mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1118 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+ #include <algorithm>
3
+ #include <cassert>
4
+ #include <numeric>
5
+
6
+ #include "mlx/backend/gpu/copy.h"
7
+ #include "mlx/backend/metal/device.h"
8
+ #include "mlx/backend/metal/kernels.h"
9
+ #include "mlx/backend/metal/kernels/defines.h"
10
+ #include "mlx/backend/metal/kernels/steel/conv/params.h"
11
+ #include "mlx/backend/metal/matmul.h"
12
+ #include "mlx/backend/metal/utils.h"
13
+ #include "mlx/primitives.h"
14
+ #include "mlx/utils.h"
15
+
16
+ using namespace mlx::steel;
17
+
18
+ namespace mlx::core {
19
+
20
+ namespace {
21
+
22
+ template <int N>
23
+ void explicit_gemm_conv_ND_gpu(
24
+ const Stream& s,
25
+ metal::Device& d,
26
+ const array& in,
27
+ const array& wt,
28
+ array out,
29
+ const MLXConvParams<N>& conv_params) {
30
+ // Get gemm shapes
31
+ int implicit_M = out.size() / conv_params.O;
32
+ int implicit_K = wt.size() / conv_params.O;
33
+ int implicit_N = conv_params.O;
34
+ // Prepare unfolding array
35
+ Shape unfolded_shape{implicit_M, implicit_K};
36
+ array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
37
+
38
+ in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
39
+
40
+ // Prepare unfolding kernel
41
+ std::string kname;
42
+ kname.reserve(32);
43
+ concatenate(kname, "naive_unfold_nd_", type_to_name(in_unfolded), "_", N);
44
+ auto& compute_encoder = d.get_command_encoder(s.index);
45
+ auto kernel = d.get_kernel(kname);
46
+ compute_encoder.set_compute_pipeline_state(kernel);
47
+
48
+ compute_encoder.set_input_array(in, 0);
49
+ compute_encoder.set_output_array(in_unfolded, 1);
50
+
51
+ compute_encoder.set_bytes(conv_params, 2);
52
+
53
+ // Launch unfolding kernel
54
+ size_t tgp_x = std::min(conv_params.C, 64);
55
+ tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
56
+ size_t tgp_y = 256 / tgp_x;
57
+
58
+ MTL::Size grid_dims = MTL::Size(
59
+ conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
60
+ MTL::Size group_dims = MTL::Size(
61
+ std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
62
+
63
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
64
+
65
+ // Reshape weight
66
+ Shape wt_reshape{implicit_K, implicit_N};
67
+ Strides wt_restride{1, implicit_K};
68
+ array wt_reshaped(wt_reshape, wt.dtype(), nullptr, {});
69
+ auto wt_flags = wt.flags();
70
+ wt_flags.row_contiguous = false;
71
+ wt_flags.col_contiguous = true;
72
+ wt_reshaped.copy_shared_buffer(wt, wt_restride, wt_flags, wt.data_size());
73
+
74
+ // Perform gemm
75
+ std::vector<array> copies = {in_unfolded};
76
+ return steel_matmul(
77
+ s,
78
+ d,
79
+ /*a = */ in_unfolded,
80
+ /*b = */ wt_reshaped,
81
+ /*c = */ out,
82
+ /*M = */ implicit_M,
83
+ /*N = */ implicit_N,
84
+ /*K = */ implicit_K,
85
+ /*batch_size_out = */ 1,
86
+ /*a_cols = */ implicit_K,
87
+ /*b_cols = */ implicit_K,
88
+ /*a_transposed = */ false,
89
+ /*b_transposed = */ true,
90
+ /*copies = */ copies);
91
+ }
92
+
93
+ template <int N>
94
+ void explicit_gemm_conv_group_ND_gpu(
95
+ const Stream& s,
96
+ metal::Device& d,
97
+ const array& in,
98
+ const array& wt,
99
+ array out,
100
+ const MLXConvParams<N>& conv_params) {
101
+ const int groups = conv_params.groups;
102
+ const int C_per_group = conv_params.C / conv_params.groups;
103
+ const int O_per_group = conv_params.O / conv_params.groups;
104
+ // Get gemm shapes
105
+ const int implicit_M = out.size() / conv_params.O;
106
+ const int implicit_K = wt.size() / conv_params.O;
107
+ const int implicit_N = O_per_group;
108
+
109
+ int kernel_size = 1;
110
+ for (int i = 0; i < N; ++i) {
111
+ kernel_size *= conv_params.wS[i];
112
+ }
113
+
114
+ // Prepare unfolding array
115
+ Shape unfolded_shape{implicit_M, implicit_K * groups};
116
+ array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
117
+ in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
118
+
119
+ // Prepare unfolding kernel
120
+ std::string kname;
121
+ kname.reserve(32);
122
+ concatenate(
123
+ kname, "naive_unfold_transpose_nd_", type_to_name(in_unfolded), "_", N);
124
+ auto& compute_encoder = d.get_command_encoder(s.index);
125
+ auto kernel = d.get_kernel(kname);
126
+ compute_encoder.set_compute_pipeline_state(kernel);
127
+
128
+ compute_encoder.set_input_array(in, 0);
129
+ compute_encoder.set_output_array(in_unfolded, 1);
130
+
131
+ compute_encoder.set_bytes(conv_params, 2);
132
+
133
+ // Launch unfolding kernel
134
+ size_t tgp_x = std::min(conv_params.C, 64);
135
+ tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
136
+ size_t tgp_y = 256 / tgp_x;
137
+
138
+ MTL::Size grid_dims = MTL::Size(
139
+ conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
140
+ MTL::Size group_dims = MTL::Size(
141
+ std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
142
+
143
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
144
+
145
+ // Transpose kernel weights so that we can slice them by contiguous chunks
146
+ // of channel groups.
