nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,503 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- hidden_size: int
14
- num_attention_heads: int
15
- patch_size: int
16
- num_hidden_layers: int = 12
17
- intermediate_size: int = 3072
18
- image_size: int = 224
19
- num_channels: int = 3
20
- layer_norm_eps: float = 1e-6
21
-
22
- @classmethod
23
- def from_dict(cls, params):
24
- return cls(
25
- **{
26
- k: v
27
- for k, v in params.items()
28
- if k in inspect.signature(cls).parameters
29
- }
30
- )
31
-
32
-
33
- def check_array_shape(arr):
34
- shape = arr.shape
35
-
36
- # Check if the shape has 4 dimensions
37
- if len(shape) != 4:
38
- return False
39
-
40
- out_channels, kH, KW, _ = shape
41
-
42
- # Check if out_channels is the largest, and kH and KW are the same
43
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
44
- return True
45
- else:
46
- return False
47
-
48
-
49
- class Attention(nn.Module):
50
- def __init__(
51
- self,
52
- dims: int,
53
- num_heads: int,
54
- query_input_dims: Optional[int] = None,
55
- key_input_dims: Optional[int] = None,
56
- value_input_dims: Optional[int] = None,
57
- value_dims: Optional[int] = None,
58
- value_output_dims: Optional[int] = None,
59
- bias: bool = True,
60
- ):
61
- super().__init__()
62
-
63
- if (dims % num_heads) != 0:
64
- raise ValueError(
65
- "The input feature dimensions should be divisible by the "
66
- f"number of heads ({dims} % {num_heads}) != 0"
67
- )
68
-
69
- query_input_dims = query_input_dims or dims
70
- key_input_dims = key_input_dims or dims
71
- value_input_dims = value_input_dims or key_input_dims
72
- value_dims = value_dims or dims
73
- value_output_dims = value_output_dims or dims
74
-
75
- self.num_heads = num_heads
76
- head_dim = dims // num_heads
77
- self.scale = head_dim**-0.5
78
-
79
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
80
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
81
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
82
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
83
-
84
- def __call__(self, x, mask=None):
85
- queries = self.q_proj(x)
86
- keys = self.k_proj(x)
87
- values = self.v_proj(x)
88
-
89
- num_heads = self.num_heads
90
- B, L, D = queries.shape
91
- _, S, _ = keys.shape
92
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
93
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
94
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
-
96
- output = mx.fast.scaled_dot_product_attention(
97
- queries, keys, values, scale=self.scale, mask=mask
98
- )
99
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
100
- return self.out_proj(output)
101
-
102
-
103
- class MLP(nn.Module):
104
- def __init__(self, config: VisionConfig):
105
- super().__init__()
106
- self.activation_fn = nn.GELU(approx="precise")
107
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
108
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
109
-
110
- def __call__(self, x: mx.array) -> mx.array:
111
- x = self.fc1(x)
112
- x = self.activation_fn(x)
113
- x = self.fc2(x)
114
- return x
115
-
116
-
117
- class EncoderLayer(nn.Module):
118
- def __init__(self, config: VisionConfig):
119
- super().__init__()
120
- self.embed_dim = config.hidden_size
121
- self.self_attn = Attention(
122
- config.hidden_size, config.num_attention_heads, bias=True
123
- )
124
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
125
- self.mlp = MLP(config)
126
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
127
-
128
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
129
- r = self.self_attn(self.layer_norm1(x), mask)
130
- h = x + r
131
- r = self.mlp(self.layer_norm2(h))
132
- return h + r
133
-
134
-
135
- class Encoder(nn.Module):
136
- def __init__(self, config: VisionConfig):
137
- super().__init__()
138
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
139
-
140
- def __call__(
141
- self,
142
- x: mx.array,
143
- output_hidden_states: Optional[bool] = None,
144
- mask: Optional[mx.array] = None,
145
- ) -> mx.array:
146
- encoder_states = (x,) if output_hidden_states else None
147
- h = x
148
- for l in self.layers:
149
- x = l(x, mask=mask)
150
- if output_hidden_states:
151
- encoder_states = encoder_states + (x,)
152
-
153
- h = x
154
-
155
- return (h, encoder_states)
156
-
157
-
158
- def gaussian_blur_axis(image, sigma, axis):
159
- """
160
- Applies a 1D Gaussian blur along the given axis.
