mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/device.h"
|
|
4
|
+
#include "mlx/backend/cuda/quantized/qmv.h"
|
|
5
|
+
#include "mlx/backend/cuda/quantized/qqmm_impl.h"
|
|
6
|
+
#include "mlx/backend/cuda/quantized/qqmm_utils.h"
|
|
7
|
+
#include "mlx/backend/cuda/quantized/quantized.h"
|
|
8
|
+
#include "mlx/backend/cuda/quantized/quantized_utils.h"
|
|
9
|
+
#include "mlx/primitives.h"
|
|
10
|
+
|
|
11
|
+
#include <nvtx3/nvtx3.hpp>
|
|
12
|
+
|
|
13
|
+
namespace mlx::core {
|
|
14
|
+
|
|
15
|
+
namespace {
|
|
16
|
+
|
|
17
|
+
array pad_and_swizzle_scales(
|
|
18
|
+
const array& scale,
|
|
19
|
+
cu::CommandEncoder& encoder,
|
|
20
|
+
const Stream& s) {
|
|
21
|
+
// Compute padded dimensions for full tiles (128 rows × 4 cols)
|
|
22
|
+
auto [pad_outer, pad_inner] =
|
|
23
|
+
get_padded_scale_dims(scale.shape(-2), scale.shape(-1));
|
|
24
|
+
// cuBLAS requirements for scale factor layout:
|
|
25
|
+
// 1. Dimensions must be padded to full tiles (128 rows × 4 cols)
|
|
26
|
+
// 2. Out-of-bounds values must be filled with zeros
|
|
27
|
+
// 3. Starting addresses must be 16-byte aligned
|
|
28
|
+
//
|
|
29
|
+
// https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
|
|
30
|
+
// Note: cu::malloc_async already provides 256-byte alignment
|
|
31
|
+
array scale_tiled(
|
|
32
|
+
cu::malloc_async(pad_outer * pad_inner, encoder),
|
|
33
|
+
Shape{pad_outer, pad_inner},
|
|
34
|
+
scale.dtype());
|
|
35
|
+
swizzle_scales(scale, scale_tiled, encoder, s);
|
|
36
|
+
|
|
37
|
+
encoder.add_temporary(scale_tiled);
|
|
38
|
+
return scale_tiled;
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
} // namespace
|
|
42
|
+
|
|
43
|
+
void QQMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
44
|
+
assert(
|
|
45
|
+
(inputs.size() == 3 && inputs[1].dtype() == uint32) ||
|
|
46
|
+
(inputs.size() == 2));
|
|
47
|
+
nvtx3::scoped_range r("QQMatmul::eval_gpu");
|
|
48
|
+
|
|
49
|
+
auto& s = stream();
|
|
50
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
51
|
+
auto& device = encoder.device();
|
|
52
|
+
|
|
53
|
+
bool w_quantized = (inputs[1].dtype() == uint32);
|
|
54
|
+
if (w_quantized && inputs[0].shape(-2) == 1) {
|
|
55
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
56
|
+
|
|
57
|
+
bool donate_x = inputs[0].is_donatable();
|
|
58
|
+
array x = ensure_row_contiguous(inputs[0], encoder, s);
|
|
59
|
+
// If x is a copy it should be donatable
|
|
60
|
+
donate_x |= x.is_donatable();
|
|
61
|
+
auto xhat = donate_x
|
|
62
|
+
? x
|
|
63
|
+
: array(cu::malloc_async(x.nbytes(), encoder), x.shape(), x.dtype());
|
|
64
|
+
if (!donate_x) {
|
|
65
|
+
encoder.add_temporary(xhat);
|
|
66
|
+
}
|
|
67
|
+
fp_quantize_dequantize(x, xhat, group_size_, bits_, encoder, s);
|
|
68
|
+
|
|
69
|
+
// Make sure the last two dims of w and s are contiguous
|
|
70
|
+
array w = ensure_row_contiguous_matrix(inputs[1], encoder, s);
|
|
71
|
+
array scales = ensure_row_contiguous_matrix(inputs[2], encoder, s);
|
|
72
|
+
|
|
73
|
+
bool non_batched = w.ndim() == 2;
|
|
74
|
+
int K = x.shape(-1);
|
|
75
|
+
