171
- self.layers = [
172
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
173
- ]
174
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
175
-
176
- def __call__(
177
- self,
178
- inputs: mx.array,
179
- pixel_values=None,
180
- image_sizes=None,
181
- mask: Optional[mx.array] = None,
182
- cache=None,
183
- ):
184
- h = self.embed_tokens(inputs)
185
- p = np.argwhere(inputs < 0).tolist()
186
-
187
- if pixel_values is not None:
188
- h = self.vision_embed_tokens(pixel_values, h, image_sizes, p)
189
-
190
- if cache is None:
191
- cache = [None] * len(self.layers)
192
-
193
- if mask is None:
194
- mask = create_attention_mask(h, cache)
195
-
196
- for layer, c in zip(self.layers, cache):
197
- h = layer(h, mask, c)
198
-
199
- return self.norm(h)
200
-
201
-
202
- class Model(nn.Module):
203
- def __init__(self, config: TextConfig):
204
- super().__init__()
205
- self.model_type = config.model_type
206
- self.model = Phi3V(config)
207
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
208
- self.config = config
209
-
210
- def __call__(
211
- self,
212
- inputs: mx.array,
213
- pixel_values=None,
214
- mask=None,
215
- cache=None,
216
- image_sizes=None,
217
- **kwargs,
218
- ):
219
- out = self.model(inputs, pixel_values, image_sizes, mask=mask, cache=cache)
220
- logits = self.lm_head(out)
221
- if self.lm_head.weight.dtype in [mx.float16, mx.bfloat16, mx.float32]:
222
- logits = logits.astype(self.lm_head.weight.dtype)
223
- return LanguageModelOutput(logits=logits)
224
-
225
- @property
226
- def layers(self):
227
- return self.model.layers
228
-
229
- @property
230
- def head_dim(self):
231
- return self.config.hidden_size // self.config.num_attention_heads
232
-
233
- @property
234
- def n_kv_heads(self):
235
- return self.config.num_key_value_heads
236
-
237
- @property
238
- def language_model(self):
239
- return self
240
-
241
- @property
242
- def vision_model(self):
243
- return self.model.vision_embed_tokens
@@ -1,71 +0,0 @@
1
- import math
2
-
3
- import mlx.core as mx
4
-
5
-
6
- class Phi3SuScaledRotaryEmbedding:
7
- def __init__(
8
- self,
9
- dims: int,
10
- traditional: bool = False,
11
- base: float = 10000.0,
12
- scale: float = 1.0,
13
- max_position_embeddings: int = 131072,
14
- original_max_position_embeddings: int = 4096,
15
- short_factor: list[float] | float = 1.0,
16
- long_factor: list[float] | float = 1.0,
17
- ):
18
- """
19
- Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
20
-
21
- Args:
22
- dims (int): The feature dimensions to be rotated.
23
- traditional (bool, optional): Unused. Default: ``False``.
24
- base (int, optional): Base for the exponential scaling.
25
- scale (float, optional): The scale used to scale the positions. Default: 1.0.
26
- max_position_embeddings (int, optional): The maximum sequence length that this model was trained with. This is used to determine the size of the original RoPE embeddings when using long scaling. Default: 131072.
27
- original_max_position_embeddings (int, optional): The maximum sequence length that this model was trained with. This is used to determine the size of the original RoPE embeddings when using long scaling. Default: 4096.
28
- short_factor (float or list of floats, optional): List of scaling factors for sequences of length lesser than original_max_position_embeddings. Default: 1.0.
29
- long_factor (float or list of floats, optional): List of scaling factors for sequences of length greater than original_max_position_embeddings. Default: 1.0.
