mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,231 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/conv/conv.h"
|
|
4
|
+
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
|
5
|
+
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
6
|
+
#include "mlx/dtype_utils.h"
|
|
7
|
+
|
|
8
|
+
#include <cooperative_groups.h>
|
|
9
|
+
|
|
10
|
+
namespace mlx::core {
|
|
11
|
+
|
|
12
|
+
namespace cu {
|
|
13
|
+
|
|
14
|
+
namespace cg = cooperative_groups;
|
|
15
|
+
|
|
16
|
+
template <typename T, int NDIM>
|
|
17
|
+
__global__ void naive_grouped_unfold_transpose_nd(
|
|
18
|
+
const T* in,
|
|
19
|
+
T* out,
|
|
20
|
+
int filter_size,
|
|
21
|
+
int out_pixels,
|
|
22
|
+
const __grid_constant__ ConvParams<NDIM> params) {
|
|
23
|
+
auto block = cg::this_thread_block();
|
|
24
|
+
auto tid = block.group_index();
|
|
25
|
+
auto lid = block.thread_index();
|
|
26
|
+
|
|
27
|
+
int index_batch = tid.z / out_pixels; // [0, N)
|
|
28
|
+
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
|
29
|
+
int index_wt_spatial =
|
|
30
|
+
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
|
31
|
+
|
|
32
|
+
if (index_wt_spatial >= filter_size / params.C) {
|
|
33
|
+
return;
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
in += tid.y; // [0, C)
|
|
37
|
+
out += tid.z * filter_size + tid.y * (filter_size / params.C);
|
|
38
|
+
|
|
39
|
+
bool valid = index_batch < params.N;
|
|
40
|
+
|
|
41
|
+
// Get the coordinates in input.
|
|
42
|
+
int index_in[NDIM] = {};
|
|
43
|
+
int wt_stride = 1;
|
|
44
|
+
#pragma unroll
|
|
45
|
+
for (int i = NDIM - 1; i >= 0; --i) {
|
|
46
|
+
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
|
47
|
+
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
|
48
|
+
out += index_wt * wt_stride;
|
|
49
|
+
|
|
50
|
+
if (params.flip) {
|
|
51
|
+
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
int index = index_out * params.strides[i] - params.padding[i] +
|
|
55
|
+
index_wt * params.kernel_dilation[i];
|
|
56
|
+
int index_max =
|
|
57
|
+
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
|
58
|
+
|
|
59
|
+
valid &= (index >= 0) && (index < index_max) &&
|
|
60
|
+
(index % params.input_dilation[i] == 0);
|
|
61
|
+
|
|
62
|
+
index_in[i] = index / params.input_dilation[i];
|
|
63
|
+
|
|
64
|
+
index_out_spatial /= params.out_spatial_dims[i];
|
|
65
|
+
index_wt_spatial /= params.wt_spatial_dims[i];
|
|
66
|
+
wt_stride *= params.wt_spatial_dims[i];
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
if (valid) {
|
|
70
|
+
int in_offset = index_batch * params.in_strides[0];
|
|
71
|
+
#pragma unroll
|
|
72
|
+
for (int i = 0; i < NDIM; ++i) {
|
|
73
|
+
in_offset += index_in[i] * params.in_strides[i + 1];
|
|
74
|
+
}
|
|
75
|
+
*out = in[in_offset];
|
|
76
|
+
} else {
|
|
77
|
+
*out = T{0};
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
|
|
81
|
+
} // namespace cu
|
|
82
|
+
|
|
83
|
+
template <int NDIM>
|
|
84
|
+
array grouped_unfold_transpose_inputs_nd(
|
|
85
|
+
cu::CommandEncoder& encoder,
|
|
86
|
+
const array& in,
|
|
87
|
+
int mat_M,
|
|
88
|
+