161
- This version works for arrays with any number of dimensions.
162
- """
163
- radius = int(3 * sigma)
164
- if radius < 1:
165
- return image
166
- x = mx.arange(-radius, radius + 1)
167
- kernel = mx.exp(-(x**2) / (2 * sigma**2))
168
- kernel = kernel / mx.sum(kernel)
169
-
170
- # MLX doesn't have a direct apply_along_axis equivalent,
171
- # so we'll implement the convolution differently based on the axis
172
-
173
- # Helper function to apply 1D convolution along specific axis
174
- def conv_1d(array, kernel, axis):
175
- # Reshape kernel to broadcast along the right dimensions
176
- kernel_shape = [1] * image.ndim
177
- kernel_shape[axis] = len(kernel)
178
- kernel_reshaped = kernel.reshape(kernel_shape)
179
-
180
- # Pad the array
181
- pad_width = [(0, 0)] * image.ndim
182
- pad_width[axis] = (radius, radius)
183
- padded = mx.pad(array, pad_width, mode="edge")
184
-
185
- # Perform convolution via sliding window sum
186
- result = mx.zeros_like(array)
187
- slices = [slice(None)] * padded.ndim
188
-
189
- for i in range(2 * radius + 1):
190
- slices[axis] = slice(i, i + array.shape[axis])
191
- result = result + padded[tuple(slices)] * kernel_reshaped
192
-
193
- return result
194
-
195
- return conv_1d(image, kernel, axis)
196
-
197
-
198
- def bilinear_interpolate(image, new_height, new_width, align_corners=False):
199
- """
200
- Performs bilinear interpolation on an array whose spatial dimensions are the first two.
201
- It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
202
- """
203
- # image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
204
- H_in, W_in = image.shape[0], image.shape[1]
205
-
206
- # Compute sampling positions in the input image.
207
- if new_height == 1:
208
- row_positions = mx.array([0.0])
209
- else:
210
- if align_corners:
211
- row_positions = mx.linspace(0, H_in - 1, new_height)
212
- else:
213
- row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
214
-
215
- if new_width == 1:
216
- col_positions = mx.array([0.0])
217
- else:
218
- if align_corners:
219
- col_positions = mx.linspace(0, W_in - 1, new_width)
220
- else:
221
- col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
222
-
223
- # Compute floor and ceil indices.
224
- row_floor = mx.floor(row_positions).astype(mx.int32)
225
- col_floor = mx.floor(col_positions).astype(mx.int32)
226
- row_ceil = row_floor + 1
227
- col_ceil = col_floor + 1
228
-
229
- row_floor = mx.clip(row_floor, 0, H_in - 1)
230
- row_ceil = mx.clip(row_ceil, 0, H_in - 1)
231
- col_floor = mx.clip(col_floor, 0, W_in - 1)
232
- col_ceil = mx.clip(col_ceil, 0, W_in - 1)
233
-
234
- row_weight = row_positions - row_floor # shape (new_height,)
235
- col_weight = col_positions - col_floor # shape (new_width,)
236
-
237
- # Use advanced indexing for gather operations
238
- # Create meshgrid for coordinates
239
- row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
240
- row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
241
- row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
242
- row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
243
-
244
- # Gather the four surrounding pixels using take_along_axis
245
- # For higher dimensional arrays, we'll need to reshape and broadcast
246
- extra_dims = image.ndim - 2
247
-
248
- def gather_pixels(row_indices, col_indices):
249
- # Flatten the spatial dimensions for gathering
250
- flat_indices = row_indices * W_in + col_indices
251
- flat_image = mx.reshape(image, (-1,) + image.shape[2:])
252
- # Gather and reshape back
253
- gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
254
- return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
255
-
256
- top_left = gather_pixels(row_floor_grid, col_floor_grid)
257
- top_right = gather_pixels(row_floor_grid, col_ceil_grid)
258
- bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
259
- bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
260
-
261
- # Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
262
- r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
263
- c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
264
-
265
- # Perform bilinear interpolation.