30
- """
31
- self.inv_freq_short = 1.0 / (
32
- mx.array(short_factor, dtype=mx.float32)
33
- * base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
34
- )
35
- self.inv_freq_long = 1.0 / (
36
- scale
37
- * mx.array(long_factor, dtype=mx.float32)
38
- * base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
39
- )
40
- self.original_max_position_embeddings = original_max_position_embeddings
41
- self.scaling_factor = math.sqrt(
42
- 1
43
- + math.log(max_position_embeddings / original_max_position_embeddings)
44
- / math.log(original_max_position_embeddings)
45
- )
46
-
47
- def _get_cos_sin(self, offset, L):
48
- position_ids = mx.arange(offset, offset + L, dtype=mx.float32)[None]
49
- inv_freq = (
50
- self.inv_freq_long
51
- if position_ids.max() + 1 > self.original_max_position_embeddings
52
- else self.inv_freq_short
53
- )
54
- inv_freq_expanded = mx.repeat(
55
- inv_freq[None, :, None], position_ids.shape[0], axis=0
56
- )
57
- position_ids_expanded = position_ids[:, None, :]
58
- freqs = (inv_freq_expanded @ position_ids_expanded).transpose(0, 2, 1)
59
- emb = mx.concatenate([freqs, freqs], axis=-1)
60
- cos = mx.cos(emb) * self.scaling_factor
61
- sin = mx.sin(emb) * self.scaling_factor
62
- return mx.expand_dims(cos, axis=1), mx.expand_dims(sin, axis=1)
63
-
64
- def __call__(self, x, offset: int = 0):
65
- def _rotate_half(_x):
66
- midpoint = _x.shape[-1] // 2
67
- x1, x2 = _x[..., :midpoint], _x[..., midpoint:]
68
- return mx.concatenate([-x2, x1], axis=-1)
69
-
70
- cos, sin = self._get_cos_sin(offset, x.shape[2])
71
- return (x * cos) + (_rotate_half(x) * sin)
@@ -1,324 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from types import SimpleNamespace
5
- from typing import Optional
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
- import numpy as np
10
-
11
-
12
- @dataclass
13
- class VisionConfig:
14
- model_type: str = "phi3_v"
15
- num_hidden_layers: int = 24
16
- hidden_size: int = 1024
17
- intermediate_size: int = 4096
18
- num_attention_heads: int = 16
19
- image_size: int = 336
20
- patch_size: int = 14
21
- projection_dim: int = 768
22
- vocab_size: int = 32000
23
- num_channels: int = 3
24
- layer_norm_eps: float = 1e-5
25
- image_dim_out: int = (1024,)
26
- model_name: str = "openai/clip-vit-large-patch14-336"
27
- name: str = "clip_vision_model"
28
- num_img_tokens: int = 144
29
-
30
- @classmethod
31
- def from_dict(cls, params):
32
- return cls(
33
- **{
34
- k: v
35
- for k, v in params.items()
36
- if k in inspect.signature(cls).parameters
37
- }
38
- )
39
-
40
-
41
- def check_array_shape(arr):
42
- shape = arr.shape
43
-
44
- # Check if the shape has 4 dimensions
45
- if len(shape) != 4:
46
- return False
47
-
48
- out_channels, kH, KW, _ = shape
49
-
50
- # Check if out_channels is the largest, and kH and KW are the same
51
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
52
- return True
53
- else:
54
- return False
55
-
56
-
57
- class Attention(nn.Module):
58
- def __init__(
59
- self,
60
- dims: int,
61
- num_heads: int,
62
- query_input_dims: Optional[int] = None,
63
- key_input_dims: Optional[int] = None,
64
- value_input_dims: Optional[int] = None,
65
- value_dims: Optional[int] = None,
66
- value_output_dims: Optional[int] = None,
67
- bias: bool = False,
68
- ):
69
- super().__init__()
70
-
71
- if (dims % num_heads) != 0:
72
- raise ValueError(
73
- "The input feature dimensions should be divisible by the "
74
- f"number of heads ({dims} % {num_heads}) != 0"
75
- )
76
-
77
- query_input_dims = query_input_dims or dims
78
- key_input_dims = key_input_dims or dims
79
- value_input_dims = value_input_dims or key_input_dims
80
- value_dims = value_dims or dims
81
- value_output_dims = value_output_dims or dims
82
-
83
- self.num_heads = num_heads = num_heads
84
- head_dim = dims // num_heads
85
- self.scale = head_dim**-0.5
86
-
87
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