int mat_K,
|
|
89
|
+
int mat_N,
|
|
90
|
+
ConvParams<NDIM>& params) {
|
|
91
|
+
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
|
92
|
+
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder));
|
|
93
|
+
encoder.add_temporary(unfolded);
|
|
94
|
+
|
|
95
|
+
int filter_size = params.C;
|
|
96
|
+
#pragma unroll
|
|
97
|
+
for (int i = 0; i < NDIM; ++i) {
|
|
98
|
+
filter_size *= params.wt_spatial_dims[i];
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
int out_pixels = 1;
|
|
102
|
+
#pragma unroll
|
|
103
|
+
for (int i = 0; i < NDIM; ++i) {
|
|
104
|
+
out_pixels *= params.out_spatial_dims[i];
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
int wt_spatial_size = (mat_K * params.groups) / params.C;
|
|
108
|
+
dim3 block_dims;
|
|
109
|
+
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
|
110
|
+
dim3 num_blocks;
|
|
111
|
+
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
|
112
|
+
num_blocks.y = params.C;
|
|
113
|
+
num_blocks.z = mat_M;
|
|
114
|
+
|
|
115
|
+
encoder.set_input_array(in);
|
|
116
|
+
encoder.set_output_array(unfolded);
|
|
117
|
+
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
|
118
|
+
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
119
|
+
encoder.add_kernel_node(
|
|
120
|
+
cu::naive_grouped_unfold_transpose_nd<DataType, NDIM>,
|
|
121
|
+
num_blocks,
|
|
122
|
+
block_dims,
|
|
123
|
+
0,
|
|
124
|
+
gpu_ptr<DataType>(in),
|
|
125
|
+
gpu_ptr<DataType>(unfolded),
|
|
126
|
+
filter_size,
|
|
127
|
+
out_pixels,
|
|
128
|
+
params);
|
|
129
|
+
});
|
|
130
|
+
|
|
131
|
+
return unfolded;
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
template <int NDIM>
|
|
135
|
+
void gemm_grouped_conv_nd(
|
|
136
|
+
cu::CommandEncoder& encoder,
|
|
137
|
+
const array& in,
|
|
138
|
+
const array& wt,
|
|
139
|
+
array& out,
|
|
140
|
+
ConvParams<NDIM>& params,
|
|
141
|
+
Stream s) {
|
|
142
|
+
// Get gemm shapes.
|
|
143
|
+
int C_per_group = params.C / params.groups;
|
|
144
|
+
int O_per_group = params.O / params.groups;
|
|
145
|
+
int mat_M = out.size() / params.O; // N * H_out * W_out
|
|
146
|
+
int mat_K = wt.size() / params.O; // C_per_group * H_wt * W_wt
|
|
147
|
+
int mat_N = O_per_group; // O_per_group
|
|
148
|
+
|
|
149
|
+
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
|
150
|
+
array in_unfolded = grouped_unfold_transpose_inputs_nd<NDIM>(
|
|
151
|
+
encoder, in, mat_M, mat_K, mat_N, params);
|
|
152
|
+
|
|
153
|
+
// Reshape weight to (O, C_per_group, H_wt * W_wt) for gemm.
|
|
154
|
+
int wt_spatial_size = (wt.size() / wt.shape(0)) / wt.shape(-1);
|
|
155
|
+
array wt_view(
|
|
156
|
+
{params.O, C_per_group, wt_spatial_size}, wt.dtype(), nullptr, {});
|
|
157
|
+
wt_view.copy_shared_buffer(
|
|
158
|
+
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
|
159
|
+
array wt_reshaped = contiguous_copy_gpu(wt_view, s);
|
|
160
|
+
|
|
161
|
+
// Batch with size of groups.
|
|
162
|
+
Shape batch_shape{params.groups};
|
|
163
|
+
Strides a_batch_strides{mat_K};
|
|
164
|
+
Strides b_batch_strides{mat_N * mat_K};
|
|
165
|
+
|
|
166
|
+
// Run matmul.