266
- result = (
267
- (1 - r_weight) * (1 - c_weight) * top_left
268
- + (1 - r_weight) * c_weight * top_right
269
- + r_weight * (1 - c_weight) * bottom_left
270
- + r_weight * c_weight * bottom_right
271
- )
272
- return result
273
-
274
-
275
- def resize_bilinear(image, new_size, align_corners=False, antialias=True):
276
- """
277
- Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
278
- using bilinear interpolation with MLX.
279
-
280
- Supports:
281
- - 2D: (H, W)
282
- - 3D: (H, W, C)
283
- - 4D: (B, C, H, W) (assumed for typical image batches)
284
- """
285
- new_height, new_width = new_size
286
-
287
- # Convert numpy arrays to MLX arrays if needed
288
- if isinstance(image, np.ndarray):
289
- image = mx.array(image)
290
-
291
- if image.ndim == 2 or image.ndim == 3:
292
- # Assume spatial dims are the first two.
293
- resized = image
294
- H_in, W_in = image.shape[:2]
295
- if antialias:
296
- if new_height < H_in:
297
- scale_y = new_height / H_in
298
- sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
299
- if sigma_y > 0:
300
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
301
- if new_width < W_in:
302
- scale_x = new_width / W_in
303
- sigma_x = (1 / scale_x - 1) / 2.0
304
- if sigma_x > 0:
305
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
306
- resized = bilinear_interpolate(
307
- resized, new_height, new_width, align_corners=align_corners
308
- )
309
- return resized
310
-
311
- elif image.ndim == 4:
312
- # Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
313
- B, C, H_in, W_in = image.shape
314
- # Permute to bring spatial dims to the front: (H, W, B, C)
315
- image_perm = mx.transpose(image, (2, 3, 0, 1))
316
- resized = image_perm
317
- if antialias:
318
- if new_height < H_in:
319
- scale_y = new_height / H_in
320
- sigma_y = (1 / scale_y - 1) / 2.0
321
- if sigma_y > 0:
322
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
323
- if new_width < W_in:
324
- scale_x = new_width / W_in
325
- sigma_x = (1 / scale_x - 1) / 2.0
326
- if sigma_x > 0:
327
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
328
- resized = bilinear_interpolate(
329
- resized, new_height, new_width, align_corners=align_corners
330
- )
331
- # Permute back to (B, C, new_height, new_width)
332
- resized = mx.transpose(resized, (2, 3, 0, 1))
333
- return resized
334
-
335
- else:
336
- raise ValueError("Unsupported image dimensions.")
337
-
338
-
339
- class VisionEmbeddings(nn.Module):
340
- def __init__(self, config: VisionConfig):
341
- super().__init__()
342
- self.config = config
343
- self.embed_dim = config.hidden_size
344
- self.image_size = config.image_size
345
- self.patch_size = config.patch_size
346
-
347
- self.patch_embedding = nn.Conv2d(
348
- config.num_channels,
349
- config.hidden_size,
350
- kernel_size=self.patch_size,
351
- stride=self.patch_size,
352
- )
353
-
354
- self.num_patches = (self.image_size // self.patch_size) ** 2
355
- self.num_positions = self.num_patches
356
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
357
-
358
- @staticmethod
359
- def resize_positional_embeddings(
360
- positional_embeddings: mx.array,
361
- spatial_shapes: mx.array,
362
- max_length: int,
363
- ) -> mx.array:
364
- """
365
- Resize positional embeddings to image-specific size and pad to a fixed size.