147
+ array wt_view(
148
+ {wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
149
+ wt_view.copy_shared_buffer(
150
+ wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
151
+
152
+ // Materialize
153
+ array wt_transpose = contiguous_copy_gpu(wt_view, s);
154
+
155
+ // Perform gemm
156
+ std::vector<array> copies = {in_unfolded, wt_transpose};
157
+ return steel_matmul_regular(
158
+ /* const Stream& s = */ s,
159
+ /* Device& d = */ d,
160
+ /* const array& a = */ in_unfolded,
161
+ /* const array& b = */ wt_transpose,
162
+ /* array& c = */ out,
163
+ /* int M = */ implicit_M,
164
+ /* int N = */ implicit_N,
165
+ /* int K = */ implicit_K,
166
+ /* int batch_size_out = */ groups,
167
+ /* int lda = */ implicit_K * groups,
168
+ /* int ldb = */ implicit_K,
169
+ /* int ldd = */ implicit_N * groups,
170
+ /* bool transpose_a = */ false,
171
+ /* bool transpose_b = */ true,
172
+ /* std::vector<array>& copies = */ copies,
173
+ /* Shape batch_shape = */ {1},
174
+ /* Strides batch_strides = */ {0},
175
+ /* int64_t A_batch_strides = */ int64_t(implicit_K),
176
+ /* int64_t B_batch_strides = */ int64_t(implicit_N) * implicit_K,
177
+ /* int64_t matrix_stride_out = */ int64_t(implicit_N));
178
+ }
179
+
180
+ void implicit_gemm_conv_2D_gpu(
181
+ const Stream& s,
182
+ metal::Device& d,
183
+ const array& in,
184
+ const array& wt,
185
+ array out,
186
+ const MLXConvParams<2>& conv_params) {
187
+ const int groups = conv_params.groups;
188
+ const int C_per_group = conv_params.C / conv_params.groups;
189
+ const int O_per_group = conv_params.O / conv_params.groups;
190
+
191
+ // Deduce implicit gemm size
192
+ const int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
193
+ const int implicit_N = O_per_group;
194
+ const int implicit_K = conv_params.wS[0] * conv_params.wS[1] * C_per_group;
195
+
196
+ // Determine block and warp tiles
197
+ int wm = 2, wn = 2;
198
+
199
+ int bm = implicit_M >= 8192 && C_per_group >= 64 ? 64 : 32;
200
+ int bn = (bm == 64 || implicit_N >= 64) ? 64 : 32;
201
+ int bk = 16;
202
+
203
+ if (implicit_N <= 16) {
204
+ bn = 8;
205
+ wm = 4;
206
+ wn = 1;
207
+ }
208
+
209
+ int tn = (implicit_N + bn - 1) / bn;
210
+ int tm = (implicit_M + bm - 1) / bm;
211
+ int swizzle_log = 0;
212
+
213
+ // Fix small channel specialization
214
+ int n_channel_specialization = 0;
215
+ int channel_k_iters = ((C_per_group + bk - 1) / bk);
216
+ int gemm_k_iters = conv_params.wS[0] * conv_params.wS[1] * channel_k_iters;
217
+
218
+ if (C_per_group <= 2) {
219
+ gemm_k_iters = (implicit_K + bk - 1) / bk;
220
+ n_channel_specialization = C_per_group;
221
+ } else if (C_per_group <= 4) {
222
+ gemm_k_iters = ((conv_params.wS[0] * conv_params.wS[1] * 4) + bk - 1) / bk;
223
+ n_channel_specialization = C_per_group;
224
+ }
225
+
226
+ bool small_filter = (!n_channel_specialization) &&
227
+ (conv_params.wS[0] <= 16 && conv_params.wS[1] <= 16);
228
+
229
+ // Fix host side helper params
230
+ int sign = (conv_params.flip ? -1 : 1);
231
+ int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
232
+ int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
233
+
234
+ int inp_jump_w = sign * ijw;
235
+ int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
236
+ int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
237
+ sign * (conv_params.wS[1] - 1) * ijw;
238
+
239
+ // Build implicit gemm params
240
+ ImplicitGemmConv2DParams gemm_params{
241
+ /* const int M = */ implicit_M,
242
+ /* const int N = */ implicit_N,
243
+ /* const int K = */ implicit_K,
244
+
245
+ /* const int gemm_k_iterations = */ gemm_k_iters,
246
+
247
+ /* const int inp_jump_w = */ inp_jump_w,
248
+ /* const int inp_jump_h = */ inp_jump_h,
249
+ /* const int inp_jump_c = */ inp_jump_c,
250
+
251
+ /* const int tiles_n = */ tn,
252
+ /* const int tiles_m = */ tm,
253
+ /* const int swizzle_log = */ swizzle_log};
254
+
255
+ // Determine kernel
256
+ std::string kname;
257
+ kname.reserve(64);
258
+ concatenate(
259
+ kname,
260
+ "implicit_gemm_conv_2d_",
261
+ type_to_name(out),
262
+ "_bm",
263
+ bm,
264
+ "_bn",
265
+ bn,
266
+ "_bk",
267
+ bk,
268
+ "_wm",
269
+ wm,
270
+ "_wn",
271
+ wn,
272
+ "_channel_",
273
+ n_channel_specialization ? std::to_string(n_channel_specialization) : "l",
274
+ "_filter_",
275
+ small_filter ? 's' : 'l');
276
+
277
+ // Encode and dispatch kernel
278
+ auto& compute_encoder = d.get_command_encoder(s.index);
279
+ auto kernel = get_steel_conv_kernel(
280
+ d,
281
+ kname,
282
+ out,
283
+ bm,
284
+ bn,
285
+ bk,
286
+ wm,
287
+ wn,
288
+ n_channel_specialization,
289
+ small_filter);
290
+ compute_encoder.set_compute_pipeline_state(kernel);
291
+
292
+ // Deduce grid launch dimensions
293
+ int tile = 1 << swizzle_log;
294
+ size_t grid_dim_y = (tm + tile - 1) / tile;
295
+ size_t grid_dim_x = tn * tile;
296
+
297
+ MTL::Size group_dims = MTL::Size(32, wn, wm);
298
+ MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, groups);
299
+
300
+ // Encode arrays
301
+ compute_encoder.set_input_array(in, 0);
302
+ compute_encoder.set_input_array(wt, 1);
303
+ compute_encoder.set_output_array(out, 2);
304
+
305
+ // Encode params
306
+ compute_encoder.set_bytes(conv_params, 3);
307
+ compute_encoder.set_bytes(gemm_params, 4);
308
+
309
+ // Launch kernel
310
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
311
+ }
312
+
313
+ void implicit_gemm_conv_2D_general_gpu(
314
+ const Stream& s,
315
+ metal::Device& d,
316
+ const array& in,
317
+ const array& wt,
318
+ array out,
319
+ const MLXConvParams<2>& conv_params) {
320
+ // Deduce implicit gemm size
321
+ int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
322
+ int implicit_N = conv_params.O;
323
+ int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
324
+
325
+ // Determine block and warp tiles
326
+ int wm = 2, wn = 2;
327
+
328
+ // Make jump params
329
+ int f_wgt_jump_h =
330
+ std::lcm(conv_params.idil[0], conv_params.kdil[0]) / conv_params.kdil[0];
331
+ int f_wgt_jump_w =
332
+ std::lcm(conv_params.idil[1], conv_params.kdil[1]) / conv_params.kdil[1];
333
+
334
+ int f_out_jump_h =
335
+ std::lcm(conv_params.idil[0], conv_params.str[0]) / conv_params.str[0];
336
+ int f_out_jump_w =
337
+ std::lcm(conv_params.idil[1], conv_params.str[1]) / conv_params.str[1];
338
+
339
+ int adj_out_h = (conv_params.oS[0] + f_out_jump_h - 1) / f_out_jump_h;
340
+ int adj_out_w = (conv_params.oS[1] + f_out_jump_w - 1) / f_out_jump_w;
341
+ int adj_out_hw = adj_out_h * adj_out_w;
342
+ int adj_implicit_m = conv_params.N * adj_out_hw;
343
+
344
+ Conv2DGeneralJumpParams jump_params{
345
+ /* const int f_wgt_jump_h = */ f_wgt_jump_h,
346
+ /* const int f_wgt_jump_w = */ f_wgt_jump_w,
347
+
348
+ /* const int f_out_jump_h = */ f_out_jump_h,
349
+ /* const int f_out_jump_w = */ f_out_jump_w,
350
+
351
+ /* const int adj_out_h = */ adj_out_h,
352
+ /* const int adj_out_w = */ adj_out_w,
353
+ /* const int adj_out_hw = */ adj_out_hw,
354
+ /* const int adj_implicit_m = */ adj_implicit_m};
355
+
356
+ // Make base info
357
+ std::vector<Conv2DGeneralBaseInfo> base_h(f_out_jump_h);
358
+ std::vector<Conv2DGeneralBaseInfo> base_w(f_out_jump_w);
359
+
360
+ int jump_h = conv_params.flip ? -conv_params.kdil[0] : conv_params.kdil[0];
361
+ int jump_w = conv_params.flip ? -conv_params.kdil[1] : conv_params.kdil[1];
362
+
363
+ int init_h =
364
+ (conv_params.flip ? (conv_params.wS[0] - 1) * conv_params.kdil[0] : 0);
365
+ int init_w =
366
+ (conv_params.flip ? (conv_params.wS[1] - 1) * conv_params.kdil[1] : 0);
367
+
368
+ for (int i = 0; i < f_out_jump_h; ++i) {
369
+ int ih_loop = i * conv_params.str[0] - conv_params.pad[0] + init_h;
370
+
371
+ int wh_base = 0;
372
+ while (wh_base < conv_params.wS[0] && ih_loop % conv_params.idil[0] != 0) {
373
+ wh_base++;
374
+ ih_loop += jump_h;
375
+ }
376
+
377
+ int wh_size =
378
+ ((conv_params.wS[0] - wh_base) + f_wgt_jump_h - 1) / f_wgt_jump_h;
379
+ base_h[i] = {wh_base, wh_size};
380
+ }
381
+
382
+ for (int j = 0; j < f_out_jump_w; ++j) {
383
+ int iw_loop = j * conv_params.str[1] - conv_params.pad[1] + init_w;
384
+
385
+ int ww_base = 0;
386
+ while (ww_base < conv_params.wS[1] && iw_loop % conv_params.idil[1] != 0) {
387
+ ww_base++;
388
+ iw_loop += jump_w;
389
+ }
390
+
391
+ int ww_size =
392
+ ((conv_params.wS[1] - ww_base) + f_wgt_jump_w - 1) / f_wgt_jump_w;
393
+ base_w[j] = {ww_base, ww_size};
394
+ }
395
+
396
+ // Collect block sizes
397
+ int bm = adj_implicit_m >= 8192 && conv_params.C >= 64 ? 64 : 32;
398
+ int bn = (bm == 64 && implicit_N >= 64) ? 64 : 32;
399
+ int bk = 16;
400
+
401
+ int tn = (implicit_N + bn - 1) / bn;
402
+ int tm = (adj_implicit_m + bm - 1) / bm;
403
+ int swizzle_log = 0;
404
+
405
+ // Get channel iteration info
406
+ int channel_k_iters = ((conv_params.C + bk - 1) / bk);
407
+ int gemm_k_iters = channel_k_iters;
408
+ bool align_C = conv_params.C % bk == 0;
409
+
410
+ // Fix host side helper params
411
+ int sign = (conv_params.flip ? -1 : 1);
412
+ int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
413
+ int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
414
+
415
+ int inp_jump_w = sign * ijw;
416
+ int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
417
+ int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
418
+ sign * (conv_params.wS[1] - 1) * ijw;
419
+
420
+ // Build implicit gemm params
421
+ ImplicitGemmConv2DParams gemm_params{
422
+ /* const int M = */ implicit_M,
423
+ /* const int N = */ implicit_N,
424
+ /* const int K = */ implicit_K,
425
+
426
+ /* const int gemm_k_iterations = */ gemm_k_iters,
427
+
428
+ /* const int inp_jump_w = */ inp_jump_w,
429
+ /* const int inp_jump_h = */ inp_jump_h,
430
+ /* const int inp_jump_c = */ inp_jump_c,
431
+
432
+ /* const int tiles_n = */ tn,
433
+ /* const int tiles_m = */ tm,
434
+ /* const int swizzle_log = */ swizzle_log};
435
+
436
+ // Determine kernel
437
+ std::string kname;
438
+ kname.reserve(64);
439
+ concatenate(
440
+ kname,
441
+ "implicit_gemm_conv_2d_general_",
442
+ type_to_name(out),
443
+ "_bm",
444
+ bm,
445
+ "_bn",
446
+ bn,
447
+ "_bk",
448
+ bk,
449
+ "_wm",
450
+ wm,
451
+ "_wn",
452
+ wn);
453
+ std::string hash_name;
454
+ hash_name.reserve(64);
455
+ concatenate(hash_name, kname, "_alC_", align_C);
456
+ metal::MTLFCList func_consts = {
457
+ {&align_C, MTL::DataType::DataTypeBool, 200},
458
+ };
459
+
460
+ // Encode and dispatch kernel
461
+ auto& compute_encoder = d.get_command_encoder(s.index);
462
+ auto kernel = get_steel_conv_general_kernel(
463
+ d, kname, hash_name, func_consts, out, bm, bn, bk, wm, wn);
464
+ compute_encoder.set_compute_pipeline_state(kernel);
465
+
466
+ // Deduce grid launch dimensions
467
+ int tile = 1 << swizzle_log;
468
+ size_t grid_dim_y = (tm + tile - 1) / tile;
469
+ size_t grid_dim_x = tn * tile;
470
+ size_t grid_dim_z = f_out_jump_h * f_out_jump_w;
471
+
472
+ MTL::Size group_dims = MTL::Size(32, wn, wm);
473
+ MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, grid_dim_z);
474
+
475
+ // Encode arrays
476
+ compute_encoder.set_input_array(in, 0);
477
+ compute_encoder.set_input_array(wt, 1);
478
+ compute_encoder.set_output_array(out, 2);
479
+
480
+ // Encode params
481
+ compute_encoder.set_bytes(conv_params, 3);
482
+ compute_encoder.set_bytes(gemm_params, 4);
483
+ compute_encoder.set_bytes(jump_params, 5);
484
+
485
+ compute_encoder.set_vector_bytes(base_h, 6);
486
+ compute_encoder.set_vector_bytes(base_w, 7);
487
+
488
+ // Launch kernel
489
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
490
+ }
491
+
492
+ void winograd_conv_2D_gpu(
493
+ const Stream& s,
494
+ metal::Device& d,
495
+ const array& in,
496
+ const array& wt,
497
+ array out,
498
+ const MLXConvParams<2>& conv_params,
499
+ std::vector<array>& copies_w) {
500
+ Shape padded_shape = {
501
+ conv_params.N,
502
+ conv_params.iS[0] + 2 * conv_params.pad[0],
503
+ conv_params.iS[1] + 2 * conv_params.pad[1],
504
+ conv_params.C};
505
+
506
+ padded_shape[1] = 6 * ((padded_shape[1] - 2 + 5) / 6) + 2;
507
+ padded_shape[2] = 6 * ((padded_shape[2] - 2 + 5) / 6) + 2;
508
+
509
+ array in_padded(std::move(padded_shape), in.dtype(), nullptr, {});
510
+
511
+ // Fill with zeros
512
+ array zero_arr = array(0, in.dtype());
513
+ fill_gpu(zero_arr, in_padded, s);
514
+ copies_w.push_back(zero_arr);
515
+
516
+ // Pick input slice from padded
517
+ size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
518
+ conv_params.pad[1] * in_padded.strides()[2];
519
+ array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
520
+ in_padded_slice.copy_shared_buffer(
521
+ in_padded,
522
+ in_padded.strides(),
523
+ in_padded.flags(),
524
+ in_padded_slice.size(),
525
+ data_offset);
526
+
527
+ // Copy input values into the slice
528
+ copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
529
+
530
+ copies_w.push_back(in_padded_slice);
531
+ copies_w.push_back(in_padded);
532
+
533
+ MLXConvParams<2> conv_params_updated{
534
+ /* const int N = */ static_cast<int>(in_padded.shape(0)),
535
+ /* const int C = */ static_cast<int>(in_padded.shape(3)),
536
+ /* const int O = */ static_cast<int>(wt.shape(0)),
537
+ /* const int iS[NDIM] = */
538
+ {static_cast<int>(in_padded.shape(1)),
539
+ static_cast<int>(in_padded.shape(2))},
540
+ /* const int wS[NDIM] = */
541
+ {static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
542
+ /* const int oS[NDIM] = */
543
+ {static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
544
+ /* const int str[NDIM] = */ {1, 1},
545
+ /* const int pad[NDIM] = */ {0, 0},
546
+ /* const int kdil[NDIM] = */ {1, 1},
547
+ /* const int idil[NDIM] = */ {1, 1},
548
+ /* const size_t in_strides[NDIM + 2] = */
549
+ {in_padded.strides()[0],
550
+ in_padded.strides()[1],
551
+ in_padded.strides()[2],
552
+ in_padded.strides()[3]},
553
+ /* const size_t wt_strides[NDIM + 2] = */
554
+ {wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
555
+ /* const size_t out_strides[NDIM + 2] = */
556
+ {out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
557
+ /* const int groups = */ 1,
558
+ /* const bool flip = */ false,
559
+ };
560
+
561
+ int O_c = conv_params.O;
562
+ int C_c = conv_params.C;
563
+
564
+ int N_tiles_n = conv_params.N;
565
+ int N_tiles_h = (conv_params.oS[0] + 5) / 6;
566
+ int N_tiles_w = (conv_params.oS[1] + 5) / 6;
567
+ int N_tiles = N_tiles_n * N_tiles_h * N_tiles_w;
568
+
569
+ // Do filter transform
570
+ Shape filt_wg_shape = {8 * 8, conv_params.C, conv_params.O};
571
+ array filt_wg(std::move(filt_wg_shape), wt.dtype(), nullptr, {});
572
+ filt_wg.set_data(allocator::malloc(filt_wg.nbytes()));
573
+ copies_w.push_back(filt_wg);
574
+ {
575
+ int bc = 32;
576
+ int bo = 4;
577
+ std::string kname;
578
+ kname.reserve(32);
579
+ concatenate(
580
+ kname,
581
+ "winograd_conv_2d_weight_transform_",
582
+ type_to_name(out),
583
+ "_bc",
584
+ bc);
585
+ auto& compute_encoder = d.get_command_encoder(s.index);
586
+ auto kernel = d.get_kernel(kname);
587
+ compute_encoder.set_compute_pipeline_state(kernel);
588
+
589
+ compute_encoder.set_input_array(wt, 0);
590
+ compute_encoder.set_output_array(filt_wg, 1);
591
+
592
+ compute_encoder.set_bytes(C_c, 2);
593
+ compute_encoder.set_bytes(O_c, 3);
594
+
595
+ MTL::Size group_dims = MTL::Size(32, bo, 1);
596
+ MTL::Size grid_dims = MTL::Size(O_c / bo, 1, 1);
597
+
598
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
599
+ }
600
+
601
+ // Do input transform
602
+ Shape inp_wg_shape = {8 * 8, N_tiles, conv_params.C};
603
+ array inp_wg(std::move(inp_wg_shape), in.dtype(), nullptr, {});
604
+ inp_wg.set_data(allocator::malloc(inp_wg.nbytes()));
605
+ copies_w.push_back(inp_wg);
606
+ {
607
+ int bc = 32;
608
+ int wm = 2;
609
+ int wn = 2;
610
+ std::string kname;
611
+ kname.reserve(32);
612
+ concatenate(
613
+ kname,
614
+ "winograd_conv_2d_input_transform_",
615
+ type_to_name(out),
616
+ "_bc",
617
+ bc);
618
+ auto& compute_encoder = d.get_command_encoder(s.index);
619
+ auto kernel = d.get_kernel(kname);
620
+ compute_encoder.set_compute_pipeline_state(kernel);
621
+
622
+ compute_encoder.set_input_array(in_padded, 0);
623
+ compute_encoder.set_output_array(inp_wg, 1);
624
+
625
+ compute_encoder.set_bytes(conv_params_updated, 2);
626
+
627
+ MTL::Size group_dims = MTL::Size(32, wn, wm);
628
+ MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
629
+
630
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
631
+ }
632
+
633
+ // Do batched gemm
634
+ Shape out_wg_shape = {8 * 8, N_tiles, conv_params.O};
635
+ array out_wg(std::move(out_wg_shape), in.dtype(), nullptr, {});
636
+ out_wg.set_data(allocator::malloc(out_wg.nbytes()));
637
+ copies_w.push_back(out_wg);
638
+ {
639
+ std::vector<array> empty_copies;
640
+ steel_matmul(
641
+ s,
642
+ d,
643
+ /*a = */ inp_wg,
644
+ /*b = */ filt_wg,
645
+ /*c = */ out_wg,
646
+ /*M = */ N_tiles,
647
+ /*N = */ conv_params.O,
648
+ /*K = */ conv_params.C,
649
+ /*batch_size_out = */ 8 * 8,
650
+ /*a_cols = */ conv_params.C,
651
+ /*b_cols = */ conv_params.O,
652
+ /*a_transposed = */ false,
653
+ /*b_transposed = */ false,
654
+ /*copies = */ empty_copies);
655
+ }
656
+
657
+ // Do output transform
658
+ {
659
+ int bc = 32;
660
+ int wm = 2;
661
+ int wn = 2;
662
+ std::string kname;
663
+ kname.reserve(32);
664
+ concatenate(
665
+ kname,
666
+ "winograd_conv_2d_output_transform_",
667
+ type_to_name(out),
668
+ "_bo",
669
+ bc);
670
+ auto& compute_encoder = d.get_command_encoder(s.index);
671
+ auto kernel = d.get_kernel(kname);
672
+ compute_encoder.set_compute_pipeline_state(kernel);
673
+
674
+ compute_encoder.set_input_array(out_wg, 0);
675
+ compute_encoder.set_output_array(out, 1);
676
+
677
+ compute_encoder.set_bytes(conv_params_updated, 2);
678
+
679
+ MTL::Size group_dims = MTL::Size(32, wn, wm);
680
+ MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
681
+
682
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
683
+ }
684
+ }
685
+
686
+ void depthwise_conv_2D_gpu(
687
+ const Stream& s,
688
+ metal::Device& d,
689
+ const array& in,
690
+ const array& wt,
691
+ array out,
692
+ const MLXConvParams<2>& conv_params) {
693
+ std::string base_name;
694
+ base_name.reserve(32);
695
+ concatenate(base_name, "depthwise_conv_2d_", type_to_name(out));
696
+
697
+ const int N = conv_params.N;
698
+ const int ker_h = conv_params.wS[0];
699
+ const int ker_w = conv_params.wS[1];
700
+ const int str_h = conv_params.str[0];
701
+ const int str_w = conv_params.str[1];
702
+ const int tc = 8;
703
+ const int tw = 8;
704
+ const int th = 4;
705
+ const bool do_flip = conv_params.flip;
706
+
707
+ metal::MTLFCList func_consts = {
708
+ {&ker_h, MTL::DataType::DataTypeInt, 00},
709
+ {&ker_w, MTL::DataType::DataTypeInt, 01},
710
+ {&str_h, MTL::DataType::DataTypeInt, 10},
711
+ {&str_w, MTL::DataType::DataTypeInt, 11},
712
+ {&th, MTL::DataType::DataTypeInt, 100},
713
+ {&tw, MTL::DataType::DataTypeInt, 101},
714
+ {&do_flip, MTL::DataType::DataTypeBool, 200},
715
+ };
716
+
717
+ // clang-format off
718
+ std::string hash_name;
719
+ hash_name.reserve(64);
720
+ concatenate(
721
+ hash_name,
722
+ base_name,
723
+ "_ker_h_", ker_h,
724
+ "_ker_w_", ker_w,
725
+ "_str_h_", str_h,
726
+ "_str_w_", str_w,
727
+ "_tgp_h_", th,
728
+ "_tgp_w_", tw,
729
+ "_do_flip_", do_flip ? 't' : 'n'); // clang-format on
730
+
731
+ auto& compute_encoder = d.get_command_encoder(s.index);
732
+ auto kernel = d.get_kernel(base_name, hash_name, func_consts);
733
+ compute_encoder.set_compute_pipeline_state(kernel);
734
+
735
+ compute_encoder.set_input_array(in, 0);
736
+ compute_encoder.set_input_array(wt, 1);
737
+ compute_encoder.set_output_array(out, 2);
738
+
739
+ compute_encoder.set_bytes(conv_params, 3);
740
+
741
+ MTL::Size group_dims = MTL::Size(tc, tw, th);
742
+ MTL::Size grid_dims = MTL::Size(
743
+ conv_params.C / tc, conv_params.oS[1] / tw, (conv_params.oS[0] / th) * N);
744
+
745
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
746
+ }
747
+
748
+ void dispatch_conv_2D_gpu(
749
+ const Stream& s,
750
+ metal::Device& d,
751
+ const array& in,
752
+ const array& wt,
753
+ array out,
754
+ const MLXConvParams<2>& conv_params,
755
+ std::vector<array>& copies) {
756
+ bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
757
+ bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
758
+ bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
759
+
760
+ if (is_idil_one && conv_params.groups > 1) {
761
+ const int C_per_group = conv_params.C / conv_params.groups;
762
+ const int O_per_group = conv_params.O / conv_params.groups;
763
+
764
+ if (C_per_group == 1 && O_per_group == 1 && is_kdil_one &&
765
+ conv_params.wS[0] <= 7 && conv_params.wS[1] <= 7 &&
766
+ conv_params.str[0] <= 2 && conv_params.str[1] <= 2 &&
767
+ conv_params.oS[0] % 8 == 0 && conv_params.oS[1] % 8 == 0 &&
768
+ conv_params.wt_strides[1] == conv_params.wS[1] &&
769
+ conv_params.C % 16 == 0 && conv_params.C == conv_params.O) {
770
+ return depthwise_conv_2D_gpu(s, d, in, wt, out, conv_params);
771
+ }
772
+
773
+ if ((C_per_group <= 4 || C_per_group % 16 == 0) &&
774
+ (O_per_group <= 16 || O_per_group % 16 == 0)) {
775
+ return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
776
+ } else {
777
+ return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
778
+ }
779
+ }
780
+
781
+ // Direct to winograd conv
782
+ bool inp_large =
783
+ (conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 4096;
784
+ bool channels_large = (conv_params.C + conv_params.O) >= 256;
785
+ bool out_large =
786
+ (conv_params.N * conv_params.oS[0] * conv_params.oS[1]) >= 256;
787
+ if (!conv_params.flip && is_stride_one && is_kdil_one && is_idil_one &&
788
+ conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
789
+ conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
790
+ channels_large) {
791
+ return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
792
+ }
793
+
794
+ // Direct to implicit gemm conv
795
+ if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
796
+ (conv_params.O <= 16 || conv_params.O % 16 == 0)) {
797
+ return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
798
+ }
799
+
800
+ else if ((conv_params.C % 16 == 0 && conv_params.O % 16 == 0) || out_large) {
801
+ return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
802
+ }
803
+
804
+ // Direct to explicit gemm conv
805
+ else {
806
+ return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
807
+ }
808
+ }
809
+
810
+ void depthwise_conv_1D_gpu(
811
+ const Stream& s,
812
+ metal::Device& d,
813
+ const array& in,
814
+ array wt,
815
+ array out) {
816
+ bool large = in.size() > INT32_MAX || in.data_size() > INT32_MAX;
817
+ std::string base_name;
818
+ base_name.reserve(32);
819
+ concatenate(
820
+ base_name,
821
+ "depthwise_conv_1d_",
822
+ large ? "_large" : "",
823
+ type_to_name(out));
824
+
825
+ if (!wt.flags().row_contiguous) {
826
+ wt = contiguous_copy_gpu(wt, s);
827
+ d.add_temporary(wt, s.index);
828
+ }
829
+ auto& compute_encoder = d.get_command_encoder(s.index);
830
+ auto kernel = d.get_kernel(base_name);
831
+ compute_encoder.set_compute_pipeline_state(kernel);
832
+
833
+ auto B = in.shape(0);
834
+ auto Tout = out.shape(1);
835
+ auto D = in.shape(2);
836
+ auto K = wt.shape(1);
837
+
838
+ compute_encoder.set_input_array(in, 0);
839
+ compute_encoder.set_input_array(wt, 1);
840
+ compute_encoder.set_output_array(out, 2);
841
+ if (large) {
842
+ int64_t strides[3] = {in.strides(0), in.strides(1), in.strides(2)};
843
+ compute_encoder.set_bytes(strides, 3, 3);
844
+
845
+ } else {
846
+ int strides[3] = {
847
+ static_cast<int>(in.strides(0)),
848
+ static_cast<int>(in.strides(1)),
849
+ static_cast<int>(in.strides(2))};
850
+ compute_encoder.set_bytes(strides, 3, 3);
851
+ }
852
+
853
+ compute_encoder.set_bytes(K, 4);
854
+ auto group_dims = get_block_dims(D, Tout, B);
855
+ MTL::Size grid_dims = MTL::Size(D, Tout, B);
856
+
857
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
858
+ }
859
+
860
+ void conv_1D_gpu(
861
+ const Stream& s,
862
+ metal::Device& d,
863
+ const array& in,
864
+ const array& wt,
865
+ array out,
866
+ const std::vector<int>& padding,
867
+ const std::vector<int>& wt_strides,
868
+ const std::vector<int>& wt_dilation,
869
+ const std::vector<int>& in_dilation,
870
+ int groups,
871
+ bool flip,
872
+ std::vector<array>& copies) {
873
+ bool is_idil_one = in_dilation[0] == 1;
874
+ int C = in.shape(2);
875
+ int O = wt.shape(0);
876
+ // Fast path for fully separable 1D convolution
877
+ if (is_idil_one && (groups == C) && groups == O && wt_strides[0] == 1 &&
878
+ wt_dilation[0] == 1 && padding[0] == 0 && !flip) {
879
+ depthwise_conv_1D_gpu(s, d, in, wt, out);
880
+ return;
881
+ }
882
+
883
+ const int C_per_group = C / groups;
884
+ const int O_per_group = O / groups;
885
+
886
+ // Direct to implicit gemm conv
887
+ if (is_idil_one && (C_per_group <= 4 || C_per_group % 16 == 0) &&
888
+ (O_per_group <= 16 || O_per_group % 16 == 0)) {
889
+ MLXConvParams<2> conv_params{
890
+ /* const int N = */ static_cast<int>(in.shape(0)),
891
+ /* const int C = */ C,
892
+ /* const int O = */ O,
893
+ /* const int iS[NDIM] = */ {static_cast<int>(in.shape(1)), 1},
894
+ /* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1)), 1},
895
+ /* const int oS[NDIM] = */ {static_cast<int>(out.shape(1)), 1},
896
+ /* const int str[NDIM] = */ {wt_strides[0], 1},
897
+ /* const int pad[NDIM] = */ {padding[0], 0},
898
+ /* const int kdil[NDIM] = */ {wt_dilation[0], 1},
899
+ /* const int idil[NDIM] = */ {in_dilation[0], 1},
900
+ /* const size_t in_strides[NDIM + 2] = */
901
+ {in.strides()[0], in.strides()[1], 0, in.strides()[2]},
902
+ /* const size_t wt_strides[NDIM + 2] = */
903
+ {wt.strides()[0], wt.strides()[1], 0, wt.strides()[2]},
904
+ /* const size_t out_strides[NDIM + 2] = */
905
+ {out.strides()[0], out.strides()[1], 0, out.strides()[2]},
906
+ /* const int groups = */ groups,
907
+ /* const bool flip = */ flip};
908
+
909
+ dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
910
+ return;
911
+ }
912
+
913
+ // Make conv params
914
+ MLXConvParams<1> conv_params{
915
+ /* const int N = */ static_cast<int>(in.shape(0)),
916
+ /* const int C = */ static_cast<int>(in.shape(2)),
917
+ /* const int O = */ static_cast<int>(wt.shape(0)),
918
+ /* const int iS[NDIM] = */ {static_cast<int>(in.shape(1))},
919
+ /* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1))},
920
+ /* const int oS[NDIM] = */ {static_cast<int>(out.shape(1))},
921
+ /* const int str[NDIM] = */ {wt_strides[0]},
922
+ /* const int pad[NDIM] = */ {padding[0]},
923
+ /* const int kdil[NDIM] = */ {wt_dilation[0]},
924
+ /* const int idil[NDIM] = */ {in_dilation[0]},
925
+ /* const size_t in_strides[NDIM + 2] = */
926
+ {in.strides()[0], in.strides()[1], in.strides()[2]},
927
+ /* const size_t wt_strides[NDIM + 2] = */
928
+ {wt.strides()[0], wt.strides()[1], wt.strides()[2]},
929
+ /* const size_t out_strides[NDIM + 2] = */
930
+ {out.strides()[0], out.strides()[1], out.strides()[2]},
931
+ /* const int groups = */ groups,
932
+ /* const bool flip = */ flip};
933
+
934
+ // Direct to explicit gemm conv
935
+ if (groups > 1) {
936
+ return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
937
+ } else {
938
+ return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
939
+ }
940
+ }
941
+
942
+ void conv_2D_gpu(
943
+ const Stream& s,
944
+ metal::Device& d,
945
+ const array& in,
946
+ const array& wt,
947
+ array out,
948
+ const std::vector<int>& padding,
949
+ const std::vector<int>& wt_strides,
950
+ const std::vector<int>& wt_dilation,
951
+ const std::vector<int>& in_dilation,
952
+ const int groups,
953
+ bool flip,
954
+ std::vector<array>& copies) {
955
+ // Make conv params
956
+ MLXConvParams<2> conv_params{
957
+ /* const int N = */ static_cast<int>(in.shape(0)),
958
+ /* const int C = */ static_cast<int>(in.shape(3)),
959
+ /* const int O = */ static_cast<int>(wt.shape(0)),
960
+ /* const int iS[NDIM] = */
961
+ {static_cast<int>(in.shape(1)), static_cast<int>(in.shape(2))},
962
+ /* const int wS[NDIM] = */
963