|
|
167
|
+
CublasGemm gemm(
|
|
168
|
+
encoder.device(),
|
|
169
|
+
in.dtype(),
|
|
170
|
+
false, // a_transposed
|
|
171
|
+
mat_M, // a_rows
|
|
172
|
+
mat_K, // a_cols
|
|
173
|
+
mat_K * params.groups, // lda
|
|
174
|
+
true, // b_transposed
|
|
175
|
+
mat_K, // b_rows
|
|
176
|
+
mat_N, // b_cols
|
|
177
|
+
mat_K, // ldb
|
|
178
|
+
batch_shape.back(),
|
|
179
|
+
a_batch_strides.back(),
|
|
180
|
+
b_batch_strides.back());
|
|
181
|
+
gemm.set_out(
|
|
182
|
+
out.dtype(),
|
|
183
|
+
false, // out_transposed
|
|
184
|
+
mat_M, // out_rows
|
|
185
|
+
mat_N, // out_cols
|
|
186
|
+
mat_N * params.groups, // out_ld
|
|
187
|
+
params.groups, // batch_count
|
|
188
|
+
mat_N); // batch_stride
|
|
189
|
+
gemm.run(
|
|
190
|
+
encoder,
|
|
191
|
+
out,
|
|
192
|
+
in_unfolded,
|
|
193
|
+
wt_reshaped,
|
|
194
|
+
batch_shape,
|
|
195
|
+
a_batch_strides,
|
|
196
|
+
b_batch_strides);
|
|
197
|
+
}
|
|
198
|
+
|
|
199
|
+
void gemm_grouped_conv(
|
|
200
|
+
cu::CommandEncoder& encoder,
|
|
201
|
+
const array& in,
|
|
202
|
+
const array& wt,
|
|
203
|
+
array& out,
|
|
204
|
+
const std::vector<int>& strides,
|
|
205
|
+
const std::vector<int>& padding,
|
|
206
|
+
const std::vector<int>& kernel_dilation,
|
|
207
|
+
const std::vector<int>& input_dilation,
|
|
208
|
+
int groups,
|
|
209
|
+
bool flip,
|
|
210
|
+
Stream s) {
|
|
211
|
+
int conv_ndim = in.ndim() - 2;
|
|
212
|
+
if (conv_ndim < 1 || conv_ndim > 3) {
|
|
213
|
+
throw std::runtime_error(
|
|
214
|
+
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
|
215
|
+
}
|
|
216
|
+
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
|
217
|
+
ConvParams<ndim_constant()> params(
|
|
218
|
+
in,
|
|
219
|
+
wt,
|
|
220
|
+
out,
|
|
221
|
+
strides,
|
|
222
|
+
padding,
|
|
223
|
+
kernel_dilation,
|
|
224
|
+
input_dilation,
|
|
225
|
+
groups,
|
|
226
|
+
flip);
|
|
227
|
+
gemm_grouped_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
|
228
|
+
});
|
|
229
|
+
}
|
|
230
|
+
|
|
231
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,403 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/conv/conv.h"
|
|
4
|
+
#include "mlx/backend/cuda/cudnn_utils.h"
|
|
5
|
+
#include "mlx/backend/cuda/device.h"
|
|
6
|
+
#include "mlx/backend/cuda/lru_cache.h"
|
|
7
|
+
#include "mlx/backend/gpu/copy.h"
|
|
8
|
+
#include "mlx/primitives.h"
|
|
9
|
+
|
|
10
|
+
#include <nvtx3/nvtx3.hpp>
|
|
11
|
+
|
|
12
|
+
#include <cassert>
|
|
13
|
+
|
|
14
|
+
namespace mlx::core {
|
|
15
|
+
|
|
16
|
+
namespace {
|
|
17
|
+
|
|
18
|
+
enum ConvBackendType {
|
|
19
|
+
CONV_FALLBACK,
|
|
20
|
+
CONV_FORWARD,
|
|
21
|
+
CONV_BACKWARD_INPUT,
|
|
22
|
+
CONV_BACKWARD_WEIGHT,
|
|
23
|
+
};
|
|
24
|
+
|
|
25
|
+
struct ConvCacheKey {
|
|
26
|
+
int device_id;
|
|
27
|
+
fe::DataType_t cudnn_dtype;
|
|
28
|
+
std::array<int, MAX_NDIM> input_shape;
|
|
29
|
+
std::array<int, MAX_NDIM> weight_shape;
|
|
30
|
+
std::array<int, MAX_NDIM> stride;
|
|
31
|
+
std::array<int, MAX_NDIM> padding_lo;
|
|
32
|
+
std::array<int, MAX_NDIM> padding_hi;
|
|
33
|
+
std::array<int, MAX_NDIM> dilation;
|
|
34
|
+
int groups;
|
|
35