366
-
367
- Args:
368
- positional_embeddings (`torch.Tensor`):
369
- Position embeddings of shape (height, width, embed_dim)
370
- spatial_shapes (`torch.LongTensor`):
371
- Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
372
- max_length (`int`):
373
- Maximum length of the positional embeddings to pad resized positional embeddings to
374
-
375
- Returns:
376
- `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
377
- """
378
- batch_size = spatial_shapes.shape[0]
379
- embed_dim = positional_embeddings.shape[-1]
380
- source_dtype = positional_embeddings.dtype
381
-
382
- resulted_positional_embeddings = mx.zeros(
383
- (batch_size, max_length, embed_dim)
384
- ).astype(source_dtype)
385
-
386
- # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
387
- positional_embeddings = positional_embeddings.transpose(2, 0, 1).reshape(
388
- 1, embed_dim, -1
389
- )
390
-
391
- # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
392
- if positional_embeddings.device.type == "cpu":
393
- positional_embeddings = positional_embeddings.astype(mx.float32)
394
-
395
- for i in range(batch_size):
396
- # (1, dim, height, width) -> (1, dim, target_height, target_width)
397
- height, width = spatial_shapes[i]
398
- # Then upsample width dimension
399
- resized_embeddings = resize_bilinear(
400
- positional_embeddings,
401
- (height, width),
402
- align_corners=False,
403
- antialias=True,
404
- )
405
-
406
- # (1, dim, target_height, target_width) -> (target_height * target_width, dim)
407
- resized_embeddings = resized_embeddings.reshape(
408
- embed_dim, height * width
409
- ).transpose(0, 1)
410
-
411
- # Cast to original dtype
412
- resized_embeddings = resized_embeddings.astype(source_dtype)
413
-
414
- resulted_positional_embeddings[i, : height * width] = resized_embeddings
415
- resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
416
-
417
- return resulted_positional_embeddings
418
-
419
- def __call__(
420
- self, x: mx.array, spatial_shapes: Optional[mx.array] = None
421
- ) -> mx.array:
422
- batch_size = x.shape[0]
423
- patch_embeddings = self.patch_embedding(x)
424
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
425
- if spatial_shapes is None:
426
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
427
- embeddings = patch_embeddings
428
- embeddings += self.position_embedding(position_ids)
429
-
430
- else:
431
- # Get positional resized and padded positional embeddings
432
- positional_embeddings = self.position_embedding.weight.reshape(
433
- self.position_embedding_size, self.position_embedding_size, -1
434
- )
435
-
436
- resized_positional_embeddings = self.resize_positional_embeddings(
437
- positional_embeddings, spatial_shapes, max_length=x.shape[1]
438
- )
439
-
440
- # Add positional embeddings to patch embeddings
441
- embeddings = patch_embeds + resized_positional_embeddings
442
- return embeddings
443
-
444
-
445
- class SigLipVisionModel(nn.Module):
446
- def __init__(self, config: VisionConfig):
447
- super().__init__()
448
-
449
- self.embeddings = VisionEmbeddings(config)
450
- self.encoder = Encoder(config)
451
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
452
-
453
- def __call__(
454
- self,
455
- x: mx.array,
456
- spatial_shapes: mx.array,
457
- output_hidden_states: Optional[bool] = None,
458
- ) -> mx.array:
459
- x = self.embeddings(x, spatial_shapes)
460
- x = x.astype(self.embeddings.patch_embedding.weight.dtype)
461
- encoder_outputs = self.encoder(
462
- x=x, output_hidden_states=output_hidden_states, mask=None
463
- )
464
- pooler_output = self.post_layernorm(encoder_outputs[0])
465
- return pooler_output, x, encoder_outputs[-1]
466
-
467
-
468
- class VisionModel(nn.Module):
469
- def __init__(self, config: VisionConfig):
470
- super().__init__()
471
- self.model_type = config.model_type
472
- if self.model_type not in ["siglip_vision_model"]:
473