int M = non_batched ? x.size() / K : x.shape(-2);
|
|
76
|
+
int N = out.shape(-1);
|
|
77
|
+
|
|
78
|
+
fp_qmv(w, scales, xhat, out, bits_, group_size_, M, N, K, encoder);
|
|
79
|
+
return;
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
auto cc = device.compute_capability_major() * 100 +
|
|
83
|
+
device.compute_capability_minor() * 10;
|
|
84
|
+
if (cc < 1000) {
|
|
85
|
+
throw std::runtime_error(
|
|
86
|
+
"[QQMatmul::eval_gpu] QQMM is only supported on GPUs with compute capability 10.0 or higher.");
|
|
87
|
+
}
|
|
88
|
+
auto quantize = [&](const array& input,
|
|
89
|
+
cu::CommandEncoder& encoder,
|
|
90
|
+
const Stream& s) -> std::pair<array, array> {
|
|
91
|
+
auto x = ensure_contiguous(input, encoder, s);
|
|
92
|
+
auto xq_shape = x.shape();
|
|
93
|
+
xq_shape.back() = x.shape(-1) * bits_ / 32;
|
|
94
|
+
|
|
95
|
+
auto sshape = x.shape();
|
|
96
|
+
const int64_t scales_inner = x.shape(-1) / group_size_;
|
|
97
|
+
auto [pad_outer, pad_inner] =
|
|
98
|
+
get_padded_scale_dims(x.shape(-2), scales_inner);
|
|
99
|
+
sshape[x.ndim() - 2] = pad_outer;
|
|
100
|
+
sshape[x.ndim() - 1] = pad_inner;
|
|
101
|
+
sshape.back() = scales_inner;
|
|
102
|
+
|
|
103
|
+
// Allocate outputs
|
|
104
|
+
const int64_t xq_bytes = x.size() * bits_ / 8;
|
|
105
|
+
const int64_t batch = x.size() / (x.shape(-2) * x.shape(-1));
|
|
106
|
+
const int64_t scales_bytes = batch * (pad_outer * pad_inner);
|
|
107
|
+
|
|
108
|
+
array x_q(cu::malloc_async(xq_bytes, encoder), std::move(xq_shape), uint32);
|
|
109
|
+
array scales_x(
|
|
110
|
+
cu::malloc_async(scales_bytes, encoder), std::move(sshape), uint8);
|
|
111
|
+
|
|
112
|
+
fp_quantize(x, x_q, scales_x, group_size_, bits_, encoder, s);
|
|
113
|
+
|
|
114
|
+
encoder.add_temporary(x_q);
|
|
115
|
+
encoder.add_temporary(scales_x);
|
|
116
|
+
return {x_q, scales_x};
|
|
117
|
+
};
|
|
118
|
+
auto [x_q, scale_x_pre] = quantize(inputs[0], encoder, s);
|
|
119
|
+
auto [w_q, scale_w_pre] = !w_quantized ? quantize(inputs[1], encoder, s)
|
|
120
|
+
: std::make_pair(inputs[1], inputs[2]);
|
|
121
|
+
|
|
122
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
123
|
+
|
|
124
|
+
auto out_dtype = out.dtype();
|
|
125
|
+
|
|
126
|
+
int M = x_q.shape(-2);
|
|
127
|
+
int N = w_q.shape(-2); // always transposed
|
|
128
|
+
int K_packed = x_q.shape(-1);
|
|
129
|
+
int K = K_packed * (32 / bits_);
|
|
130
|
+
|
|
131
|
+
// Repack scales from linear to tiled layout for tensor cores
|
|
132
|
+
array scale_x = pad_and_swizzle_scales(scale_x_pre, encoder, s);
|
|
133
|
+
array scale_w = pad_and_swizzle_scales(scale_w_pre, encoder, s);
|
|
134
|
+
|
|
135
|
+
bool x_transposed = false;
|
|
136
|
+
bool w_transposed = true; // always transposed
|
|
137
|
+
int64_t lda = K;
|
|
138
|
+
int64_t ldb = K;
|
|
139
|
+
|
|
140
|
+
qqmm_impl(
|
|
141
|
+
encoder,
|
|
142
|
+
M,
|
|
143
|
+
N,
|
|
144
|
+
K,
|
|
145
|
+
x_transposed,
|
|
146
|
+
lda,
|
|
147
|
+
w_transposed,
|
|
148
|
+
ldb,
|
|
149
|
+
out,
|
|
150
|
+
x_q,
|
|
151
|
+
w_q,
|
|
152
|
+
scale_x,
|
|
153
|
+
scale_w,
|
|
154
|
+