|
+
bool flip;
|
|
36
|
+
uint8_t input_alignment;
|
|
37
|
+
uint8_t weight_alignment;
|
|
38
|
+
uint8_t output_alignment;
|
|
39
|
+
};
|
|
40
|
+
|
|
41
|
+
auto& conv_cache() {
|
|
42
|
+
static LRUBytesKeyCache<
|
|
43
|
+
ConvCacheKey,
|
|
44
|
+
std::pair<ConvBackendType, std::optional<DnnGraph>>>
|
|
45
|
+
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
|
|
46
|
+
return cache;
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
auto get_conv_settings(
|
|
50
|
+
ConvBackendType backend_type,
|
|
51
|
+
array& x,
|
|
52
|
+
array& w,
|
|
53
|
+
array& y,
|
|
54
|
+
const std::vector<int>& kernel_strides,
|
|
55
|
+
const std::vector<int>& padding_lo_,
|
|
56
|
+
const std::vector<int>& padding_hi_,
|
|
57
|
+
const std::vector<int>& kernel_dilation,
|
|
58
|
+
const std::vector<int>& input_dilation) {
|
|
59
|
+
auto padding_lo = convert_vector<int64_t>(padding_lo_);
|
|
60
|
+
auto padding_hi = convert_vector<int64_t>(padding_hi_);
|
|
61
|
+
|
|
62
|
+
if (backend_type == CONV_BACKWARD_INPUT) {
|
|
63
|
+
for (int i = 0; i < padding_lo.size(); ++i) {
|
|
64
|
+
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
|
|
65
|
+
padding_lo[i] = wt_size - padding_lo[i] - 1;
|
|
66
|
+
int in_size = 1 + kernel_strides[i] * (y.shape(1 + i) - 1);
|
|
67
|
+
int out_size = 1 + input_dilation[i] * (x.shape(1 + i) - 1);
|
|
68
|
+
padding_hi[i] = out_size - in_size + padding_hi[i];
|
|
69
|
+
}
|
|
70
|
+
return std::make_tuple(
|
|
71
|
+
convert_vector<int64_t>(input_dilation),
|
|
72
|
+
std::move(padding_lo),
|
|
73
|
+
std::move(padding_hi),
|
|
74
|
+
convert_vector<int64_t>(kernel_dilation));
|
|
75
|
+
|
|
76
|
+
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
|
77
|
+
padding_hi = padding_lo;
|
|
78
|
+
return std::make_tuple(
|
|
79
|
+
convert_vector<int64_t>(kernel_dilation),
|
|
80
|
+
std::move(padding_lo),
|
|
81
|
+
std::move(padding_hi),
|
|
82
|
+
convert_vector<int64_t>(kernel_strides));
|
|
83
|
+
|
|
84
|
+
} else {
|
|
85
|
+
return std::make_tuple(
|
|
86
|
+
convert_vector<int64_t>(kernel_strides),
|
|
87
|
+
std::move(padding_lo),
|
|
88
|
+
std::move(padding_hi),
|
|
89
|
+
convert_vector<int64_t>(kernel_dilation));
|
|
90
|
+
}
|
|
91
|
+
}
|
|
92
|
+
|
|
93
|
+
std::optional<DnnGraph> build_conv_graph(
|
|
94
|
+
cu::CommandEncoder& encoder,
|
|
95
|
+
ConvBackendType backend_type,
|
|
96
|
+
Dtype dtype,
|
|
97
|
+
array& x,
|
|
98
|
+
array& w,
|
|
99
|
+
array& y,
|
|
100
|
+
const std::vector<int64_t>& stride,
|
|
101
|
+
const std::vector<int64_t>& padding_lo,
|
|
102
|
+
const std::vector<int64_t>& padding_hi,
|
|
103
|
+
const std::vector<int64_t>& dilation) {
|
|
104
|
+
auto compute_dtype =
|
|
105
|
+
(dtype == float16 || dtype == bfloat16) ? float32 : dtype;
|
|
106
|
+
DnnGraph graph(encoder.device().get_cudnn_handle(), dtype, compute_dtype);
|
|
107
|
+
auto x_ = graph.tensor_nchw("X", 'x', x);
|
|
108
|
+
auto w_ = graph.tensor_nchw("W", 'w', w);
|
|
109
|
+
|
|
110
|
+
auto set_options = [&](auto& options) {
|
|
111
|
+
options.set_compute_data_type(dtype_to_cudnn_type(compute_dtype))
|
|
112
|
+