- raise ValueError(f"Unsupported model type: {self.model_type}")
474
-
475
- self.vision_model = SigLipVisionModel(config)
476
-
477
- def __call__(
478
- self,
479
- x: mx.array,
480
- spatial_shapes: Optional[mx.array] = None,
481
- output_hidden_states: Optional[bool] = None,
482
- ) -> mx.array:
483
- return self.vision_model(x, spatial_shapes, output_hidden_states)
484
-
485
- def sanitize(self, weights):
486
- sanitized_weights = {}
487
- for k, v in weights.items():
488
- if "position_ids" in k:
489
- # Remove unused position_ids
490
- continue
491
- elif "patch_embedding.weight" in k:
492
- # PyTorch conv2d weight tensors have shape:
493
- # [out_channels, in_channels, kH, KW]
494
- # MLX conv2d expects the weight be of shape:
495
- # [out_channels, kH, KW, in_channels]
496
- if check_array_shape(v):
497
- sanitized_weights[k] = v
498
- else:
499
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
500
- else:
501
- sanitized_weights[k] = v
502
-
503
- return sanitized_weights
@@ -1,202 +0,0 @@
1
- import math
2
- from abc import ABC, abstractmethod
3
- from dataclasses import dataclass
4
- from typing import Any, Dict, List, Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- from mlx_lm.models.base import create_attention_mask, scaled_dot_product_attention
9
- from mlx_lm.models.cache import RotatingKVCache
10
- from PIL import Image
11
- from transformers.image_processing_utils import BaseImageProcessor as ImageProcessor
12
- from transformers.image_processing_utils import get_size_dict
13
- from transformers.image_utils import ChannelDimension, PILImageResampling
14
-
15
-
16
- @dataclass
17
- class LanguageModelOutput:
18
- logits: mx.array
19
- cross_attention_states: Optional[List[mx.array]] = None
20
- encoder_outputs: Optional[List[mx.array]] = None
21
-
22
-
23
- def expand2square(pil_img, background_color):
24
- width, height = pil_img.size
25
- if width == height:
26
- return pil_img
27
- elif width > height:
28
- result = Image.new(pil_img.mode, (width, width), background_color)
29
- result.paste(pil_img, (0, (width - height) // 2))
30
- return result
31
- else:
32
- result = Image.new(pil_img.mode, (height, height), background_color)
33
- result.paste(pil_img, ((height - width) // 2, 0))
34
- return result
35
-
36
-
37
- def check_array_shape(arr):
38
- shape = arr.shape
39
-
40
- # Check if the shape has 4 dimensions
41
- if len(shape) == 4:
42
- out_channels, kH, KW, _ = shape
43
- # Check if out_channels is the largest, and kH and KW are the same
44
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
45
- return True
46
- else:
47
- return False
48
- # Check if the shape has 3 dimensions
49
- elif len(shape) == 3:
50
- _, kW, out_channels = shape
51
- # Check if out_channels is the largest
52
- if kW >= out_channels:
53
- return True
54
- else:
55
- return False
56
- else:
57
- return False
58
-
59
-
60
- class BaseImageProcessor(ImageProcessor):
61
- def __init__(
62
- self,
63
- image_mean=(0.5, 0.5, 0.5),
64
- image_std=(0.5, 0.5, 0.5),
65
- size=(384, 384),
66
- crop_size: Dict[str, int] = None,
67
- resample=PILImageResampling.BICUBIC,
68
- rescale_factor=1 / 255,
69
- data_format=ChannelDimension.FIRST,
70
- ):
71
- crop_size = (
72
- crop_size if crop_size is not None else {"height": 384, "width": 384}
73
- )
74
- crop_size = get_size_dict(
75
- crop_size, default_to_square=True, param_name="crop_size"
76
- )
77
-
78
- self.image_mean = image_mean
79
- self.image_std = image_std
80
- self.size = size
81
- self.resample = resample
82
- self.rescale_factor = rescale_factor
83
- self.data_format = data_format
84
- self.crop_size = crop_size
85
-
86
- @abstractmethod
87
- def preprocess(self, images):
88
- pass
89
-
90
-
91
- # Add this code to visualize the chunked attention mask
92
- def visualize_attention_mask(mask):
93
- """Visualize attention mask with symbols for better readability."""
94
- if mask is None:
95
- print("No mask")
96
- return
97
-
98
- seq_len = mask.shape[0]
99
-
100
- print(" ", end="")
101
- for i in range(seq_len):
102
- print(f"{i:2d} ", end="")
103
- print()
104
-
105
- for i in range(seq_len):
106
- print(f"Token {i:2d}: ", end="")
107
- for j in range(seq_len):
108
- if mask[i, j]:
109
- print(" ■ ", end="")
110
- else:
111
- print(" ⬚ ", end="")
112
- print()
113
-
114
-
115
- def check_activation_stats(name, tensor):
116
- """Helper function to check for anomalies and log stats."""
117
-
118
- print(f"--- Activation Stats: {name} ---")
119
- # Check for NaNs/Infs
120
- has_nan = mx.isnan(tensor).any()
121
- has_inf = mx.isinf(tensor).any()
122
- if has_nan:
123
- print(f"WARNING: Found NaN in {name}")
124
- if has_inf:
125
- print(f"WARNING: Found Inf in {name}")
126
-
127
- # Calculate and print stats (ensure computation happens)
128
- min_val = mx.min(tensor).item()
129
- max_val = mx.max(tensor).item()
130
- mean_val = mx.mean(tensor).item()
131
- std_val = mx.std(tensor).item()
132
- print(f" Shape: {tensor.shape}")
133
- print(f" Min: {min_val:.4f}, Max: {max_val:.4f}")
134
- print(f" Mean: {mean_val:.4f}, Std: {std_val:.4f}")
135
- print("-" * (len(name) + 24))
136
-
137
-
138
- def pixel_shuffle(input_tensor, shuffle_ratio):
139
- # input_tensor: [batch_size, num_patches, channels]
140
- batch_size, num_patches, channels = input_tensor.shape
141
- patch_size = int(math.sqrt(num_patches))
142
-
143
- input_tensor = input_tensor.reshape(batch_size, patch_size, patch_size, -1)
144
- batch_size, height, width, channels = input_tensor.shape
145
-
146
- reshaped_tensor = input_tensor.reshape(
147
- batch_size, height, int(width * shuffle_ratio), int(channels / shuffle_ratio)
148
- )
149
- reshaped_tensor = reshaped_tensor.transpose(0, 2, 1, 3)
150
-
151
- reshaped_tensor = reshaped_tensor.reshape(
152
- batch_size,
153
- int(height * shuffle_ratio),
154
- int(width * shuffle_ratio),
155
- int(channels / (shuffle_ratio**2)),
156
- )
157
- reshaped_tensor = reshaped_tensor.transpose(0, 2, 1, 3)
158
-
159
- output_tensor = reshaped_tensor.reshape(batch_size, -1, reshaped_tensor.shape[-1])
160
- return output_tensor
161
-
162
-
163
- def interpolate(pos_embed, size, mode="cubic", align_corners=False):
164
- """
165
- MLX implementation of PyTorch's F.interpolate with bicubic mode
166
-
167
- Args:
168
- pos_embed: MLX array with shape [B, C, H_src, W_src] or [C, H_src, W_src]
169
- size: Tuple (H_dst, W_dst) - target size
170
- align_corners: Boolean - whether to align corners
171
-
172
- Returns:
173
- Interpolated array with shape [B, C, H_dst, W_dst] or [C, H_dst, W_dst]
174
- """
175
- # Handle different input shapes
176
- input_dim = pos_embed.ndim
177
- original_shape = pos_embed.shape
178
-
179
- if input_dim == 3:
180
- # [C, H, W] -> [1, C, H, W]
181
- pos_embed = pos_embed.reshape(1, *original_shape)
182
-
183
- # Get source dimensions
184
- h_src, w_src = pos_embed.shape[-2:]
185
- h_dst, w_dst = size
186
-
187
- # Calculate scale factors
188
- scale_h = h_dst / h_src
189
- scale_w = w_dst / w_src
190
-
191
- # Create upsampler
192
- upsampler = nn.Upsample(
193
- scale_factor=(scale_h, scale_w), mode=mode, align_corners=align_corners
194
- )
195
-
196
- # Apply upsampling
197
- result = upsampler(pos_embed)
198
-
199
- # Return in the original dimension format
200
- if input_dim == 3:
201
- return result.reshape(original_shape[0], *size)
202
- return result