nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
|
@@ -1,1022 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from collections.abc import Sequence
|
|
3
|
-
from dataclasses import dataclass
|
|
4
|
-
from math import sqrt
|
|
5
|
-
from typing import Dict, List, Optional, Tuple, Type
|
|
6
|
-
|
|
7
|
-
import mlx.core as mx
|
|
8
|
-
import mlx.nn as nn
|
|
9
|
-
|
|
10
|
-
from .config import VisionConfig
|
|
11
|
-
|
|
12
|
-
from ..base import check_array_shape
|
|
13
|
-
from ..kernels import bicubic_interpolate, nearest_interpolate
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/mobilenetv5.py#L24
|
|
17
|
-
class MobileNetV5MultiScaleFusionAdapter(nn.Module):
|
|
18
|
-
"""Multi-layer fusion token adapter.
|
|
19
|
-
Attributes:
|
|
20
|
-
out_filters: The number of output filters.
|
|
21
|
-
output_resolution: The output resolution.
|
|
22
|
-
activation: The activation function.
|
|
23
|
-
expansion_ratio: The expansion ratio.
|
|
24
|
-
upsampling_interpolation: The upsampling interpolation.
|
|
25
|
-
use_layer_scale: Whether to use layer scale.
|
|
26
|
-
layer_scale_init_value: The initial value of the layer scale.
|
|
27
|
-
skip_projection: Whether to skip the projection.
|
|
28
|
-
name: The name of the module.
|
|
29
|
-
upsize: The upsampling fn.
|
|
30
|
-
downsize: The downsampling fn.
|
|
31
|
-
"""
|
|
32
|
-
|
|
33
|
-
def __init__(
|
|
34
|
-
self,
|
|
35
|
-
in_chs: List[int],
|
|
36
|
-
out_chs: int,
|
|
37
|
-
output_resolution: int,
|
|
38
|
-
expansion_ratio: float = 2.0,
|
|
39
|
-
interpolation_mode: str = "nearest",
|
|
40
|
-
use_layer_scale: bool = False,
|
|
41
|
-
layer_scale_init_value: float = 1e-5,
|
|
42
|
-
noskip: bool = True,
|
|
43
|
-
):
|
|
44
|
-
super().__init__()
|
|
45
|
-
self.in_channels = sum(in_chs) if isinstance(in_chs, Sequence) else in_chs
|
|
46
|
-
self.out_channels = out_chs
|
|
47
|
-
self.output_resolution = to_2tuple(output_resolution)
|
|
48
|
-
self.expansion_ratio = expansion_ratio
|
|
49
|
-
self.interpolation_mode = interpolation_mode
|
|
50
|
-
self.use_layer_scale = use_layer_scale
|
|
51
|
-
self.layer_scale_init_value = layer_scale_init_value
|
|
52
|
-
self.noskip = noskip
|
|
53
|
-
|
|
54
|
-
norm_layer = RMSNormAct2d
|
|
55
|
-
self.ffn = UniversalInvertedResidual(
|
|
56
|
-
in_chs=self.in_channels,
|
|
57
|
-
out_chs=self.out_channels,
|
|
58
|
-
dw_kernel_size_mid=0,
|
|
59
|
-
exp_ratio=self.expansion_ratio,
|
|
60
|
-
norm_layer=norm_layer,
|
|
61
|
-
noskip=self.noskip,
|
|
62
|
-
layer_scale_init_value=(
|
|
63
|
-
self.layer_scale_init_value if self.use_layer_scale else None
|
|
64
|
-
),
|
|
65
|
-
)
|
|
66
|
-
|
|
67
|
-
self.norm = norm_layer(self.out_channels, eps=1e-6, apply_act=False)
|
|
68
|
-
|
|
69
|
-
def __call__(self, inputs: list[mx.array]) -> mx.array:
|
|
70
|
-
inputs = [i.transpose(0, 3, 1, 2) for i in inputs]
|
|
71
|
-
high_resolution = inputs[0].shape[
|
|
72
|
-
-2:
|
|
73
|
-
] # Assuming the first input is the highest resolution.
|
|
74
|
-
resized_inputs = []
|
|
75
|
-
|
|
76
|
-
for _, img in enumerate(inputs):
|
|
77
|
-
if any([r < hr for r, hr in zip(img.shape[-2:], high_resolution)]):
|
|
78
|
-
img = nearest_interpolate(img, size=high_resolution)
|
|
79
|
-
|
|
80
|
-
resized_inputs.append(img)
|
|
81
|
-
|
|
82
|
-
channel_cat_imgs = mx.concatenate(
|
|
83
|
-
resized_inputs, axis=1
|
|
84
|
-
) # Cat on channel dim, must equal self.in_channels
|
|
85
|
-
img = self.ffn(channel_cat_imgs.swapaxes(1, 3)).swapaxes(1, 3)
|
|
86
|
-
|
|
87
|
-
if any([ro != rh for ro, rh in zip(high_resolution, self.output_resolution)]):
|
|
88
|
-
if (
|
|
89
|
-
high_resolution[0] % self.output_resolution[0] != 0
|
|
90
|
-
or high_resolution[1] % self.output_resolution[1] != 0
|
|
91
|
-
):
|
|
92
|
-
img = bicubic_interpolate(img, self.output_resolution)
|
|
93
|
-
else:
|
|
94
|
-
h_strides = high_resolution[0] // self.output_resolution[0]
|
|
95
|
-
w_strides = high_resolution[1] // self.output_resolution[1]
|
|
96
|
-
|
|
97
|
-
img = nn.AvgPool2d(
|
|
98
|
-
kernel_size=(h_strides, w_strides),
|
|
99
|
-
stride=(h_strides, w_strides),
|
|
100
|
-
)(img.swapaxes(1, 3))
|
|
101
|
-
|
|
102
|
-
img = self.norm(img) if self.noskip else img
|
|
103
|
-
|
|
104
|
-
return img
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/layer_scale.py#L22
|
|
108
|
-
class LayerScale2d(nn.Module):
|
|
109
|
-
def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False):
|
|
110
|
-
super().__init__()
|
|
111
|
-
self.inplace = inplace
|