+ {static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
964
+ /* const int oS[NDIM] = */
965
+ {static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
966
+ /* const int str[NDIM] = */ {wt_strides[0], wt_strides[1]},
967
+ /* const int pad[NDIM] = */ {padding[0], padding[1]},
968
+ /* const int kdil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
969
+ /* const int idil[NDIM] = */ {in_dilation[0], in_dilation[1]},
970
+ /* const size_t in_strides[NDIM + 2] = */
971
+ {in.strides(0), in.strides(1), in.strides(2), in.strides(3)},
972
+ /* const size_t wt_strides[NDIM + 2] = */
973
+ {wt.strides(0), wt.strides(1), wt.strides(2), wt.strides(3)},
974
+ /* const size_t out_strides[NDIM + 2] = */
975
+ {out.strides(0), out.strides(1), out.strides(2), out.strides(3)},
976
+ /* const int groups = */ groups,
977
+ /* const bool flip = */ flip,
978
+ };
979
+ dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
980
+ }
981
+
982
+ void conv_3D_gpu(
983
+ const Stream& s,
984
+ metal::Device& d,
985
+ const array& in,
986
+ const array& wt,
987
+ array out,
988
+ const std::vector<int>& padding,
989
+ const std::vector<int>& wt_strides,
990
+ const std::vector<int>& wt_dilation,
991
+ const std::vector<int>& in_dilation,
992
+ bool flip,
993
+ std::vector<array>& copies) {
994
+ // Make conv params
995
+ MLXConvParams<3> conv_params{
996
+ /* const int N = */ static_cast<int>(in.shape(0)),
997
+ /* const int C = */ static_cast<int>(in.shape(4)),
998
+ /* const int O = */ static_cast<int>(wt.shape(0)),
999
+ /* const int iS[NDIM] = */
1000
+ {static_cast<int>(in.shape(1)),
1001
+ static_cast<int>(in.shape(2)),
1002
+ static_cast<int>(in.shape(3))},
1003
+ /* const int wS[NDIM] = */
1004
+ {static_cast<int>(wt.shape(1)),
1005
+ static_cast<int>(wt.shape(2)),
1006
+ static_cast<int>(wt.shape(3))},
1007
+ /* const int oS[NDIM] = */
1008
+ {static_cast<int>(out.shape(1)),
1009
+ static_cast<int>(out.shape(2)),
1010
+ static_cast<int>(out.shape(3))},
1011
+ /* const int str[NDIM] = */ {wt_strides[0], wt_strides[1], wt_strides[2]},
1012
+ /* const int pad[NDIM] = */ {padding[0], padding[1], padding[2]},
1013
+ /* const int kdil[NDIM] = */
1014
+ {wt_dilation[0], wt_dilation[1], wt_dilation[2]},
1015
+ /* const int idil[NDIM] = */
1016
+ {in_dilation[0], in_dilation[1], in_dilation[2]},
1017
+ /* const size_t in_strides[NDIM + 2] = */
1018
+ {in.strides()[0],
1019
+ in.strides()[1],
1020
+ in.strides()[2],
1021
+ in.strides()[3],
1022
+ in.strides()[4]},
1023
+ /* const size_t wt_strides[NDIM + 2] = */
1024
+ {wt.strides()[0],
1025
+ wt.strides()[1],
1026
+ wt.strides()[2],
1027
+ wt.strides()[3],
1028
+ wt.strides()[4]},
1029
+ /* const size_t out_strides[NDIM + 2] = */
1030
+ {out.strides()[0],
1031
+ out.strides()[1],
1032
+ out.strides()[2],
1033
+ out.strides()[3],
1034
+ out.strides()[4]},
1035
+ /* const int groups = */ 1,
1036
+ /* const bool flip = */ flip,
1037
+ };
1038
+ return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
1039
+ }
1040
+
1041
+ } // namespace
1042
+
1043
+ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
1044
+ out.set_data(allocator::malloc(out.nbytes()));
1045
+ auto& s = stream();
1046
+ auto& d = metal::device(s.device);
1047
+
1048
+ // Ensure contiguity
1049
+ std::vector<array> copies;
1050
+ auto in = inputs[0];
1051
+ auto wt = inputs[1];
1052
+ if (!in.flags().row_contiguous) {
1053
+ in = contiguous_copy_gpu(in, s);
1054
+ copies.push_back(in);
1055
+ }
1056
+ if (!wt.flags().row_contiguous) {
1057
+ wt = contiguous_copy_gpu(wt, s);
1058
+ copies.push_back(wt);
1059
+ }
1060
+
1061
+ // 3D conv
1062
+ if (out.ndim() == 5) {
1063
+ conv_3D_gpu(
1064
+ s,
1065
+ d,
1066
+ in,
1067
+ wt,
1068
+ out,
1069
+ padding_lo_,
1070
+ kernel_strides_,
1071
+ kernel_dilation_,
1072
+ input_dilation_,
1073
+ flip_,
1074
+ copies);
1075
+ }
1076
+ // 2D conv
1077
+ else if (out.ndim() == 4) {
1078
+ conv_2D_gpu(
1079
+ s,
1080
+ d,
1081
+ in,
1082
+ wt,
1083
+ out,
1084
+ padding_lo_,
1085
+ kernel_strides_,
1086
+ kernel_dilation_,
1087
+ input_dilation_,
1088
+ groups_,
1089
+ flip_,
1090
+ copies);
1091
+ }
1092
+ // 1D conv
1093
+ else if (out.ndim() == 3) {
1094
+ conv_1D_gpu(
1095
+ s,
1096
+ d,
1097
+ in,
1098
+ wt,
1099
+ out,
1100
+ padding_lo_,
1101
+ kernel_strides_,
1102
+ kernel_dilation_,
1103
+ input_dilation_,
1104
+ groups_,
1105
+ flip_,
1106
+ copies);
1107
+ }
1108
+ // Throw error
1109
+ else {
1110
+ throw std::invalid_argument(
1111
+ "[Convolution::eval_gpu] Only supports 1D, 2D or 3D convolutions.");
1112
+ }
1113
+
1114
+ // Record copies
1115
+ d.add_temporaries(std::move(copies), s.index);
1116
+ }
1117
+
1118
+ } // namespace mlx::core