.set_convolution_mode(fe::ConvolutionMode_t::CROSS_CORRELATION)
|
|
113
|
+
.set_stride(stride)
|
|
114
|
+
.set_pre_padding(padding_lo)
|
|
115
|
+
.set_post_padding(padding_hi)
|
|
116
|
+
.set_dilation(dilation);
|
|
117
|
+
};
|
|
118
|
+
|
|
119
|
+
std::shared_ptr<fe::graph::Tensor_attributes> y_;
|
|
120
|
+
if (backend_type == CONV_FORWARD) {
|
|
121
|
+
auto options = fe::graph::Conv_fprop_attributes();
|
|
122
|
+
set_options(options);
|
|
123
|
+
y_ = graph.conv_fprop(x_, w_, options);
|
|
124
|
+
} else if (backend_type == CONV_BACKWARD_INPUT) {
|
|
125
|
+
auto options = fe::graph::Conv_dgrad_attributes();
|
|
126
|
+
set_options(options);
|
|
127
|
+
y_ = graph.conv_dgrad(x_, w_, options);
|
|
128
|
+
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
|
129
|
+
auto options = fe::graph::Conv_wgrad_attributes();
|
|
130
|
+
set_options(options);
|
|
131
|
+
y_ = graph.conv_wgrad(w_, x_, options);
|
|
132
|
+
}
|
|
133
|
+
graph.tensor_nchw(y_, 'y', y)->set_output(true);
|
|
134
|
+
|
|
135
|
+
if (graph.prepare().is_bad()) {
|
|
136
|
+
return std::nullopt;
|
|
137
|
+
}
|
|
138
|
+
graph.deselect_numeric_notes({fe::NumericalNote_t::DOWN_CONVERT_INPUTS});
|
|
139
|
+
if (dtype == float32 && !env::enable_tf32()) {
|
|
140
|
+
graph.deselect_numeric_notes({fe::NumericalNote_t::TENSOR_CORE});
|
|
141
|
+
}
|
|
142
|
+
CHECK_CUDNN_FE_ERROR(graph.build());
|
|
143
|
+
return graph;
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
|
|
147
|
+
array group_transpose(
|
|
148
|
+
const array& x,
|
|
149
|
+
int groups,
|
|
150
|
+
int group_dim,
|
|
151
|
+
int axis1,
|
|
152
|
+
int axis2,
|
|
153
|
+
Stream s) {
|
|
154
|
+
if (groups == 1) {
|
|
155
|
+
return swapaxes_in_eval(x, axis1, axis2);
|
|
156
|
+
}
|
|
157
|
+
int ndim = x.ndim();
|
|
158
|
+
if (group_dim < 0) {
|
|
159
|
+
group_dim += ndim;
|
|
160
|
+
}
|
|
161
|
+
if (axis1 < 0) {
|
|
162
|
+
axis1 += ndim;
|
|
163
|
+
}
|
|
164
|
+
if (axis2 < 0) {
|
|
165
|
+
axis2 += ndim;
|
|
166
|
+
}
|
|
167
|
+
if (group_dim <= axis1) {
|
|
168
|
+
axis1 += 1;
|
|
169
|
+
}
|
|
170
|
+
if (group_dim <= axis2) {
|
|
171
|
+
axis2 += 1;
|
|
172
|
+
}
|
|
173
|
+
auto shape = x.shape();
|
|
174
|
+
shape.insert(shape.begin() + group_dim, groups);
|
|
175
|
+
shape[group_dim + 1] = shape[group_dim + 1] / groups;
|
|
176
|
+
array x_trans = reshape_in_eval(x, std::move(shape), s);
|
|
177
|
+
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
|
|
178
|
+
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
|
|
179
|
+
return x_trans;
|
|
180
|
+
}
|
|
181
|
+
|
|
182
|
+
// Do necessary transposes and copies to prepare the inputs and outputs for
|
|
183
|
+
// building the cuDNN conv op. It is safe to be called multiple times in one
|
|
184
|
+
// eval_gpu, with cost of possible redundant copies.
|
|
185
|
+
std::tuple<array, array, array> prepare_args(
|
|
186
|
+
cu::CommandEncoder& encoder,
|
|
187
|
+
ConvBackendType backend_type,
|
|
188
|
+
array in,
|
|
189
|
+
array wt,
|
|
190
|
+
array out,
|
|
191
|
+
int groups,
|
|
192
|
+
Stream s) {
|
|
193
|
+
// Transpose the args depending on the backend type.
|
|
194
|
+
// TODO: Handle groups.
|
|
195
|
+
if (backend_type == CONV_BACKWARD_INPUT) {
|
|
196
|
+
wt = group_transpose(wt, groups, 0, 0, -1, s);
|
|
197
|
+
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
|
198
|
+
in = group_transpose(in, groups, -1, 0, -1, s);
|
|
199
|
+
wt = swapaxes_in_eval(wt, 0, -1);
|
|
200
|
+
// Create a contiguous array that shares the data with |out|, but with dim
|
|
201
|
+
// C_in and C_out swapped.
|
|
202
|
+
Shape shape(out.shape());
|
|
203
|
+
std::swap(shape.front(), shape.back());
|
|
204
|
+
Strides strides(shape.size(), 1);
|
|
205
|
+
for (int i = shape.size() - 2; i >= 0; --i) {
|
|
206
|
+
strides[i] = shape[i + 1] * strides[i + 1];
|
|
207
|
+
}
|
|
208
|
+
array intermediate(std::move(shape), out.dtype(), nullptr, {});
|
|
209
|
+
intermediate.copy_shared_buffer(
|
|
210
|
+
out, std::move(strides), {true, true, false}, out.data_size());
|
|
211
|
+
out = intermediate;
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
// cuDNN requires contiguous input.
|
|
215
|
+
if (!in.flags().row_contiguous) {
|
|
216
|
+
in = contiguous_copy_gpu(in, s);
|
|
217
|
+
encoder.add_temporary(in);
|
|
218
|
+
}
|
|
219
|
+
if (!wt.flags().row_contiguous) {
|
|
220
|
+
wt = contiguous_copy_gpu(wt, s);
|
|
221
|
+
encoder.add_temporary(wt);
|
|
222
|
+
}
|
|
223
|
+
|
|
224
|
+
return {std::move(in), std::move(wt), std::move(out)};
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
// Register inputs and outputs before actually running conv op. Can only be
|
|
228
|
+
// called once per eval_gpu.
|
|
229
|
+
void register_args(
|
|
230
|
+
cu::CommandEncoder& encoder,
|
|
231
|
+
ConvBackendType backend_type,
|
|
232
|
+
array& in,
|
|
233
|
+
array& wt,
|
|
234
|
+
array& intermediate_out,
|
|
235
|
+
array& final_out) {
|
|
236
|
+
encoder.set_input_array(in);
|
|
237
|
+
encoder.set_input_array(wt);
|
|
238
|
+
encoder.set_output_array(final_out);
|
|
239
|
+
|
|
240
|
+
if (backend_type == CONV_BACKWARD_WEIGHT) {
|
|
241
|
+
// Turn |out| into a strided array, which will have C_in and C_out swapped
|
|
242
|
+
// in vjp and the final |grad_weight| will then be contiguous.
|
|
243
|
+
Strides strides = intermediate_out.strides();
|
|
244
|
+
std::swap(strides.front(), strides.back());
|
|
245
|
+
final_out.copy_shared_buffer(
|
|
246
|
+
intermediate_out,
|
|
247
|
+
std::move(strides),
|
|
248
|
+
{false, false, false},
|
|
249
|
+
intermediate_out.data_size());
|
|
250
|
+
}
|
|
251
|
+
}
|
|
252
|
+
|
|
253
|
+
} // namespace
|
|
254
|
+
|
|
255
|
+
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
|
256
|
+
nvtx3::scoped_range r("Convolution::eval_gpu");
|
|
257
|
+
if (out_.size() == 0) {
|
|
258
|
+
return;
|
|
259
|
+
}
|
|
260
|
+
auto& s = stream();
|
|
261
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
262
|
+
|
|
263
|
+
assert(inputs.size() == 2);
|
|
264
|
+
array in = inputs[0];
|
|
265
|
+
array wt = inputs[1];
|
|
266
|
+
array out = out_;
|
|
267
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
268
|
+
Dtype dtype = out.dtype();
|
|
269
|
+
|
|
270
|
+
// Search cache.
|
|
271
|
+
BytesKey<ConvCacheKey> cache_key;
|
|
272
|
+
cache_key.pod = {
|
|
273
|
+
encoder.device().cuda_device(),
|
|
274
|
+
dtype_to_cudnn_type(dtype),
|
|
275
|
+
vector_key(in.shape()),
|
|
276
|
+
vector_key(wt.shape()),
|
|
277
|
+
vector_key(kernel_strides_),
|
|
278
|
+
vector_key(padding_lo_),
|
|
279
|
+
vector_key(padding_hi_),
|
|
280
|
+
vector_key(kernel_dilation_),
|
|
281
|
+
groups_,
|
|
282
|
+
flip_,
|
|
283
|
+
get_alignment(in),
|
|
284
|
+
get_alignment(wt),
|
|
285
|
+
get_alignment(out)};
|
|
286
|
+
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
|
287
|
+
auto& [backend_type, graph] = it->second;
|
|
288
|
+
if (graph) {
|
|
289
|
+
// Run cached graph.
|
|
290
|
+
std::tie(in, wt, out) =
|
|
291
|
+
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
|
|
292
|
+
register_args(encoder, backend_type, in, wt, out, out_);
|
|
293
|
+
CHECK_CUDNN_FE_ERROR(graph->encode_capturing(
|
|
294
|
+
encoder,
|
|
295
|
+
{
|
|
296
|
+
{'x', gpu_ptr<void>(in)},
|
|
297
|
+
{'w', gpu_ptr<void>(wt)},
|
|
298
|
+
{'y', gpu_ptr<void>(out)},
|
|
299
|
+
}));
|
|
300
|
+
} else {
|
|
301
|
+
// Run fallback kernel.
|
|
302
|
+
gemm_conv(
|
|
303
|
+
encoder,
|
|
304
|
+
in,
|
|
305
|
+
wt,
|
|
306
|
+
out,
|
|
307
|
+
kernel_strides_,
|
|
308
|
+
padding_lo_,
|
|
309
|
+
kernel_dilation_,
|
|
310
|
+
input_dilation_,
|
|
311
|
+
groups_,
|
|
312
|
+
flip_,
|
|
313
|
+
s);
|
|
314
|
+
}
|
|
315
|
+
return;
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
// There is no reliable way to deduce the proper cuDNN backend for the
|
|
319
|
+
// convolution, so we make a best guess and then try.
|
|
320
|
+
SmallVector<ConvBackendType, 2> try_backends;
|
|
321
|
+
if (flip_) {
|
|
322
|
+
// When weight is flipped, we assume it is backward input convolution.
|
|
323
|
+
try_backends.push_back(CONV_BACKWARD_INPUT);
|
|
324
|
+
} else {
|
|
325
|
+
// Otherwise it could be backward weight convolution or forward convolution,
|
|
326
|
+
// mathematically there is no difference so we have to use heuristics.
|
|
327
|
+
// Empirically backward convolutions have large kernel dimensions, and
|
|
328
|
+
// usually have |in| and |wt| transposed.
|
|
329
|
+
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
|
|
330
|
+
wt.shape(2) > out.shape(2)) {
|
|
331
|
+
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
|
|
332
|
+
} else {
|
|
333
|
+
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
|
|
334
|
+
}
|
|
335
|
+
}
|
|
336
|
+
|
|
337
|
+
// Try to build op graph.
|
|
338
|
+
ConvBackendType backend_type;
|
|
339
|
+
std::optional<DnnGraph> graph;
|
|
340
|
+
for (auto try_backend : try_backends) {
|
|
341
|
+
auto [x, w, y] =
|
|
342
|
+
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
|
|
343
|
+
auto [stride, padding_lo, padding_hi, dilation] = get_conv_settings(
|
|
344
|
+
try_backend,
|
|
345
|
+
x,
|
|
346
|
+
w,
|
|
347
|
+
y,
|
|
348
|
+
kernel_strides_,
|
|
349
|
+
padding_lo_,
|
|
350
|
+
padding_hi_,
|
|
351
|
+
kernel_dilation_,
|
|
352
|
+
input_dilation_);
|
|
353
|
+
graph = build_conv_graph(
|
|
354
|
+
encoder,
|
|
355
|
+
try_backend,
|
|
356
|
+
dtype,
|
|
357
|
+
x,
|
|
358
|
+
w,
|
|
359
|
+
y,
|
|
360
|
+
stride,
|
|
361
|
+
padding_lo,
|
|
362
|
+
padding_hi,
|
|
363
|
+
dilation);
|
|
364
|
+
if (graph) {
|
|
365
|
+
backend_type = try_backend;
|
|
366
|
+
in = std::move(x);
|
|
367
|
+
wt = std::move(w);
|
|
368
|
+
out = std::move(y);
|
|
369
|
+
break;
|
|
370
|
+
}
|
|
371
|
+
}
|
|
372
|
+
|
|
373
|
+
if (graph) {
|
|
374
|
+
register_args(encoder, backend_type, in, wt, out, out_);
|
|
375
|
+
CHECK_CUDNN_FE_ERROR(graph->encode_capturing(
|
|
376
|
+
encoder,
|
|
377
|
+
{
|
|
378
|
+
{'x', gpu_ptr<void>(in)},
|
|
379
|
+
{'w', gpu_ptr<void>(wt)},
|
|
380
|
+
{'y', gpu_ptr<void>(out)},
|
|
381
|
+
}));
|
|
382
|
+
conv_cache().emplace(
|
|
383
|
+
cache_key, std::make_pair(backend_type, std::move(*graph)));
|
|
384
|
+
return;
|
|
385
|
+
}
|
|
386
|
+
|
|
387
|
+
// Use fallback kernel for settings not supported by cuDNN.
|
|
388
|
+
gemm_conv(
|
|
389
|
+
encoder,
|
|
390
|
+
in,
|
|
391
|
+
wt,
|
|
392
|
+
out,
|
|
393
|
+
kernel_strides_,
|
|
394
|
+
padding_lo_,
|
|
395
|
+
kernel_dilation_,
|
|
396
|
+
input_dilation_,
|
|
397
|
+
groups_,
|
|
398
|
+
flip_,
|
|
399
|
+
s);
|
|
400
|
+
conv_cache().emplace(cache_key, std::make_pair(CONV_FALLBACK, std::nullopt));
|
|
401
|
+
}
|
|
402
|
+
|
|
403
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/cuda/device.h"
|
|
6
|
+
#include "mlx/backend/cuda/device/cast_op.cuh"
|
|
7
|
+
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
8
|
+
#include "mlx/backend/gpu/copy.h"
|
|
9
|
+
#include "mlx/dtype_utils.h"
|
|
10
|
+
|
|
11
|
+
namespace mlx::core {
|
|
12
|
+
|
|
13
|
+
void copy_contiguous(
|
|
14
|
+
cu::CommandEncoder& encoder,
|
|
15
|
+
CopyType ctype,
|
|
16
|
+
const array& in,
|
|
17
|
+
array& out,
|
|
18
|
+
int64_t offset_in,
|
|
19
|
+
int64_t offset_out);
|
|
20
|
+
|
|
21
|
+
void copy_general(
|
|
22
|
+
cu::CommandEncoder& encoder,
|
|
23
|
+
CopyType ctype,
|
|
24
|
+
const array& in,
|
|
25
|
+
array& out,
|
|
26
|
+
int64_t offset_in,
|
|
27
|
+
int64_t offset_out,
|
|
28
|
+
const Shape& shape,
|
|
29
|
+
const Strides& strides_in,
|
|
30
|
+
const Strides& strides_out);
|
|
31
|
+
|
|
32
|
+
void copy_general_dynamic(
|
|
33
|
+
cu::CommandEncoder& encoder,
|
|
34
|
+
CopyType ctype,
|
|
35
|
+
const array& in,
|
|
36
|
+
array& out,
|
|
37
|
+
int64_t offset_in,
|
|
38
|
+
int64_t offset_out,
|
|
39
|
+
const Shape& shape,
|
|
40
|
+
const Strides& strides_in,
|
|
41
|
+
const Strides& strides_out,
|
|
42
|
+
const array& dynamic_offset_in,
|
|
43
|
+
const array& dynamic_offset_out);
|
|
44
|
+
|
|
45
|
+
void copy_general_input(
|
|
46
|
+
cu::CommandEncoder& encoder,
|
|
47
|
+
CopyType ctype,
|
|
48
|
+
const array& in,
|
|
49
|
+
array& out,
|
|
50
|
+
int64_t offset_in,
|
|
51
|
+
int64_t offset_out,
|
|
52
|
+
const Shape& shape,
|
|
53
|
+
const Strides& strides_in);
|
|
54
|
+
|
|
55
|
+
} // namespace mlx::core
|