88
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
89
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
90
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
91
-
92
- def __call__(self, queries, keys, values, mask=None):
93
- queries = self.q_proj(queries)
94
- keys = self.k_proj(keys)
95
- values = self.v_proj(values)
96
-
97
- num_heads = self.num_heads
98
- B, L, D = queries.shape
99
- _, S, _ = keys.shape
100
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
101
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
102
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
103
-
104
- output = mx.fast.scaled_dot_product_attention(
105
- queries, keys, values, scale=self.scale, mask=mask
106
- )
107
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
108
-
109
- return self.out_proj(output)
110
-
111
-
112
- class MLP(nn.Module):
113
- def __init__(self, config: VisionConfig):
114
- super().__init__()
115
- self.activation_fn = nn.GELU(approx="fast")
116
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
117
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
118
-
119
- def __call__(self, x: mx.array) -> mx.array:
120
- x = self.activation_fn(self.fc1(x))
121
- x = self.fc2(x)
122
- return x
123
-
124
-
125
- class EncoderLayer(nn.Module):
126
- def __init__(self, config: VisionConfig):
127
- super().__init__()
128
- self.embed_dim = config.hidden_size
129
- self.self_attn = Attention(
130
- config.hidden_size, config.num_attention_heads, bias=True
131
- )
132
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
133
- self.mlp = MLP(config)
134
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
135
-
136
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
137
- y = self.layer_norm1(x)
138
- y = self.self_attn(y, y, y, mask)
139
- x = x + y
140
- y = self.layer_norm2(x)
141
- y = self.mlp(y)
142
- return x + y
143
-
144
-
145
- class Encoder(nn.Module):
146
- def __init__(self, config: VisionConfig):
147
- super().__init__()
148
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
149
-
150
-
151
- class VisionEmbeddings(nn.Module):
152
- def __init__(self, config: VisionConfig):
153
- super().__init__()
154
- self.config = config
155
- self.embed_dim = config.hidden_size
156
- self.image_size = config.image_size
157
- self.patch_size = config.patch_size
158
-
159
- self.class_embedding = mx.zeros((config.hidden_size,))
160
-
161
- self.patch_embedding = nn.Conv2d(
162
- in_channels=config.num_channels,
163
- out_channels=self.embed_dim,
164
- kernel_size=self.patch_size,
165
- stride=self.patch_size,
166
- bias=False,
167
- )
168
-
169
- self.num_patches = (self.image_size // self.patch_size) ** 2
170
- self.num_positions = self.num_patches + 1
171
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
172
-
173
- def __call__(self, x: mx.array) -> mx.array:
174
- batch_size = x.shape[0]
175
- patch_embeddings = self.patch_embedding(x)
176
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
177
- embed_dim = patch_embeddings.shape[-1]
178
- cls_embeddings = mx.broadcast_to(
179
- self.class_embedding, (batch_size, 1, embed_dim)
180
- )
181
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
182
-
183
- embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
184
- embeddings += self.position_embedding(position_ids)
185
- return embeddings
186
-
187
-
188
- class ClipModel(nn.Module):
189
- def __init__(self, config: VisionConfig):
190
- super().__init__()
191
- self.model_type = config.model_type
192
- self.embeddings = VisionEmbeddings(config)
193
- self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
194
- self.encoder = Encoder(config)
195
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
196
-
197
- def __call__(
198
- self,
199
- x: mx.array,
200
- output_hidden_states: Optional[bool] = None,
201
- ) -> mx.array:
202
- x = self.embeddings(x)
203
- x = self.pre_layrnorm(x)