|
112
|
-
self.gamma = init_values * mx.ones((dim,))
|
|
113
|
-
|
|
114
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
115
|
-
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
def rms_norm2d(
|
|
119
|
-
x: mx.array,
|
|
120
|
-
normalized_shape: List[int],
|
|
121
|
-
weight: Optional[mx.array] = None,
|
|
122
|
-
eps: float = 1e-5,
|
|
123
|
-
):
|
|
124
|
-
assert len(normalized_shape) == 1
|
|
125
|
-
dtype = x.dtype
|
|
126
|
-
v = mx.power(x, 2)
|
|
127
|
-
v = mx.mean(v, axis=1, keepdims=True)
|
|
128
|
-
x = x * mx.rsqrt(v + eps)
|
|
129
|
-
if weight is not None:
|
|
130
|
-
x = x.astype(dtype) * weight.reshape(1, -1, 1, 1)
|
|
131
|
-
return x
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/norm_act.py#L504
|
|
135
|
-
class RMSNormAct2d(nn.RMSNorm):
|
|
136
|
-
def __init__(
|
|
137
|
-
self,
|
|
138
|
-
num_channels,
|
|
139
|
-
eps=1e-6,
|
|
140
|
-
apply_act: bool = True,
|
|
141
|
-
):
|
|
142
|
-
super().__init__(dims=num_channels, eps=eps)
|
|
143
|
-
self.normalized_shape = [num_channels]
|
|
144
|
-
self.drop = nn.Identity()
|
|
145
|
-
self.act = nn.GELU() if apply_act else nn.Identity()
|
|
146
|
-
|
|
147
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
148
|
-
|
|
149
|
-
x = x.transpose(0, 3, 1, 2) # Convert from NHWC to NCHW
|
|
150
|
-
x = rms_norm2d(x, self.normalized_shape, self.weight, self.eps)
|
|
151
|
-
x = self.drop(x)
|
|
152
|
-
x = self.act(x)
|
|
153
|
-
x = x.transpose(0, 2, 3, 1) # Convert back to NHWC
|
|
154
|
-
return x
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L310
|
|
158
|
-
class UniversalInvertedResidual(nn.Module):
|
|
159
|
-
def __init__(
|
|
160
|
-
self,
|
|
161
|
-
in_chs: int,
|
|
162
|
-
out_chs: int,
|
|
163
|
-
dw_kernel_size_start: int = 0,
|
|
164
|
-
dw_kernel_size_mid: int = 3,
|
|
165
|
-
dw_kernel_size_end: int = 0,
|
|
166
|
-
stride: int = 1,
|
|
167
|
-
dilation: int = 1,
|
|
168
|
-
group_size: int = 1,
|
|
169
|
-
pad_type: str = "",
|
|
170
|
-
noskip: bool = False,
|
|
171
|
-
exp_ratio: float = 1.0,
|
|
172
|
-
norm_layer=RMSNormAct2d,
|
|
173
|
-
conv_kwargs: Optional[Dict] = None,
|
|
174
|
-
drop_path_rate: float = 0.0,
|
|
175
|
-
layer_scale_init_value: Optional[float] = 1e-5,
|
|
176
|
-
):
|
|
177
|
-
super().__init__()
|
|
178
|
-
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
|
|
179
|
-
if stride > 1:
|
|
180
|
-
assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end
|
|
181
|
-
|
|
182
|
-
if dw_kernel_size_start:
|
|
183
|
-
dw_start_stride = stride if not dw_kernel_size_mid else 1
|
|
184
|
-
dw_start_groups = num_groups(group_size, in_chs)
|
|
185
|
-
self.dw_start = ConvNormAct(
|
|
186
|
-
nn.Conv2d,
|
|
187
|
-
in_chs,
|
|
188
|
-
in_chs,
|
|
189
|
-
kernel_size=dw_kernel_size_start,
|
|
190
|
-
stride=dw_start_stride,
|
|
191
|
-
padding=(dw_kernel_size_start - 1) // 2,
|
|
192
|
-
dilation=dilation,
|
|
193
|
-
groups=dw_start_groups,
|
|
194
|
-
bias=False,
|
|
195
|
-
apply_act=False,
|
|
196
|
-
eps=1e-05,
|
|
197
|
-
)
|
|
198
|
-
else:
|
|
199
|
-
self.dw_start = nn.Identity()
|
|
200
|
-
|
|
201
|
-
mid_chs = make_divisible(in_chs * exp_ratio)
|
|
202
|
-
self.pw_exp = ConvNormAct(
|
|
203
|
-
nn.Conv2d,
|
|
204
|
-
in_chs,
|
|
205
|
-
mid_chs,
|
|
206
|
-
kernel_size=1,
|
|
207
|
-
stride=1,
|
|
208
|
-
padding=0,
|
|
209
|
-
groups=1,
|
|
210
|
-
bias=False,
|
|
211
|
-
eps=1e-05,
|
|
212
|
-
)
|
|
213
|
-
|
|
214
|
-
if dw_kernel_size_mid:
|
|
215
|
-
dw_mid_groups = num_groups(group_size, mid_chs)
|
|
216
|
-
self.dw_mid = ConvNormAct(
|
|
217
|
-
Conv2dSame,
|
|
218
|
-
mid_chs,
|
|
219
|
-
mid_chs,
|
|
220
|
-
kernel_size=dw_kernel_size_mid,
|
|
221
|
-
stride=stride,
|
|
222
|
-
padding=0,
|
|
223
|
-
dilation=dilation,
|
|
224
|
-
groups=dw_mid_groups,
|
|
225
|
-
bias=False,
|
|
226
|
-
eps=1e-05,
|
|
227
|
-
)
|
|
228
|
-
else:
|
|
229
|
-
self.dw_mid = nn.Identity()
|
|
230
|
-
|
|
231
|
-
self.pw_proj = ConvNormAct(
|
|
232
|
-
nn.Conv2d,
|
|
233
|
-
mid_chs,
|
|
234
|
-
out_chs,
|
|
235
|
-
kernel_size=1,
|
|
236
|
-
stride=1,
|
|
237
|
-
padding=0,
|
|
238
|
-
groups=1,
|
|
239
|
-
bias=False,
|
|
240
|
-
apply_act=False,
|
|
241
|
-
eps=1e-05,
|
|
242
|
-
)
|
|
243
|
-
if layer_scale_init_value is not None:
|
|
244
|
-
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
|
|
245
|
-
else:
|
|
246
|
-
self.layer_scale = nn.Identity()
|
|
247
|
-
|
|
248
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
249
|
-
shortcut = x
|
|
250
|
-
x = self.dw_start(x)
|
|
251
|
-
x = self.pw_exp(x)
|
|
252
|
-
x = self.dw_mid(x)
|
|
253
|
-
x = self.pw_proj(x)
|
|
254
|
-
x = self.layer_scale(x)
|
|
255
|
-
if self.has_skip:
|
|
256
|
-
x = x + shortcut
|
|
257
|
-
return x
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/conv_bn_act.py#L15
|
|
261
|
-
class ConvNormAct(nn.Module):
|
|
262
|
-
def __init__(
|
|
263
|
-
self,
|
|
264
|
-
conv_cls,
|
|
265
|
-
in_chs: int,
|
|
266
|
-
out_chs: int,
|
|
267
|
-
kernel_size: int = 3,
|
|
268
|
-
stride: int = 1,
|
|
269
|
-
padding: int = 0,
|
|
270
|
-
dilation: int = 1,
|
|
271
|
-
groups: int = 1,
|
|
272
|
-
bias: bool = False,
|
|
273
|
-
apply_act: bool = True,
|
|
274
|
-
eps: float = 1e-6,
|
|
275
|
-
):
|
|
276
|
-
super().__init__()
|
|
277
|
-
self.out_chs = out_chs
|
|
278
|
-
self.conv = conv_cls(
|
|
279
|
-
in_chs,
|
|
280
|
-
out_chs,
|
|
281
|
-
kernel_size,
|
|
282
|
-
stride,
|
|
283
|
-
padding,
|
|
284
|
-
(dilation, dilation),
|
|
285
|
-
groups,
|
|
286
|
-
bias,
|
|
287
|
-
)
|
|
288
|
-
self.bn = RMSNormAct2d(out_chs, eps=eps, apply_act=apply_act)
|
|
289
|
-
|
|
290
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
291
|
-
c = self.conv(x)
|
|
292
|
-
r = self.bn(c)
|
|
293
|
-
return r
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
def pad_same(
|
|
297
|
-
x,
|
|
298
|
-
kernel_size: List[int],
|
|
299
|
-
stride: List[int],
|
|
300
|
-
dilation: List[int] = (1, 1),
|
|
301
|
-
value: float = 0,
|
|
302
|
-
):
|
|
303
|
-
"""
|
|
304
|
-
Input should be in MLX format
|
|
305
|
-
"""
|
|
306
|
-
ih, iw = x.shape[1:3]
|
|
307
|
-
pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0])
|
|
308
|
-
pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1])
|
|
309
|
-
|
|
310
|
-
# MLX pad format: [(low, high), (low, high), ...] for each axis
|
|
311
|
-
# Padding order is reversed compared to PyTorch F.pad
|
|
312
|
-
pad_widths = [
|
|
313
|
-
(0, 0), # No padding for batch dimension
|
|
314
|
-
(pad_h // 2, pad_h - pad_h // 2), # Height padding
|
|
315
|
-
(pad_w // 2, pad_w - pad_w // 2), # Width padding
|
|
316
|
-
(0, 0), # No padding for channel dimension
|
|
317
|
-
]
|
|
318
|
-
|
|
319
|
-
x = mx.pad(x, pad_widths, constant_values=value)
|
|
320
|
-
return x
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
|
|
324
|
-
dynamic = False
|
|
325
|
-
if isinstance(padding, str):
|
|
326
|
-
# for any string padding, the padding will be calculated for you, one of three ways
|
|
327
|
-
padding = padding.lower()
|
|
328
|
-
if padding == "same":
|
|
329
|
-
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
|
330
|
-
if is_static_pad(kernel_size, **kwargs):
|
|
331
|
-
# static case, no extra overhead
|
|
332
|
-
padding = get_padding(kernel_size, **kwargs)
|
|
333
|
-
else:
|
|
334
|
-
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
|
335
|
-
padding = 0
|
|
336
|
-
dynamic = True
|
|
337
|
-
elif padding == "valid":
|
|
338
|
-
# 'VALID' padding, same as padding=0
|
|
339
|
-
padding = 0
|
|
340
|
-
else:
|
|
341
|
-
# Default to PyTorch style 'same'-ish symmetric padding
|
|
342
|
-
padding = get_padding(kernel_size, **kwargs)
|
|
343
|
-
return padding, dynamic
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
def get_same_padding(
|
|
347
|
-
input_size: int, kernel_size: int, stride: int, dilation: int = 1
|
|
348
|
-
) -> int:
|
|
349
|
-
"""Calculate padding needed for 'same' output size."""
|
|
350
|
-
effective_kernel_size = dilation * (kernel_size - 1) + 1
|
|
351
|
-
output_size = (input_size + stride - 1) // stride
|
|
352
|
-
total_padding = max(
|
|
353
|
-
0, (output_size - 1) * stride + effective_kernel_size - input_size
|
|
354
|
-
)
|
|
355
|
-
return total_padding
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
def get_padding(kernel_size, stride=1, dilation=1, **_):
|
|
359
|
-
"""Get symmetric padding for given kernel size."""
|
|
360
|
-
if isinstance(kernel_size, int):
|
|
361
|
-
kernel_size = [kernel_size, kernel_size]
|
|
362
|
-
if isinstance(stride, int):
|
|
363
|
-
stride = [stride, stride]
|
|
364
|
-
if isinstance(dilation, int):
|
|
365
|
-
dilation = [dilation, dilation]
|
|
366
|
-
|
|
367
|
-
padding = []
|
|
368
|
-
for k, d in zip(kernel_size, dilation):
|
|
369
|
-
effective_k = d * (k - 1) + 1
|
|
370
|
-
pad_total = effective_k - 1
|
|
371
|
-
padding.append(pad_total // 2)
|
|
372
|
-
return tuple(padding)
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
def is_static_pad(kernel_size, stride=1, dilation=1, **_):
|
|
376
|
-
"""Check if padding can be calculated statically."""
|
|
377
|
-
if isinstance(kernel_size, int):
|
|
378
|
-
kernel_size = [kernel_size, kernel_size]
|
|
379
|
-
if isinstance(stride, int):
|
|
380
|
-
stride = [stride, stride]
|
|
381
|
-
if isinstance(dilation, int):
|
|
382
|
-
dilation = [dilation, dilation]
|
|
383
|
-
|
|
384
|
-
# Static padding is possible when stride is 1 for all dimensions
|
|
385
|
-
return all(s == 1 for s in stride)
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
class Conv2dSame(nn.Conv2d):
|
|
389
|
-
def __init__(self, *args, **kwargs):
|
|
390
|
-
super().__init__(*args, **kwargs)
|
|
391
|
-
self.kernel_size = self.weight.shape[1:3]
|
|
392
|
-
|
|
393
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
394
|
-
x = pad_same(x, self.kernel_size, self.stride, self.dilation)
|
|
395
|
-
y = mx.conv2d(
|
|
396
|
-
x, self.weight, self.stride, self.padding, self.dilation, self.groups
|
|
397
|
-
)
|
|
398
|
-
if "bias" in self:
|
|
399
|
-
y = y + self.bias
|
|
400
|
-
return y
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L629
|
|
404
|
-
class EdgeResidual(nn.Module):
|
|
405
|
-
def __init__(
|
|
406
|
-
self,
|
|
407
|
-
in_chs: int,
|
|
408
|
-
out_chs: int,
|
|
409
|
-
exp_kernel_size: int = 3,
|
|
410
|
-
stride: int = 1,
|
|
411
|
-
dilation: int = 1,
|
|
412
|
-
group_size: int = 0,
|
|
413
|
-
pad_type: str = "",
|
|
414
|
-
force_in_chs: int = 0,
|
|
415
|
-
noskip: bool = False,
|
|
416
|
-
expand_ratio: float = 1.0,
|
|
417
|
-
pw_kernel_size: int = 1,
|
|
418
|
-
norm_layer=RMSNormAct2d,
|
|
419
|
-
):
|
|
420
|
-
super().__init__()
|
|
421
|
-
|
|
422
|
-
if force_in_chs > 0:
|
|
423
|
-
mid_chs = make_divisible(force_in_chs * expand_ratio)
|
|
424
|
-
else:
|
|
425
|
-
mid_chs = make_divisible(in_chs * expand_ratio)
|
|
426
|
-
|
|
427
|
-
groups = num_groups(group_size, mid_chs)
|
|
428
|
-
|
|
429
|
-
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
|
|
430
|
-
|
|
431
|
-
self.conv_exp = Conv2dSame(
|
|
432
|
-
in_chs,
|
|
433
|
-
mid_chs,
|
|
434
|
-
kernel_size=exp_kernel_size,
|
|
435
|
-
stride=stride,
|
|
436
|
-
padding=0,
|
|
437
|
-
dilation=(dilation, dilation),
|
|
438
|
-
groups=groups,
|
|
439
|
-
bias=False,
|
|
440
|
-
)
|
|
441
|
-
|
|
442
|
-
self.bn1 = norm_layer(mid_chs, eps=1e-05) if norm_layer else nn.Identity()
|
|
443
|
-
|
|
444
|
-
# Point-wise linear projection
|
|
445
|
-
padding_pwl = (pw_kernel_size - 1) // 2
|
|
446
|
-
self.conv_pwl = nn.Conv2d(
|
|
447
|
-
mid_chs,
|
|
448
|
-
out_chs,
|
|
449
|
-
kernel_size=pw_kernel_size,
|
|
450
|
-
padding=padding_pwl,
|
|
451
|
-
bias=False,
|
|
452
|
-
)
|
|
453
|
-
|
|
454
|
-
self.bn2 = (
|
|
455
|
-
norm_layer(out_chs, eps=1e-05, apply_act=False)
|
|
456
|
-
if norm_layer
|
|
457
|
-
else nn.Identity()
|
|
458
|
-
)
|
|
459
|
-
|
|
460
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
461
|
-
shortcut = x
|
|
462
|
-
x = self.conv_exp(x)
|
|
463
|
-
x = self.bn1(x)
|
|
464
|
-
x = self.conv_pwl(x)
|
|
465
|
-
x = self.bn2(x)
|
|
466
|
-
if self.has_skip:
|
|
467
|
-
x = x + shortcut
|
|
468
|
-
return x
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L449
|
|
472
|
-
class MobileAttention(nn.Module):
|
|
473
|
-
def __init__(
|
|
474
|
-
self,
|
|
475
|
-
in_chs: int,
|
|
476
|
-
out_chs: int,
|
|
477
|
-
stride: int = 1,
|
|
478
|
-
dw_kernel_size: int = 3,
|
|
479
|
-
dilation: int = 1,
|
|
480
|
-
group_size: int = 1,
|
|
481
|
-
pad_type: str = "",
|
|
482
|
-
num_heads: int = 8,
|
|
483
|
-
key_dim: int = 64,
|
|
484
|
-
value_dim: int = 64,
|
|
485
|
-
use_multi_query: bool = True,
|
|
486
|
-
query_strides: Tuple[int, int] = (1, 1),
|
|
487
|
-
kv_stride: int = 1,
|
|
488
|
-
cpe_dw_kernel_size: int = 3,
|
|
489
|
-
noskip: bool = False,
|
|
490
|
-
act_layer=nn.GELU,
|
|
491
|
-
aa_layer=None,
|
|
492
|
-
drop_path_rate: float = 0.0,
|
|
493
|
-
attn_drop: float = 0.0,
|
|
494
|
-
proj_drop: float = 0.0,
|
|
495
|
-
layer_scale_init_value: Optional[float] = 1e-5,
|
|
496
|
-
use_bias: bool = False,
|
|
497
|
-
):
|
|
498
|
-
super().__init__()
|
|
499
|
-
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
|
|
500
|
-
self.query_strides = to_2tuple(query_strides)
|
|
501
|
-
self.kv_stride = kv_stride
|
|
502
|
-
self.has_query_stride = any([s > 1 for s in self.query_strides])
|
|
503
|
-
|
|
504
|
-
# Normalization layer
|
|
505
|
-
self.norm = RMSNormAct2d(
|
|
506
|
-
in_chs,
|
|
507
|
-
eps=1e-05,
|
|
508
|
-
apply_act=False,
|
|
509
|
-
)
|
|
510
|
-
# Determine number of heads if not provided
|
|
511
|
-
if num_heads is None:
|
|
512
|
-
assert in_chs % key_dim == 0
|
|
513
|
-
num_heads = in_chs // key_dim
|
|
514
|
-
|
|
515
|
-
# Attention layer
|
|
516
|
-
if use_multi_query:
|
|
517
|
-
self.attn = MultiQueryAttention2d(
|
|
518
|
-
in_chs,
|
|
519
|
-
dim_out=out_chs,
|
|
520
|
-
num_heads=num_heads,
|
|
521
|
-
key_dim=key_dim,
|
|
522
|
-
value_dim=value_dim,
|
|
523
|
-
query_strides=query_strides,
|
|
524
|
-
kv_stride=kv_stride,
|
|
525
|
-
dilation=dilation,
|
|
526
|
-
padding=pad_type,
|
|
527
|
-
dw_kernel_size=dw_kernel_size,
|
|
528
|
-
attn_drop=attn_drop,
|
|
529
|
-
proj_drop=proj_drop,
|
|
530
|
-
)
|
|
531
|
-
else:
|
|
532
|
-
raise NotImplementedError("attention not implemented")
|
|
533
|
-
|
|
534
|
-
# Layer scaling
|
|
535
|
-
if layer_scale_init_value is not None:
|
|
536
|
-
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
|
|
537
|
-
else:
|
|
538
|
-
self.layer_scale = nn.Identity()
|
|
539
|
-
|
|
540
|
-
# Drop path for residual connection
|
|
541
|
-
self.drop_path = nn.Identity()
|
|
542
|
-
|
|
543
|
-
def __call__(self, x: mx.array) -> mx.array:
|
|
544
|
-
shortcut = x
|
|
545
|
-
x = self.norm(x)
|
|
546
|
-
x = self.attn(x)
|
|
547
|
-
x = self.layer_scale(x)
|
|
548
|
-
|
|
549
|
-
# Apply skip connection if available
|
|
550
|
-
if self.has_skip:
|
|
551
|
-
x = self.drop_path(x) + shortcut
|
|
552
|
-
return x
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
def create_conv2d(
|
|
556
|
-
in_channels,
|
|
557
|
-
out_channels,
|
|
558
|
-
kernel_size,
|
|
559
|
-
stride=1,
|
|
560
|
-
dilation=1,
|
|
561
|
-
depthwise=False,
|
|
562
|
-
bias=False,
|
|
563
|
-
**kwargs,
|
|
564
|
-
):
|
|
565
|
-
"""Helper function to create a 2D convolution with common parameters"""
|
|
566
|
-
if depthwise:
|
|
567
|
-
# Depthwise convolution
|
|
568
|
-
return nn.Conv2d(
|
|
569
|
-
in_channels,
|
|
570
|
-
out_channels,
|
|
571
|
-
kernel_size=kernel_size,
|
|
572
|
-
stride=stride,
|
|
573
|
-
padding=(kernel_size - 1) // 2 * dilation,
|
|
574
|
-
dilation=dilation,
|
|
575
|
-
groups=in_channels,
|
|
576
|
-
bias=bias,
|
|
577
|
-
)
|
|
578
|
-
else:
|
|
579
|
-
# Regular convolution
|
|
580
|
-
return nn.Conv2d(
|
|
581
|
-
in_channels,
|
|
582
|
-
out_channels,
|
|
583
|
-
kernel_size=kernel_size,
|
|
584
|
-
stride=stride,
|
|
585
|
-
padding=(kernel_size - 1) // 2 * dilation,
|
|
586
|
-
dilation=dilation,
|
|
587
|
-
bias=bias,
|
|
588
|
-
)
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
def to_2tuple(x):
|
|
592
|
-
"""Convert input to 2-tuple"""
|
|
593
|
-
if isinstance(x, tuple):
|
|
594
|
-
return x
|
|
595
|
-
return (x, x)
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
class NamedSequential(nn.Module):
|
|
599
|
-
def __init__(self):
|
|
600
|
-
super().__init__()
|
|
601
|
-
self._order = []
|
|
602
|
-
|
|
603
|
-
def add_module(self, name, module):
|
|
604
|
-
setattr(self, name, module)
|
|
605
|
-
self._order.append(name)
|
|
606
|
-
|
|
607
|
-
def __call__(self, x):
|
|
608
|
-
for name in self._order:
|
|
609
|
-
x = getattr(self, name)(x)
|
|
610
|
-
return x
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/attention2d.py#L82
|
|
614
|
-
class MultiQueryAttention2d(nn.Module):
|
|
615
|
-
def __init__(
|
|
616
|
-
self,
|
|
617
|
-
dim: int,
|
|
618
|
-
dim_out: Optional[int] = None,
|
|
619
|
-
num_heads: int = 8,
|
|
620
|
-
key_dim: int = 64,
|
|
621
|
-
value_dim: int = 64,
|
|
622
|
-
query_strides: Tuple[int, int] = (1, 1),
|
|
623
|
-
kv_stride: int = 1,
|
|
624
|
-
dilation: int = 1,
|
|
625
|
-
padding: str = "",
|
|
626
|
-
dw_kernel_size: int = 3,
|
|
627
|
-
attn_drop: float = 0.0,
|
|
628
|
-
proj_drop: float = 0.0,
|
|
629
|
-
):
|
|
630
|
-
super().__init__()
|
|
631
|
-
dim_out = dim_out or dim
|
|
632
|
-
self.num_heads = num_heads
|
|
633
|
-
self.query_strides = to_2tuple(query_strides)
|
|
634
|
-
self.kv_stride = kv_stride
|
|
635
|
-
self.fused_attn = True
|
|
636
|
-
self.key_dim = key_dim
|
|
637
|
-
self.value_dim = value_dim
|
|
638
|
-
head_dim = key_dim
|
|
639
|
-
self.scale = head_dim**-0.5
|
|
640
|
-
|
|
641
|
-
self.query = NamedSequential()
|
|
642
|
-
self.query.add_module(
|
|
643
|
-
"proj",
|
|
644
|
-
create_conv2d(
|
|
645
|
-
dim,
|
|
646
|
-
self.num_heads * self.key_dim,
|
|
647
|
-
kernel_size=1,
|
|
648
|
-
),
|
|
649
|
-
)
|
|
650
|
-
self.key = NamedSequential()
|
|
651
|
-
if kv_stride > 1:
|
|
652
|
-
self.key.add_module(
|
|
653
|
-
"down_conv",
|
|
654
|
-
create_conv2d(
|
|
655
|
-
dim,
|
|
656
|
-
dim,
|
|
657
|
-
kernel_size=dw_kernel_size,
|
|
658
|
-
stride=kv_stride,
|
|
659
|
-
dilation=dilation,
|
|
660
|
-
padding=padding,
|
|
661
|
-
depthwise=True,
|
|
662
|
-
),
|
|
663
|
-
)
|
|
664
|
-
self.key.add_module("norm", RMSNormAct2d(dim, eps=1e-6, apply_act=False))
|
|
665
|
-
self.key.add_module(
|
|
666
|
-
"proj", create_conv2d(dim, key_dim, kernel_size=1, bias=False)
|
|
667
|
-
)
|
|
668
|
-
|
|
669
|
-
self.value = NamedSequential()
|
|
670
|
-
if kv_stride > 1:
|
|
671
|
-
self.value.add_module(
|
|
672
|
-
"down_conv",
|
|
673
|
-
create_conv2d(
|
|
674
|
-
dim,
|
|
675
|
-
dim,
|
|
676
|
-
kernel_size=dw_kernel_size,
|
|
677
|
-
stride=kv_stride,
|
|
678
|
-
dilation=dilation,
|
|
679
|
-
padding=padding,
|
|
680
|
-
depthwise=True,
|
|
681
|
-
),
|
|
682
|
-
)
|
|
683
|
-
self.value.add_module("norm", RMSNormAct2d(dim, eps=1e-6, apply_act=False))
|
|
684
|
-
self.value.add_module(
|
|
685
|
-
"proj", create_conv2d(dim, value_dim, kernel_size=1, bias=False)
|
|
686
|
-
)
|
|
687
|
-
|
|
688
|
-
# Attention dropout
|
|
689
|
-
self.attn_drop = nn.Dropout(attn_drop) if attn_drop > 0 else nn.Identity()
|
|
690
|
-
|
|
691
|
-
# Output projection
|
|
692
|
-
self.output = NamedSequential()
|
|
693
|
-
self.output.add_module(
|
|
694
|
-
"proj",
|
|
695
|
-
create_conv2d(
|
|
696
|
-
value_dim * num_heads,
|
|
697
|
-
dim_out,
|
|
698
|
-
kernel_size=1,
|
|
699
|
-
stride=1,
|
|
700
|
-
bias=False,
|
|
701
|
-
),
|
|
702
|
-
)
|
|
703
|
-
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0 else nn.Identity()
|
|
704
|
-
|
|
705
|
-
def _reshape_input(self, t: mx.array):
|
|
706
|
-
"""
|
|
707
|
-
Input shape MLX: [B, H, W, C]
|
|
708
|
-
Input shape PyTorch: [B, C, H, W]
|
|
709
|
-
|
|
710
|
-
PyTorch Reshape: [B, C, H, W] -> [B, C, -1] -> [B, -1, C] -> [B, 1, -1, C] -> SDPA
|
|
711
|
-
MLX Reshape: [B, H, W, C] -> [B, -1, C] -> [B, 1, -1, C] -> SDPA
|
|
712
|
-
"""
|
|
713
|
-
s = t.shape
|
|
714
|
-
t = t.reshape(s[0], -1, s[3])[:, None, :, :]
|
|
715
|
-
|
|
716
|
-
return t
|
|
717
|
-
|
|
718
|
-
def _reshape_projected_query(self, t: mx.array, num_heads: int, key_dim: int):
|
|
719
|
-
"""
|
|
720
|
-
Input shape MLX: [B, H, W, C] where C = num_heads * key_dim
|
|
721
|
-
"""
|
|
722
|
-
B, H, W, C = t.shape
|
|
723
|
-
# t = t.reshape(B, H, W, num_heads, key_dim)
|
|
724
|
-
t = t.reshape(B, H * W, num_heads, key_dim)
|
|
725
|
-
return t.transpose(0, 2, 1, 3)
|
|
726
|
-
|
|
727
|
-
def _reshape_output(self, t: mx.array, num_heads: int, h_px: int, w_px: int):
|
|
728
|
-
"""
|
|
729
|
-
Input shape: [B, NH, L, D] where L = h_px * w_px
|
|
730
|
-
Output shape MLX: [B, H, W, C] where C = NH * D
|
|
731
|
-
"""
|
|
732
|
-
B, NH, L, D = t.shape
|
|
733
|
-
# First transpose to [B, L, NH, D]
|
|
734
|
-
t = t.transpose(0, 2, 1, 3)
|
|
735
|
-
# Then reshape to [B, H, W, NH*D]
|
|
736
|
-
t = t.reshape(B, h_px, w_px, NH * D)
|
|
737
|
-
return t
|
|
738
|
-
|
|
739
|
-
def __call__(self, x: mx.array, attn_mask: Optional[mx.array] = None) -> mx.array:
|
|
740
|
-
B, H, W, C = x.shape
|
|
741
|
-
q = self.query(x)
|
|
742
|
-
q = self._reshape_projected_query(q, self.num_heads, self.key_dim)
|
|
743
|
-
|
|
744
|
-
k = self.key(x)
|
|
745
|
-
k = self._reshape_input(k)
|
|
746
|
-
|
|
747
|
-
v = self.value(x)
|
|
748
|
-
v = self._reshape_input(v)
|
|
749
|
-
|
|
750
|
-
if self.fused_attn:
|
|
751
|
-
o = mx.fast.scaled_dot_product_attention(
|
|
752
|
-
q,
|
|
753
|
-
k,
|
|
754
|
-
v,
|
|
755
|
-
scale=1.0 / sqrt(q.shape[-1]),
|
|
756
|
-
)
|
|
757
|
-
else:
|
|
758
|
-
raise NotImplementedError("unfused attention not implemented")
|
|
759
|
-
|
|
760
|
-
o = self._reshape_output(
|
|
761
|
-
o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]
|
|
762
|
-
)
|
|
763
|
-
x = self.output(o)
|
|
764
|
-
return x
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
def num_groups(group_size: Optional[int], channels: int) -> int:
|
|
768
|
-
if not group_size: # 0 or None
|
|
769
|
-
return 1 # normal conv with 1 group
|
|
770
|
-
else:
|
|
771
|
-
# NOTE group_size == 1 -> depthwise conv
|
|
772
|
-
assert channels % group_size == 0
|
|
773
|
-
return channels // group_size
|
|
774
|
-
|
|
775
|
-
|
|
776
|
-
def make_divisible(v, divisor: int = 8, min_value=None, round_limit: float = 0.9):
|
|
777
|
-
min_value = min_value or divisor
|
|
778
|
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
779
|
-
# Make sure that round down does not go down by more than 10%.
|
|
780
|
-
if new_v < round_limit * v:
|
|
781
|
-
new_v += divisor
|
|
782
|
-
return new_v
|
|
783
|
-
|
|
784
|
-
|
|
785
|
-
@dataclass(frozen=True)
|
|
786
|
-
class EdgeResidualConfig:
|
|
787
|
-
kernel_size: int = 3
|
|
788
|
-
filters: int = 32
|
|
789
|
-
strides: int = 1
|
|
790
|
-
expand_ratio: float = 4.0
|
|
791
|
-
is_multiscale: bool = False
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
def _er(kernel_size, filters, strides=1, expand_ratio=4.0, is_multiscale=False):
|
|
795
|
-
return EdgeResidualConfig(
|
|
796
|
-
kernel_size=kernel_size,
|
|
797
|
-
filters=filters,
|
|
798
|
-
strides=strides,
|
|
799
|
-
expand_ratio=expand_ratio,
|
|
800
|
-
is_multiscale=is_multiscale,
|
|
801
|
-
)
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
@dataclass(frozen=True)
|
|
805
|
-
class UniversalInvertedResidualConfig:
|
|
806
|
-
start_dw_kernel_size: int = 0 # Zero size means no conv
|
|
807
|
-
mid_dw_kernel_size: int = 0 # Zero size means no conv
|
|
808
|
-
filters: int = 32
|
|
809
|
-
strides: int = 1
|
|
810
|
-
expand_ratio: float = 4.0
|
|
811
|
-
is_multiscale: bool = False
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
def _uir(
|
|
815
|
-
start_dw_kernel_size,
|
|
816
|
-
mid_dw_kernel_size,
|
|
817
|
-
filters,
|
|
818
|
-
strides=1,
|
|
819
|
-
expand_ratio=4.0,
|
|
820
|
-
is_multiscale=False,
|
|
821
|
-
):
|
|
822
|
-
return UniversalInvertedResidualConfig(
|
|
823
|
-
start_dw_kernel_size=start_dw_kernel_size,
|
|
824
|
-
mid_dw_kernel_size=mid_dw_kernel_size,
|
|
825
|
-
filters=filters,
|
|
826
|
-
strides=strides,
|
|
827
|
-
expand_ratio=expand_ratio,
|
|
828
|
-
is_multiscale=is_multiscale,
|
|
829
|
-
)
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
@dataclass(frozen=True)
|
|
833
|
-
class MultiQueryAttentionBlockConfig:
|
|
834
|
-
num_heads: int = 8
|
|
835
|
-
kv_dim: int = 16
|
|
836
|
-
kv_strides: int = 1
|
|
837
|
-
mmqa_avg_pool_kv: bool = False
|
|
838
|
-
mmqa_dropout: float = 0.0
|
|
839
|
-
mmqa_dw_kernel_size: int = 3
|
|
840
|
-
is_multiscale: bool = False
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
def _mmqa(
|
|
844
|
-
num_heads,
|
|
845
|
-
kv_dim,
|
|
846
|
-
kv_strides,
|
|
847
|
-
mmqa_avg_pool_kv=False,
|
|
848
|
-
is_multiscale=False,
|
|
849
|
-
):
|
|
850
|
-
conf = MultiQueryAttentionBlockConfig(
|
|
851
|
-
num_heads=num_heads,
|
|
852
|
-
kv_dim=kv_dim,
|
|
853
|
-
kv_strides=kv_strides,
|
|
854
|
-
mmqa_avg_pool_kv=mmqa_avg_pool_kv,
|
|
855
|
-
is_multiscale=is_multiscale,
|
|
856
|
-
)
|
|
857
|
-
return conf
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/mobilenetv5.py#L596
|
|
861
|
-
def gemma3n_mobilenet_def():
|
|
862
|
-
return [
|
|
863
|
-
# Stage 1: Edge Residuals
|
|
864
|
-
[_er(3, 128, 2)] + [_er(3, 128, 1)] * 2,
|
|
865
|
-
# Stage 2: Universal Inverted Residuals
|
|
866
|
-
[_uir(3, 5, 256, 2, 6.0)] + [_uir(k, 0, 256) for k in [5, 3, 5, 3]],
|
|
867
|
-
# Stage 3: Universal Inverted Residuals with Multi-Query Attention
|
|
868
|
-
[_uir(5, 5, 640, 2, 6.0)]
|
|
869
|
-
+ [_uir(5, 0, 640)] * 7
|
|
870
|
-
+ [_uir(0, 0, 640, 1, 1.0)]
|
|
871
|
-
+ [_mmqa(12, 64, 2), _uir(0, 0, 640, 1, 2.0)] * 13
|
|
872
|
-
+ [_mmqa(12, 64, 2), _uir(0, 0, 640, 1, 2.0, is_multiscale=True)],
|
|
873
|
-
# Stage 4: Universal Inverted Residuals with Multi-Query Attention
|
|
874
|
-
[_uir(5, 5, 1280, 2, 6.0)]
|
|
875
|
-
+ [_mmqa(16, 96, 1), _uir(0, 0, 1280, 1, 2.0)] * 18
|
|
876
|
-
+ [_mmqa(16, 96, 1), _uir(0, 0, 1280, 1, 2.0, is_multiscale=True)],
|
|
877
|
-
]
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
class VisionTower(nn.Module):
|
|
881
|
-
def __init__(self, config: VisionConfig):
|
|
882
|
-
super().__init__()
|
|
883
|
-
self.conv_stem = ConvNormAct(
|
|
884
|
-
Conv2dSame,
|
|
885
|
-
in_chs=3,
|
|
886
|
-
out_chs=64,
|
|
887
|
-
kernel_size=3,
|
|
888
|
-
stride=2,
|
|
889
|
-
padding=0,
|
|
890
|
-
eps=1e-05,
|
|
891
|
-
bias=True,
|
|
892
|
-
)
|
|
893
|
-
msfa_indices = (3, 4)
|
|
894
|
-
msfa_output_resolution = (16, 16)
|
|
895
|
-
|
|
896
|
-
(num_features, self.blocks) = self.build()
|
|
897
|
-
self.num_features = self.head_hidden_size = (
|
|
898
|
-
num_features # output of msfa is output of forward_features()
|
|
899
|
-
)
|
|
900
|
-
self.msfa_indices = msfa_indices
|
|
901
|
-
self.msfa_output_resolution = msfa_output_resolution
|
|
902
|
-
|
|
903
|
-
self.msfa = MobileNetV5MultiScaleFusionAdapter(
|
|
904
|
-
in_chs=[1920],
|
|
905
|
-
out_chs=2048,
|
|
906
|
-
output_resolution=self.msfa_output_resolution,
|
|
907
|
-
)
|
|
908
|
-
|
|
909
|
-
def build(self):
|
|
910
|
-
blocks = []
|
|
911
|
-
in_chs = self.conv_stem.out_chs
|
|
912
|
-
for stage, block_config in enumerate(gemma3n_mobilenet_def()):
|
|
913
|
-
block_group = []
|
|
914
|
-
for config in block_config:
|
|
915
|
-
match config:
|
|
916
|
-
case EdgeResidualConfig(
|
|
917
|
-
kernel_size, filters, strides, expand_ratio, is_multiscale
|
|
918
|
-
):
|
|
919
|
-
x = EdgeResidual(
|
|
920
|
-
exp_kernel_size=kernel_size,
|
|
921
|
-
in_chs=in_chs,
|
|
922
|
-
out_chs=filters,
|
|
923
|
-
stride=strides,
|
|
924
|
-
expand_ratio=expand_ratio,
|
|
925
|
-
)
|
|
926
|
-
in_chs = filters # in_chs of next is out_chs of prev
|
|
927
|
-
block_group.append(x)
|
|
928
|
-
case UniversalInvertedResidualConfig(
|
|
929
|
-
start_dw_kernel_size,
|
|
930
|
-
mid_dw_kernel_size,
|
|
931
|
-
filters,
|
|
932
|
-
strides,
|
|
933
|
-
expand_ratio,
|
|
934
|
-
is_multiscale,
|
|
935
|
-
):
|
|
936
|
-
x = UniversalInvertedResidual(
|
|
937
|
-
in_chs=in_chs,
|
|
938
|
-
out_chs=filters,
|
|
939
|
-
dw_kernel_size_start=start_dw_kernel_size,
|
|
940
|
-
dw_kernel_size_mid=mid_dw_kernel_size,
|
|
941
|
-
stride=strides,
|
|
942
|
-
exp_ratio=expand_ratio,
|
|
943
|
-
)
|
|
944
|
-
in_chs = filters
|
|
945
|
-
block_group.append(x)
|
|
946
|
-
case MultiQueryAttentionBlockConfig(
|
|
947
|
-
num_heads,
|
|
948
|
-
kv_dim,
|
|
949
|
-
kv_strides,
|
|
950
|
-
mmqa_avg_pool_kv,
|
|
951
|
-
is_multiscale,
|
|
952
|
-
):
|
|
953
|
-
x = MobileAttention(
|
|
954
|
-
in_chs=in_chs,
|
|
955
|
-
out_chs=in_chs,
|
|
956
|
-
stride=1,
|
|
957
|
-
num_heads=num_heads,
|
|
958
|
-
key_dim=kv_dim,
|
|
959
|
-
value_dim=kv_dim,
|
|
960
|
-
kv_stride=kv_strides,
|
|
961
|
-
act_layer=None,
|
|
962
|
-
)
|
|
963
|
-
block_group.append(x)
|
|
964
|
-
case _:
|
|
965
|
-
continue
|
|
966
|
-
blocks.append(block_group)
|
|
967
|
-
return (in_chs, blocks)
|
|
968
|
-
|
|
969
|
-
def __call__(
|
|
970
|
-
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
971
|
-
) -> mx.array:
|
|
972
|
-
feat_idx = 0
|
|
973
|
-
x = x.transpose(0, 2, 3, 1) # Convert from NCHW to NHWC
|
|
974
|
-
x = self.conv_stem(x)
|
|
975
|
-
intermediates = []
|
|
976
|
-
|
|
977
|
-
if feat_idx in self.msfa_indices:
|
|
978
|
-
intermediates.append(x)
|
|
979
|
-
|
|
980
|
-
# MBV5 is constructed of 4 stages, each stage is a group of blocks.
|
|
981
|
-
for block_group in self.blocks:
|
|
982
|
-
feat_idx += 1
|
|
983
|
-
for block in block_group:
|
|
984
|
-
x = block(x)
|
|
985
|
-
|
|
986
|
-
if feat_idx in self.msfa_indices:
|
|
987
|
-
intermediates.append(x)
|
|
988
|
-
|
|
989
|
-
x = self.msfa(intermediates)
|
|
990
|
-
return x
|
|
991
|
-
|
|
992
|
-
|
|
993
|
-
class VisionModel(nn.Module):
|
|
994
|
-
def __init__(self, config: VisionConfig):
|
|
995
|
-
super().__init__()
|
|
996
|
-
self.model_type = config.model_type
|
|
997
|
-
if self.model_type not in ["gemma3", "gemma3_vision", "gemma3n_vision"]:
|
|
998
|
-
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
999
|
-
|
|
1000
|
-
self.timm_model = VisionTower(config)
|
|
1001
|
-
|
|
1002
|
-
def __call__(
|
|
1003
|
-
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
1004
|
-
) -> mx.array:
|
|
1005
|
-
return self.timm_model(x, output_hidden_states)
|
|
1006
|
-
|
|
1007
|
-
def sanitize(self, weights):
|
|
1008
|
-
sanitized_weights = {}
|
|
1009
|
-
skip_transpose = False
|
|
1010
|
-
_, H, _, C = weights["vision_tower.timm_model.blocks.0.0.conv_exp.weight"].shape
|
|
1011
|
-
if C > H:
|
|
1012
|
-
skip_transpose = True
|
|
1013
|
-
|
|
1014
|
-
for k, v in weights.items():
|
|
1015
|
-
# PyTorch conv2d weight: [out_channels, in_channels, kH, kW]
|
|
1016
|
-
# MLX conv2d weight: [out_channels, kH, KW, in_channels]
|
|
1017
|
-
if ("conv" in k and "weight" in k) or ("attn" and "proj.weight") in k:
|
|
1018
|
-
if len(v.shape) == 4 and not skip_transpose:
|
|
1019
|
-
v = v.transpose(0, 2, 3, 1)
|
|
1020
|
-
sanitized_weights[k] = v
|
|
1021
|
-
|
|
1022
|
-
return sanitized_weights
|