out_dtype,
|
|
155
|
+
mode_);
|
|
156
|
+
}
|
|
157
|
+
|
|
158
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
// Copyright © 2026 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/quantized/qqmm_impl.h"
|
|
4
|
+
#include "mlx/backend/cuda/quantized/cublas_qqmm.h"
|
|
5
|
+
|
|
6
|
+
namespace mlx::core {
|
|
7
|
+
|
|
8
|
+
void qqmm_impl(
|
|
9
|
+
cu::CommandEncoder& encoder,
|
|
10
|
+
int M,
|
|
11
|
+
int N,
|
|
12
|
+
int K,
|
|
13
|
+
bool a_transposed,
|
|
14
|
+
int64_t lda,
|
|
15
|
+
bool b_transposed,
|
|
16
|
+
int64_t ldb,
|
|
17
|
+
array& out,
|
|
18
|
+
const array& a,
|
|
19
|
+
const array& b,
|
|
20
|
+
const array& a_scale,
|
|
21
|
+
const array& b_scale,
|
|
22
|
+
Dtype out_dtype,
|
|
23
|
+
QuantizationMode mode,
|
|
24
|
+
float alpha) {
|
|
25
|
+
// Invoke CublasQQMM
|
|
26
|
+
std::string qmode = quantization_mode_to_string(mode);
|
|
27
|
+
|
|
28
|
+
// Currently only supports non-batched QQMM operations
|
|
29
|
+
// that covers all use cases for training, we will just collapse (batch,
|
|
30
|
+
// seq_len) into (tokens)
|
|
31
|
+
CublasQQMM qqmm(
|
|
32
|
+
encoder.device(),
|
|
33
|
+
a_transposed,
|
|
34
|
+
M,
|
|
35
|
+
K,
|
|
36
|
+
lda,
|
|
37
|
+
b_transposed,
|
|
38
|
+
K,
|
|
39
|
+
N,
|
|
40
|
+
ldb,
|
|
41
|
+
1, // batch_count
|
|
42
|
+
0, // a_batch_stride
|
|
43
|
+
0, // b_batch_stride
|
|
44
|
+
out_dtype,
|
|
45
|
+
qmode);
|
|
46
|
+
|
|
47
|
+
qqmm.run(encoder, out, a, b, a_scale, b_scale, alpha);
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
// Copyright © 2026 Apple Inc.
|
|
2
|
+
#pragma once
|
|
3
|
+
|
|
4
|
+
#include "mlx/backend/cuda/device.h"
|
|
5
|
+
#include "mlx/primitives.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core {
|
|
8
|
+
void qqmm_impl(
|
|
9
|
+
cu::CommandEncoder& encoder,
|
|
10
|
+
int M,
|
|
11
|
+
int N,
|
|
12
|
+
int K,
|
|
13
|
+
bool a_transposed,
|
|
14
|
+
int64_t lda,
|
|
15
|
+
bool b_transposed,
|
|
16
|
+
int64_t ldb,
|
|
17
|
+
array& out,
|
|
18
|
+
const array& a,
|
|
19
|
+
const array& b,
|
|
20
|
+
const array& a_scale,
|
|
21
|
+
const array& b_scale,
|
|
22
|
+
Dtype out_dtype,
|
|
23
|
+
QuantizationMode mode,
|
|
24
|
+
float alpha = 1.0f);
|
|
25
|
+
|
|
26
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,227 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/device.h"
|
|
4
|
+
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
5
|
+
#include "mlx/backend/cuda/quantized/qqmm_utils.h"
|
|
6
|
+
|
|
7
|
+
#include <cooperative_groups.h>
|
|
8
|
+
|
|
9
|
+
namespace mlx::core {
|
|
10
|
+
|
|
11
|
+
namespace cg = cooperative_groups;
|
|
12
|
+
|
|
13
|
+
constexpr int TILE_ROWS = 128;
|
|
14
|
+
constexpr int TILE_COLS = 4;
|
|
15
|
+
constexpr int TILES_PER_LANE = 1;
|
|
16
|
+
constexpr int LANES_PER_BLOCK = 32;
|
|
17
|
+
|
|
18
|
+
// To pass scales to tensor cores, they need to be repacked into a tiled layout
|
|
19
|
+
// https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
|
|
20
|
+
// Tiled layout for scale factors is very well described in CUTLASS
|
|
21
|
+
// documentation:
|
|
22
|
+
// https://github.com/NVIDIA/cutlass/blob/main/media/docs/cpp/blackwell_functionality.md#scale-factor-layouts
|
|
23
|
+
// Conceptually, it should be like this:
|
|
24
|
+
// q_w = mx.zeros(shape=(M, N)) <-- zeros just for an example
|
|
25
|
+
// s.shape = (M, N // 16) -- packed in row contigous order, group_size = 16
|
|
26
|
+
// cbg_cnt = N // 16 // 4
|
|
27
|
+
// rb_cnt = M // 128
|
|
28
|
+
// tmp = x.reshape(rb_cnt, 4, 32, cbg_cnt, 4)
|
|
29
|
+
// repacked_scales = tmp.transpose(0, 3, 2, 1, 4)
|
|
30
|
+
// example: indecis of intial tile 128 x 4 of scales (packed in row major tensor
|
|
31
|
+
// (M, K // 16), where M = 128, K = 64): array([[0, 1, 2, 3],
|
|
32
|
+
// [4, 5, 6, 7],
|
|
33
|
+
// [8, 9, 10, 11],
|
|
34
|
+
// ...,
|
|
35
|
+
// [500, 501, 502, 503],
|
|
36
|
+
// [504, 505, 506, 507],
|
|
37
|
+
// [508, 509, 510, 511]]
|
|
38
|
+
// packed scales within tile 128 x 4:
|
|
39
|
+
// array([[[[[0, 1, 2, 3], <-- s_0,0..s_0,3 scales
|
|
40
|
+
// [128, 129, 130, 131], <-- s_32,0..s_32,3 scales
|
|
41
|
+
// [256, 257, 258, 259], <-- s_64,0..s_64,3 scales
|
|
42
|
+
// [384, 385, 386, 387]], <-- s_96,0..s_96,3 scales
|
|
43
|
+
// [[4, 5, 6, 7], <-- s_1,0..s_1,3 scales
|
|
44
|
+
// [132, 133, 134, 135], ...
|
|
45
|
+
// [260, 261, 262, 263],
|
|
46
|
+
// [388, 389, 390, 391]],
|
|
47
|
+
// [[124, 125, 126, 127],
|
|
48
|
+
// [252, 253, 254, 255],
|
|
49
|
+
// [380, 381, 382, 383],
|
|
50
|
+
// [508, 509, 510, 511]]]]],
|
|
51
|
+
|
|
52
|
+
inline std::tuple<dim3, dim3> get_swizzle_launch_args(
|
|
53
|
+
size_t M_swizzled,
|
|
54
|
+
size_t K_swizzled) {
|
|
55
|
+
constexpr int tiles_per_block = LANES_PER_BLOCK * TILES_PER_LANE;
|
|
56
|
+
constexpr int warps_per_block = TILE_ROWS / 4; // 128 / 4 = 32
|
|
57
|
+
|
|
58
|
+
const int num_tiles_k = K_swizzled / TILE_COLS;
|
|
59
|
+
const int num_tiles_m = M_swizzled / TILE_ROWS;
|
|
60
|
+
|
|
61
|
+
dim3 grid;
|
|
62
|
+
grid.x = cuda::ceil_div(num_tiles_k, tiles_per_block);
|
|
63
|
+
grid.y = num_tiles_m;
|
|
64
|
+
grid.z = 1;
|
|
65
|
+
// Block is always (32, 32) = 1024 threads
|
|
66
|
+
dim3 block(LANES_PER_BLOCK, warps_per_block, 1);
|
|
67
|
+
|
|
68
|
+
return std::make_tuple(grid, block);
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
namespace cu {
|
|
72
|
+
|
|
73
|
+
__global__ void swizzle_scales(
|
|
74
|
+
const uint8_t* scales_linear,
|
|
75
|
+
uint8_t* scales_swizzled,
|
|
76
|
+
const size_t M,
|
|
77
|
+
const size_t K,
|
|
78
|
+
const size_t M_swizzled,
|
|
79
|
+
const size_t K_swizzled) {
|
|
80
|
+
constexpr int tile_size = TILE_ROWS * TILE_COLS;
|
|
81
|
+
constexpr int num_tile_rows_per_thread = 4;
|
|
82
|
+
constexpr int max_tiles_per_block = LANES_PER_BLOCK * TILES_PER_LANE;
|
|
83
|
+
|
|
84
|
+
constexpr int tile_stride = tile_size / 16; // 32 int4s per tile
|
|
85
|
+
|
|
86
|
+
// Each thread loads 16 scales from 4 rows (stride 32) and packs them into
|
|
87
|
+
// int4. For example: thread (0, 0) loads scales at rows 0,32,64,96 of tile 0,
|
|
88
|
+
// thread (1, 0) loads rows 0,32,64,96 of of tile 1, etc.
|
|
89
|
+
// The store is strided within a warp (stride 32 int4s), so we first
|
|
90
|
+
// write to shared memory, then do a coalesced store from shared to global
|
|
91
|
+
auto block_size = cg::this_thread_block().dim_threads();
|
|
92
|
+
auto block_idx = cg::this_thread_block().group_index();
|
|
93
|
+
auto idx_in_block = cg::this_thread_block().thread_index();
|
|
94
|
+
|
|
95
|
+
auto tidx = idx_in_block.x;
|
|
96
|
+
auto tidy = idx_in_block.y;
|
|
97
|
+
auto linear_tid = tidy * block_size.x + tidx;
|
|
98
|
+
|
|
99
|
+
const int bid_x = block_idx.x;
|
|
100
|
+
const int bid_y = block_idx.y;
|
|
101
|
+
|
|
102
|
+
const int K_int = K_swizzled / 4;
|
|
103
|
+
|
|
104
|
+
const size_t output_offset = static_cast<size_t>(bid_y) * TILE_ROWS * K_int +
|
|
105
|
+
static_cast<size_t>(bid_x) * max_tiles_per_block * tile_size / 4;
|
|
106
|
+
int* output_block = reinterpret_cast<int*>(scales_swizzled) + output_offset;
|
|
107
|
+
|
|
108
|
+
const int grid_dim_x = cg::this_grid().dim_blocks().x;
|
|
109
|
+
const int grid_dim_y = cg::this_grid().dim_blocks().y;
|
|
110
|
+
|
|
111
|
+
int remaining = K_int - bid_x * max_tiles_per_block;
|
|
112
|
+
int tiles_in_block = min(remaining, max_tiles_per_block);
|
|
113
|
+
bool valid_tile = tidx * TILES_PER_LANE < tiles_in_block;
|
|
114
|
+
|
|
115
|
+
__shared__ int4 strided_scales_thread[max_tiles_per_block * tile_stride];
|
|
116
|
+
|
|
117
|
+
// Initialize to zero for padding
|
|
118
|
+
int thread_tile_rows[num_tile_rows_per_thread] = {0};
|
|
119
|
+
|
|
120
|
+
if (valid_tile) {
|
|
121
|
+
const size_t col_base =
|
|
122
|
+
static_cast<size_t>(bid_x) * max_tiles_per_block * TILE_COLS +
|
|
123
|
+
tidx * TILE_COLS;
|
|
124
|
+
|
|
125
|
+
const bool aligned_k = (K % 4 == 0);
|
|
126
|
+
|
|
127
|
+
if (aligned_k) {
|
|
128
|
+
// fast path: K is aligned, use vectorized loads with stride K/4
|
|
129
|
+
const int K_stride = K / 4;
|
|
130
|
+
const size_t block_offset =
|
|
131
|
+
static_cast<size_t>(bid_y) * TILE_ROWS * K_stride +
|
|
132
|
+
static_cast<size_t>(bid_x) * max_tiles_per_block;
|
|
133
|
+
const int* input_block =
|
|
134
|
+
reinterpret_cast<const int*>(scales_linear) + block_offset;
|
|
135
|
+
// load
|
|
136
|
+
#pragma unroll
|
|
137
|
+
for (int i = 0; i < num_tile_rows_per_thread; i++) {
|
|
138
|
+
const size_t row =
|
|
139
|
+
static_cast<size_t>(bid_y) * TILE_ROWS + i * block_size.x + tidy;
|
|
140
|
+
const int thread_offset =
|
|
141
|
+
(i * block_size.x + tidy) * K_stride + tidx * TILES_PER_LANE;
|
|
142
|
+
if (row < M && col_base + TILE_COLS <= K) {
|
|
143
|
+
thread_tile_rows[i] = __ldg(input_block + thread_offset);
|
|
144
|
+
} else if (row < M) {
|
|
145
|
+
// partial tile at K boundary: load byte-by-byte
|
|
146
|
+
#pragma unroll
|
|
147
|
+
for (int c = 0; c < TILE_COLS; c++) {
|
|
148
|
+
if (col_base + c < K) {
|
|
149
|
+
reinterpret_cast<uint8_t*>(&thread_tile_rows[i])[c] =
|
|
150
|
+
scales_linear[row * K + col_base + c];
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
}
|
|
154
|
+
}
|
|
155
|
+
} else {
|
|
156
|
+
#pragma unroll
|
|
157
|
+
for (int i = 0; i < num_tile_rows_per_thread; i++) {
|
|
158
|
+
const size_t row =
|
|
159
|
+
static_cast<size_t>(bid_y) * TILE_ROWS + i * block_size.x + tidy;
|
|
160
|
+
if (row < M) {
|
|
161
|
+
const size_t row_start = row * K;
|
|
162
|
+
#pragma unroll
|
|
163
|
+
for (int c = 0; c < TILE_COLS; c++) {
|
|
164
|
+
if (col_base + c < K) {
|
|
165
|
+
reinterpret_cast<uint8_t*>(&thread_tile_rows[i])[c] =
|
|
166
|
+
scales_linear[row_start + col_base + c];
|
|
167
|
+
}
|
|
168
|
+
}
|
|
169
|
+
}
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
// store to shared with XOR swizzle to avoid bank conflicts
|
|
173
|
+
int base_idx = tidx * tile_stride + tidy;
|
|
174
|
+
int xor_bits = (tidy >> 3) & 0x3;
|
|
175
|
+
int swizzled_idx = base_idx ^ xor_bits;
|
|
176
|
+
strided_scales_thread[swizzled_idx] =
|
|
177
|
+
*reinterpret_cast<int4*>(thread_tile_rows);
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
cg::thread_block block = cg::this_thread_block();
|
|
181
|
+
cg::sync(block);
|
|
182
|
+
|
|
183
|
+
const int total_int4s = tiles_in_block * tile_stride;
|
|
184
|
+
#pragma unroll
|
|
185
|
+
for (int i = linear_tid; i < total_int4s; i += block_size.x * block_size.y) {
|
|
186
|
+
int tile_idx = i / tile_stride;
|
|
187
|
+
int row_idx = i % tile_stride;
|
|
188
|
+
int base_idx = tile_idx * tile_stride + row_idx;
|
|
189
|
+
int xor_bits = (row_idx >> 3) & 0x3;
|
|
190
|
+
int swizzled_idx = base_idx ^ xor_bits;
|
|
191
|
+
reinterpret_cast<int4*>(output_block)[i] =
|
|
192
|
+
strided_scales_thread[swizzled_idx];
|
|
193
|
+
}
|
|
194
|
+
}
|
|
195
|
+
} // namespace cu
|
|
196
|
+
|
|
197
|
+
void swizzle_scales(
|
|
198
|
+
const array& scales,
|
|
199
|
+
array& scales_tiled,
|
|
200
|
+
cu::CommandEncoder& enc,
|
|
201
|
+
const Stream& s) {
|
|
202
|
+
enc.set_input_array(scales);
|
|
203
|
+
enc.set_output_array(scales_tiled);
|
|
204
|
+
// Note: scales_tiled is padded to full tiles so if num_rows or num_cols
|
|
205
|
+
// are not multiples of tile sizes
|
|
206
|
+
size_t input_rows = scales.shape(-2);
|
|
207
|
+
size_t input_cols = scales.shape(-1);
|
|
208
|
+
|
|
209
|
+
size_t output_rows = scales_tiled.shape(-2);
|
|
210
|
+
size_t output_cols = scales_tiled.shape(-1);
|
|
211
|
+
|
|
212
|
+
auto [num_blocks, block_dims] =
|
|
213
|
+
get_swizzle_launch_args(output_rows, output_cols);
|
|
214
|
+
enc.add_kernel_node(
|
|
215
|
+
cu::swizzle_scales,
|
|
216
|
+
num_blocks,
|
|
217
|
+
block_dims,
|
|
218
|
+
0,
|
|
219
|
+
gpu_ptr<uint8_t>(scales),
|
|
220
|
+
gpu_ptr<uint8_t>(scales_tiled),
|
|
221
|
+
input_rows,
|
|
222
|
+
input_cols,
|
|
223
|
+
output_rows,
|
|
224
|
+
output_cols);
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/array.h"
|
|
6
|
+
#include "mlx/backend/cuda/device.h"
|
|
7
|
+
|
|
8
|
+
namespace mlx::core {
|
|
9
|
+
|
|
10
|
+
// Compute padded dimensions for tiled layout
|
|
11
|
+
// Tiles are 128 rows × 4 columns, must allocate full tiles
|
|
12
|
+
inline std::pair<int, int> get_padded_scale_dims(int num_rows, int num_cols) {
|
|
13
|
+
constexpr int rows_per_tile = 128;
|
|
14
|
+
constexpr int cols_per_tile = 4;
|
|
15
|
+
|
|
16
|
+
int padded_rows =
|
|
17
|
+
((num_rows + rows_per_tile - 1) / rows_per_tile) * rows_per_tile;
|
|
18
|
+
int padded_cols =
|
|
19
|
+
((num_cols + cols_per_tile - 1) / cols_per_tile) * cols_per_tile;
|
|
20
|
+
|
|
21
|
+
return {padded_rows, padded_cols};
|
|
22
|
+
}
|
|
23
|
+
|
|
24
|
+
void swizzle_scales(
|
|
25
|
+
const array& scales,
|
|
26
|
+
array& scales_tiled,
|
|
27
|
+
cu::CommandEncoder& enc,
|
|
28
|
+
const Stream& s);
|
|
29
|
+
|
|
30
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/quantized/quantized.h"
|
|
4
|
+
#include "mlx/backend/cuda/device.h"
|
|
5
|
+
#include "mlx/backend/cuda/quantized/qmv.h"
|
|
6
|
+
#include "mlx/backend/cuda/quantized/quantized_utils.h"
|
|
7
|
+
#include "mlx/fast_primitives.h"
|
|
8
|
+
#include "mlx/primitives.h"
|
|
9
|
+
|
|
10
|
+
#include <nvtx3/nvtx3.hpp>
|
|
11
|
+
|
|
12
|
+
namespace mlx::core {
|
|
13
|
+
|
|
14
|
+
void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
15
|
+
nvtx3::scoped_range r("QuantizedMatmul::eval_gpu");
|
|
16
|
+
auto& s = stream();
|
|
17
|
+
auto& d = cu::device(s.device);
|
|
18
|
+
auto& enc = d.get_command_encoder(s);
|
|
19
|
+
|
|
20
|
+
out.set_data(cu::malloc_async(out.nbytes(), enc));
|
|
21
|
+
|
|
22
|
+
// Make sure the last two dims of x and w, s, b are contiguous. This should
|
|
23
|
+
// be relaxed for x.
|
|
24
|
+
array x = ensure_row_contiguous_matrix(inputs[0], enc, s);
|
|
25
|
+
array w = ensure_row_contiguous_matrix(inputs[1], enc, s);
|
|
26
|
+
array scales = ensure_row_contiguous_matrix(inputs[2], enc, s);
|
|
27
|
+
std::optional<array> biases = std::nullopt;
|
|
28
|
+
if (inputs.size() == 4) {
|
|
29
|
+
biases = ensure_row_contiguous_matrix(inputs[3], enc, s);
|
|
30
|
+
}
|
|
31
|
+
|
|
32
|
+
bool non_batched = w.ndim() == 2 && x.flags().row_contiguous;
|
|
33
|
+
int K = x.shape(-1);
|
|
34
|
+
int M = non_batched ? x.size() / K : x.shape(-2);
|
|
35
|
+
int N = out.shape(-1);
|
|
36
|
+
|
|
37
|
+
if (M > 8 || !transpose_ || mode_ == QuantizationMode::Affine) {
|
|
38
|
+
throw std::runtime_error("QMM NYI");
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
if (transpose_) {
|
|
42
|
+
fp_qmv(w, scales, x, out, bits_, group_size_, M, N, K, enc);
|
|
43
|
+
return;
|
|
44
|
+
}
|
|
45
|
+
}
|
|
46
|
+
|
|
47
|
+
void fast::Quantize::eval_gpu(
|
|
48
|
+
const std::vector<array>& inputs,
|
|
49
|
+
std::vector<array>& outputs) {
|
|
50
|
+
nvtx3::scoped_range r("Quantize::eval_gpu");
|
|
51
|
+
auto& s = stream();
|
|
52
|
+
auto& d = cu::device(s.device);
|
|
53
|
+
auto& enc = d.get_command_encoder(s);
|
|
54
|
+
|
|
55
|
+
if (dequantize_) {
|
|
56
|
+
auto wq = ensure_row_contiguous(inputs[0], enc, s);
|
|
57
|
+
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
|
58
|
+
auto& w = outputs[0];
|
|
59
|
+
|
|
60
|
+
w.set_data(cu::malloc_async(w.nbytes(), enc));
|
|
61
|
+
|
|
62
|
+
if (mode_ == QuantizationMode::Affine) {
|
|
63
|
+
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
|
64
|
+
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
|
65
|
+
} else {
|
|
66
|
+
fp_dequantize(wq, scales, w, group_size_, bits_, enc, s);
|
|
67
|
+
}
|
|
68
|
+
} else {
|
|
69
|
+
auto w = ensure_contiguous(inputs[0], enc, s);
|
|
70
|
+
auto& wq = outputs[0];
|
|
71
|
+
auto& scales = outputs[1];
|
|
72
|
+
|
|
73
|
+
wq.set_data(cu::malloc_async(wq.nbytes(), enc));
|
|
74
|
+
scales.set_data(cu::malloc_async(scales.nbytes(), enc));
|
|
75
|
+
if (mode_ == QuantizationMode::Affine) {
|
|
76
|
+
auto& biases = outputs[2];
|
|
77
|
+
biases.set_data(cu::malloc_async(biases.nbytes(), enc));
|
|
78
|
+
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
|
79
|
+
} else {
|
|
80
|
+
fp_quantize(w, wq, scales, group_size_, bits_, enc, s);
|
|
81
|
+
}
|
|
82
|
+
}
|
|
83
|
+
}
|
|
84
|
+
|
|
85
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/device.h"
|
|
4
|
+
|
|
5
|
+
namespace mlx::core {
|
|
6
|
+
|
|
7
|
+
void affine_quantize(
|
|
8
|
+
const array& w,
|
|
9
|
+
array& wq,
|
|
10
|
+
array& scales,
|
|
11
|
+
array& biases,
|
|
12
|
+
int group_size_,
|
|
13
|
+
int bits_,
|
|
14
|
+
cu::CommandEncoder& enc,
|
|
15
|
+
const Stream& s);
|
|
16
|
+
|
|
17
|
+
void affine_dequantize(
|
|
18
|
+
const array& wq,
|
|
19
|
+
const array& scales,
|
|
20
|
+
const array& biases,
|
|
21
|
+
array& w,
|
|
22
|
+
int group_size_,
|
|
23
|
+
int bits_,
|
|
24
|
+
cu::CommandEncoder& enc,
|
|
25
|
+
const Stream& s);
|
|
26
|
+
|
|
27
|
+
void fp_quantize(
|
|
28
|
+
const array& w,
|
|
29
|
+
array& wq,
|
|
30
|
+
array& scales,
|
|
31
|
+
int group_size,
|
|
32
|
+
int bits,
|
|
33
|
+
cu::CommandEncoder& enc,
|
|
34
|
+
const Stream& s);
|
|
35
|
+
|
|
36
|
+
void fp_dequantize(
|
|
37
|
+
const array& wq,
|
|
38
|
+
const array& scales,
|
|
39
|
+
array& w,
|
|
40
|
+
int group_size,
|
|
41
|
+
int bits,
|
|
42
|
+
cu::CommandEncoder& enc,
|
|
43
|
+
const Stream& s);
|
|
44
|
+
|
|
45
|
+
void fp_quantize_dequantize(
|
|
46
|
+
const array& w,
|
|
47
|
+
array& what,
|
|
48
|
+
int group_size,
|
|
49
|
+
int bits,
|
|
50
|
+
cu::CommandEncoder& enc,
|
|
51
|
+
const Stream& s);
|
|
52
|
+
|
|
53
|
+
} // namespace mlx::core
|