204
-
205
- encoder_states = (x,) if output_hidden_states else None
206
-
207
- for l in self.encoder.layers:
208
- x = l(x, mask=None)
209
- if output_hidden_states:
210
- encoder_states = encoder_states + (x,)
211
-
212
- pooler_output = self.post_layernorm(x[:, 0, :])
213
- return pooler_output, x, encoder_states
214
-
215
-
216
- class ClipVModel(nn.Module):
217
- def __init__(self, config):
218
- super().__init__()
219
- self.model_type = config.model_type
220
- self.vision_model = ClipModel(config)
221
-
222
-
223
- class VisionModel(nn.Module):
224
- CLIP_VIT_LARGE_PATCH14_336_CONFIG = SimpleNamespace(
225
- model_type="phi3_v",
226
- hidden_size=1024,
227
- image_size=336,
228
- intermediate_size=4096,
229
- layer_norm_eps=1e-05,
230
- num_attention_heads=16,
231
- num_channels=3,
232
- num_hidden_layers=24,
233
- patch_size=14,
234
- )
235
-
236
- def __init__(self, config):
237
- super().__init__()
238
- self.model_type = config.model_type
239
- self.img_processor = ClipVModel(self.CLIP_VIT_LARGE_PATCH14_336_CONFIG)
240
- self.image_dim_out = image_dim_out = 1024
241
- self.glb_GN = mx.zeros([1, 1, image_dim_out * 4])
242
- self.sub_GN = mx.zeros([1, 1, 1, image_dim_out * 4])
243
- self.img_projection = [
244
- nn.Linear(image_dim_out * 4, config.hidden_size),
245
- nn.GELU(),
246
- nn.Linear(config.hidden_size, config.hidden_size),
247
- ]
248
-
249
- def __call__(
250
- self,
251
- img_embeds,
252
- txt_embeds=None,
253
- img_sizes=None,
254
- positions=None,
255
- output_hidden_states=None,
256
- ):
257
- if output_hidden_states:
258
- return self.img_processor.vision_model(
259
- img_embeds, output_hidden_states=output_hidden_states
260
- )
261
- img_embeds = mx.array(img_embeds)
262
- img_sizes = mx.array(img_sizes)
263
- B = img_embeds.shape[0]
264
- img_sizes = (img_sizes // 336).tolist()
265
- img_features = self.img_processor.vision_model(
266
- img_embeds.reshape(-1, *img_embeds.shape[2:]).transpose(0, 2, 3, 1), True
267
- )[-1][-2][:, 1:]
268
- img_features = img_features.reshape(B, -1, *img_features.shape[1:])
269
- C, H = self.image_dim_out, int(img_features.shape[2] ** 0.5)
270
- output_imgs, output_len = [], []
271
- for _bs in range(B):
272
- h, w = img_sizes[_bs]
273
- B_ = h * w
274
-
275
- def _reshape_and_concatenate(img, shape, tile_shape):
276
- return mx.concatenate(
277
- [
278
- img.reshape(shape)
279
- .transpose(0, 1, 3, 2, 4, 5)
280
- .reshape(tile_shape),
281
- mx.tile(self.sub_GN, (1, tile_shape[1], 1, 1)),
282
- ],
283
- axis=2,
284
- ).reshape(1, -1, 4 * C)
285
-
286
- glb_img = _reshape_and_concatenate(
287
- img_features[_bs, :1],
288
- (1, H // 2, 2, H // 2, 2, C),
289
- (1, H // 2, H // 2, 4 * C),
290
- )
291
- sub_img = _reshape_and_concatenate(
292
- img_features[_bs, 1 : B_ + 1],
293
- (B_, H // 2, 2, H // 2, 2, C),
294
- (1, h * 12, w * 12, 4 * C),
295
- )
296
- x = mx.concatenate([sub_img, self.glb_GN, glb_img], axis=1)
297
- for l in self.img_projection:
298
- x = l(x)
299
- output_imgs.append(np.array(x.astype(mx.float32)))
300
- output_len.append(int((h * w + 1) * 144 + 1 + (h + 1) * 12))
301
- idx = 0
302
- txt_embeds = np.array(txt_embeds.astype(mx.float32))
303
- for i, cnt in enumerate(output_len):
304
- txt_embeds[
305
- positions[idx][0], positions[idx][1] : positions[idx][1] + cnt
306
- ] = output_imgs[i]
307
- idx += cnt
308
- txt_embeds = mx.array(txt_embeds)
309
- return txt_embeds
310
-
311
- def sanitize(self, weights):
312
- sanitized_weights = {}
313
- for k, v in weights.items():
314
- if "position_ids" in k:
315
- continue
316
- elif "patch_embedding.weight" in k:
317
- if check_array_shape(v):
318
- sanitized_weights[k] = v
319
- else:
320
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
321
- else:
322
- sanitized_weights[k] = v
323
-
324
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .pixtral import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )