mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,154 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/common/reduce.h"
|
|
4
|
+
|
|
5
|
+
namespace mlx::core {
|
|
6
|
+
|
|
7
|
+
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
|
8
|
+
Shape shape,
|
|
9
|
+
Strides strides,
|
|
10
|
+
const std::vector<int>& axes) {
|
|
11
|
+
for (int i = axes.size() - 1; i >= 0; i--) {
|
|
12
|
+
int a = axes[i];
|
|
13
|
+
shape.erase(shape.begin() + a);
|
|
14
|
+
strides.erase(strides.begin() + a);
|
|
15
|
+
}
|
|
16
|
+
|
|
17
|
+
return std::make_pair(shape, strides);
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
|
21
|
+
const array& x,
|
|
22
|
+
const std::vector<int>& axes) {
|
|
23
|
+
auto shape = x.shape();
|
|
24
|
+
auto strides = x.strides();
|
|
25
|
+
return shapes_without_reduction_axes(
|
|
26
|
+
std::move(shape), std::move(strides), axes);
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
|
30
|
+
// The data is all there and we are reducing over everything
|
|
31
|
+
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
|
32
|
+
x.flags().contiguous) {
|
|
33
|
+
return ContiguousAllReduce;
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
// Row contiguous input so the output is row contiguous
|
|
37
|
+
if (x.flags().row_contiguous) {
|
|
38
|
+
// Merge consecutive axes
|
|
39
|
+
Shape shape = {x.shape(axes[0])};
|
|
40
|
+
Strides strides = {x.strides()[axes[0]]};
|
|
41
|
+
for (int i = 1; i < axes.size(); i++) {
|
|
42
|
+
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
|
43
|
+
shape.back() *= x.shape(axes[i]);
|
|
44
|
+
strides.back() = x.strides()[axes[i]];
|
|
45
|
+
} else {
|
|
46
|
+
shape.push_back(x.shape(axes[i]));
|
|
47
|
+
strides.push_back(x.strides()[axes[i]]);
|
|
48
|
+
}
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
// Remove singleton axes from the plan
|
|
52
|
+
for (int i = shape.size() - 1; i >= 0; i--) {
|
|
53
|
+
if (shape[i] == 1) {
|
|
54
|
+
shape.erase(shape.begin() + i);
|
|
55
|
+
strides.erase(strides.begin() + i);
|
|
56
|
+
}
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
if (strides.back() == 1) {
|
|
60
|
+
return ReductionPlan(ContiguousReduce, shape, strides);
|
|
61
|
+
} else if (strides.back() > 1) {
|
|
62
|
+
return ReductionPlan(ContiguousStridedReduce, shape, strides);
|
|
63
|
+
}
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
// Let's check if we can optimize our access patterns
|
|
67
|
+
//
|
|
68
|
+
// 1. We have a reduction axis with stride 1. Simply call
|
|
69
|
+
// GeneralContiguousReduce and be done with it.
|
|
70
|
+
// 2. We have transpositions and we are not reducing over the axis with
|
|
71
|
+
// stride 1. However, we are reducing over an axis where everything is
|
|
72
|
+
// contiguous in memory to the right of that axis. We can call strided
|
|
73
|
+
// reduce and be done with it.
|
|
74
|
+
// 2. We have weird transpositions and expands. Copy the strides to the
|
|
75
|
+
// output, then call strided reduce.
|
|
76
|
+
|
|
77
|
+
// Sort reduction axes by stride in order to merge them and figure out if we
|
|
78
|
+
// have a contiguous reduction.
|
|
79
|
+
std::vector<std::pair<int, int64_t>> reductions;
|
|
80
|
+
for (auto a : axes) {
|
|
81
|
+
if (x.shape(a) > 1) {
|
|
82
|
+
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
|
83
|
+
}
|
|
84
|
+
}
|
|
85
|
+
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
|
|
86
|
+
bool a_is_zero = a.second == 0;
|
|
87
|
+
bool b_is_zero = b.second == 0;
|
|
88
|
+
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
|
|
89
|
+
});
|
|
90
|
+
// Extract the two smallest and try to merge them in case the contiguous
|
|
91
|
+
// reduction can be bigger than just the last axis.
|
|
92
|
+
for (int i = reductions.size() - 1; i >= 1; i--) {
|
|
93
|
+
auto a = reductions[i];
|
|
94
|
+
auto b = reductions[i - 1];
|
|
95
|
+
|
|
96
|
+
// b.stride = a.shape * a.stride then a and b are contiguous
|
|
97
|
+
if (b.second == a.first * a.second) {
|
|
98
|
+
reductions.erase(reductions.begin() + i);
|
|
99
|
+
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
|
|
100
|
+
}
|
|
101
|
+
}
|
|
102
|
+
|
|
103
|
+
Shape shape;
|
|
104
|
+
Strides strides;
|
|
105
|
+
for (auto r : reductions) {
|
|
106
|
+
shape.push_back(r.first);
|
|
107
|
+
strides.push_back(r.second);
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
// We can call the contiguous reduction op for every weird way the input is
|
|
111
|
+
// structured in the rest of the axes.
|
|
112
|
+
if (strides.back() == 1) {
|
|
113
|
+
return ReductionPlan(GeneralContiguousReduce, shape, strides);
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
// Delegate to the general strided reduction op if the axes after
|
|
117
|
+
// strides.back() are contiguous.
|
|
118
|
+
if (strides.back() > 1) {
|
|
119
|
+
int64_t size = 1;
|
|
120
|
+
bool have_expand = false;
|
|
121
|
+
for (int i = x.ndim() - 1; i >= 0; i--) {
|
|
122
|
+
if (axes.back() == i) {
|
|
123
|
+
continue;
|
|
124
|
+
}
|
|
125
|
+
|
|
126
|
+
auto stride_i = x.strides()[i];
|
|
127
|
+
auto shape_i = x.shape(i);
|
|
128
|
+
if (stride_i == 0) {
|
|
129
|
+
if (shape_i == 1) {
|
|
130
|
+
continue;
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
have_expand = true;
|
|
134
|
+
break;
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
if (stride_i != size && shape_i != 1) {
|
|
138
|
+
break;
|
|
139
|
+
}
|
|
140
|
+
size *= shape_i;
|
|
141
|
+
}
|
|
142
|
+
// In the case of an expanded dimension we are being conservative and
|
|
143
|
+
// require the smallest reduction stride to be smaller than the maximum row
|
|
144
|
+
// contiguous size. The reason is that we can't easily know if the reduced
|
|
145
|
+
// axis is before or after an expanded dimension.
|
|
146
|
+
if (size > strides.back() || (size == strides.back() && !have_expand)) {
|
|
147
|
+
return ReductionPlan(GeneralStridedReduce, shape, strides);
|
|
148
|
+
}
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
return ReductionPlan(GeneralReduce, shape, strides);
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
// Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/common/utils.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core {
|
|
8
|
+
|
|
9
|
+
enum ReductionOpType {
|
|
10
|
+
// Self-explanatory. Read everything and produce 1 output.
|
|
11
|
+
ContiguousAllReduce,
|
|
12
|
+
|
|
13
|
+
// The input is contiguous and the last axis is reduced
|
|
14
|
+
// N1xR1xN2xR2x...xNnxRn
|
|
15
|
+
ContiguousReduce,
|
|
16
|
+
|
|
17
|
+
// The input is contiguous and the last axis is not reduced
|
|
18
|
+
// R1xN1xR2xN2x...xRnxNn
|
|
19
|
+
ContiguousStridedReduce,
|
|
20
|
+
|
|
21
|
+
// The input is not contiguous but the last axis is and it is reduced so we
|
|
22
|
+
// need to figure out the offsets but we can call the contiguous reduce after
|
|
23
|
+
// that.
|
|
24
|
+
// N3xR1xN1xR4x...xRn
|
|
25
|
+
GeneralContiguousReduce,
|
|
26
|
+
|
|
27
|
+
// The input is not contiguous but the last reduction axis and the last axis
|
|
28
|
+
// are so we need to figure out the offset but we can call the strided reduce
|
|
29
|
+
// after that.
|
|
30
|
+
GeneralStridedReduce,
|
|
31
|
+
|
|
32
|
+
// The input is not contiguous after the reduction axis and it may contain
|
|
33
|
+
// 0-stride axes or transpositions. We could copy the strides and produce a
|
|
34
|
+
// transposed outcome or we can read the input out of order and write the
|
|
35
|
+
// output in order.
|
|
36
|
+
GeneralReduce
|
|
37
|
+
};
|
|
38
|
+
|
|
39
|
+
struct ReductionPlan {
|
|
40
|
+
ReductionOpType type;
|
|
41
|
+
Shape shape;
|
|
42
|
+
Strides strides;
|
|
43
|
+
|
|
44
|
+
ReductionPlan(ReductionOpType type_, Shape shape_, Strides strides_)
|
|
45
|
+
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
|
46
|
+
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
|
47
|
+
};
|
|
48
|
+
|
|
49
|
+
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
|
|
50
|
+
|
|
51
|
+
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
|
52
|
+
const array& x,
|
|
53
|
+
const std::vector<int>& axes);
|
|
54
|
+
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
|
55
|
+
Shape shape,
|
|
56
|
+
Strides strides,
|
|
57
|
+
const std::vector<int>& axes);
|
|
58
|
+
|
|
59
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/common/utils.h"
|
|
4
|
+
|
|
5
|
+
namespace mlx::core {
|
|
6
|
+
|
|
7
|
+
std::tuple<int64_t, Strides> prepare_slice(
|
|
8
|
+
const array& in,
|
|
9
|
+
const Shape& start_indices,
|
|
10
|
+
const Shape& strides) {
|
|
11
|
+
int64_t data_offset = 0;
|
|
12
|
+
Strides inp_strides(in.ndim(), 0);
|
|
13
|
+
for (int i = 0; i < in.ndim(); ++i) {
|
|
14
|
+
data_offset += start_indices[i] * in.strides()[i];
|
|
15
|
+
inp_strides[i] = in.strides()[i] * strides[i];
|
|
16
|
+
}
|
|
17
|
+
return std::make_tuple(data_offset, inp_strides);
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
void shared_buffer_slice(
|
|
21
|
+
const array& in,
|
|
22
|
+
const Strides& out_strides,
|
|
23
|
+
int64_t data_offset,
|
|
24
|
+
size_t data_size,
|
|
25
|
+
array& out) {
|
|
26
|
+
// Compute row/col contiguity
|
|
27
|
+
auto [no_bsx_size, is_row_contiguous, is_col_contiguous] =
|
|
28
|
+
check_contiguity(out.shape(), out_strides);
|
|
29
|
+
|
|
30
|
+
auto flags = in.flags();
|
|
31
|
+
flags.row_contiguous = is_row_contiguous;
|
|
32
|
+
flags.col_contiguous = is_col_contiguous;
|
|
33
|
+
flags.contiguous = (no_bsx_size == data_size);
|
|
34
|
+
|
|
35
|
+
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
void slice(
|
|
39
|
+
const array& in,
|
|
40
|
+
array& out,
|
|
41
|
+
const Shape& start_indices,
|
|
42
|
+
const Shape& strides) {
|
|
43
|
+
if (out.size() == 0) {
|
|
44
|
+
out.set_data(allocator::malloc(0));
|
|
45
|
+
return;
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
// Calculate out strides, initial offset
|
|
49
|
+
auto [data_offset, inp_strides] = prepare_slice(in, start_indices, strides);
|
|
50
|
+
|
|
51
|
+
// Get the location of the end based on the inp strides and out.shape()
|
|
52
|
+
int64_t low_idx = 0;
|
|
53
|
+
int64_t high_idx = 0;
|
|
54
|
+
for (int i = 0; i < inp_strides.size(); ++i) {
|
|
55
|
+
auto delta = inp_strides[i] * (out.shape()[i] - 1);
|
|
56
|
+
if (inp_strides[i] > 0) {
|
|
57
|
+
high_idx += delta;
|
|
58
|
+
} else {
|
|
59
|
+
low_idx += delta;
|
|
60
|
+
}
|
|
61
|
+
}
|
|
62
|
+
int64_t data_size = (high_idx - low_idx) + 1;
|
|
63
|
+
if (data_size < 0) {
|
|
64
|
+
std::ostringstream msg;
|
|
65
|
+
msg << "[slice] Computed invalid data size: " << data_size << ".";
|
|
66
|
+
throw std::runtime_error(msg.str());
|
|
67
|
+
}
|
|
68
|
+
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/array.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core {
|
|
8
|
+
|
|
9
|
+
std::tuple<int64_t, Strides> prepare_slice(
|
|
10
|
+
const array& in,
|
|
11
|
+
const Shape& start_indices,
|
|
12
|
+
const Shape& strides);
|
|
13
|
+
|
|
14
|
+
void slice(
|
|
15
|
+
const array& in,
|
|
16
|
+
array& out,
|
|
17
|
+
const Shape& start_indices,
|
|
18
|
+
const Shape& strides);
|
|
19
|
+
|
|
20
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
// Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
#include "mlx/allocator.h"
|
|
5
|
+
#include "mlx/array.h"
|
|
6
|
+
#include "mlx/backend/common/utils.h"
|
|
7
|
+
|
|
8
|
+
namespace mlx::core {
|
|
9
|
+
|
|
10
|
+
// TODO: Add support for more combinations of input types.
|
|
11
|
+
enum class TernaryOpType {
|
|
12
|
+
ScalarScalarScalar,
|
|
13
|
+
VectorVectorVector,
|
|
14
|
+
VectorVectorScalar,
|
|
15
|
+
VectorScalarVector,
|
|
16
|
+
General,
|
|
17
|
+
};
|
|
18
|
+
|
|
19
|
+
inline TernaryOpType
|
|
20
|
+
get_ternary_op_type(const array& a, const array& b, const array& c) {
|
|
21
|
+
TernaryOpType topt;
|
|
22
|
+
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
|
|
23
|
+
topt = TernaryOpType::ScalarScalarScalar;
|
|
24
|
+
} else if (
|
|
25
|
+
(a.flags().row_contiguous && b.flags().row_contiguous &&
|
|
26
|
+
c.flags().row_contiguous) ||
|
|
27
|
+
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
|
28
|
+
c.flags().col_contiguous)) {
|
|
29
|
+
topt = TernaryOpType::VectorVectorVector;
|
|
30
|
+
} else if (
|
|
31
|
+
b.data_size() == 1 && a.flags().row_contiguous &&
|
|
32
|
+
c.flags().row_contiguous) {
|
|
33
|
+
topt = TernaryOpType::VectorScalarVector;
|
|
34
|
+
} else if (
|
|
35
|
+
c.data_size() == 1 && a.flags().row_contiguous &&
|
|
36
|
+
b.flags().row_contiguous) {
|
|
37
|
+
topt = TernaryOpType::VectorVectorScalar;
|
|
38
|
+
} else {
|
|
39
|
+
topt = TernaryOpType::General;
|
|
40
|
+
}
|
|
41
|
+
return topt;
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
inline void set_ternary_op_output_data(
|
|
45
|
+
const array& a,
|
|
46
|
+
const array& b,
|
|
47
|
+
const array& c,
|
|
48
|
+
array& out,
|
|
49
|
+
TernaryOpType topt,
|
|
50
|
+
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
|
51
|
+
auto maybe_donate = [&out](const array& x) {
|
|
52
|
+
if (is_donatable(x, out)) {
|
|
53
|
+
out.copy_shared_buffer(x);
|
|
54
|
+
return true;
|
|
55
|
+
}
|
|
56
|
+
return false;
|
|
57
|
+
};
|
|
58
|
+
|
|
59
|
+
switch (topt) {
|
|
60
|
+
case TernaryOpType::ScalarScalarScalar:
|
|
61
|
+
out.set_data(mallocfn(out.itemsize()), 1, b.strides(), b.flags());
|
|
62
|
+
break;
|
|
63
|
+
case TernaryOpType::VectorVectorVector:
|
|
64
|
+
if (!(maybe_donate(a) || maybe_donate(b) || maybe_donate(c))) {
|
|
65
|
+
out.set_data(
|
|
66
|
+
mallocfn(out.itemsize() * b.data_size()),
|
|
67
|
+
b.data_size(),
|
|
68
|
+
b.strides(),
|
|
69
|
+
b.flags());
|
|
70
|
+
}
|
|
71
|
+
break;
|
|
72
|
+
case TernaryOpType::VectorVectorScalar:
|
|
73
|
+
case TernaryOpType::VectorScalarVector:
|
|
74
|
+
case TernaryOpType::General:
|
|
75
|
+
// Try to donate an input which is row_contiguous
|
|
76
|
+
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
|
77
|
+
(b.flags().row_contiguous && maybe_donate(b)) ||
|
|
78
|
+
(c.flags().row_contiguous && maybe_donate(c)))) {
|
|
79
|
+
out.set_data(mallocfn(out.nbytes()));
|
|
80
|
+
}
|
|
81
|
+
break;
|
|
82
|
+
}
|
|
83
|
+
}
|
|
84
|
+
|
|
85
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/allocator.h"
|
|
6
|
+
#include "mlx/backend/common/utils.h"
|
|
7
|
+
|
|
8
|
+
namespace mlx::core {
|
|
9
|
+
|
|
10
|
+
inline void set_unary_output_data(
|
|
11
|
+
const array& in,
|
|
12
|
+
array& out,
|
|
13
|
+
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
|
14
|
+
if (in.flags().contiguous) {
|
|
15
|
+
if (is_donatable(in, out)) {
|
|
16
|
+
out.copy_shared_buffer(in);
|
|
17
|
+
} else {
|
|
18
|
+
out.set_data(
|
|
19
|
+
mallocfn(in.data_size() * out.itemsize()),
|
|
20
|
+
in.data_size(),
|
|
21
|
+
in.strides(),
|
|
22
|
+
in.flags());
|
|
23
|
+
}
|
|
24
|
+
} else {
|
|
25
|
+
out.set_data(mallocfn(out.nbytes()));
|
|
26
|
+
}
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,231 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <dlfcn.h>
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/common/utils.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core {
|
|
8
|
+
|
|
9
|
+
std::filesystem::path current_binary_dir() {
|
|
10
|
+
static std::filesystem::path binary_dir = []() {
|
|
11
|
+
Dl_info info;
|
|
12
|
+
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
|
13
|
+
throw std::runtime_error("Unable to get current binary dir.");
|
|
14
|
+
}
|
|
15
|
+
return std::filesystem::path(info.dli_fname).parent_path();
|
|
16
|
+
}();
|
|
17
|
+
return binary_dir;
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
|
21
|
+
const Shape& shape,
|
|
22
|
+
const std::vector<Strides>& strides,
|
|
23
|
+
int64_t size_cap) {
|
|
24
|
+
// Make a vector that has axes separated with -1. Collapse all axes between
|
|
25
|
+
// -1.
|
|
26
|
+
Shape to_collapse;
|
|
27
|
+
if (shape.size() > 0) {
|
|
28
|
+
if (shape[0] != 1) {
|
|
29
|
+
to_collapse.push_back(0);
|
|
30
|
+
}
|
|
31
|
+
size_t size = shape[0];
|
|
32
|
+
for (int i = 1; i < shape.size(); i++) {
|
|
33
|
+
bool contiguous = true;
|
|
34
|
+
size *= shape[i];
|
|
35
|
+
for (const auto& st : strides) {
|
|
36
|
+
if (st[i] * shape[i] != st[i - 1] || size > size_cap) {
|
|
37
|
+
contiguous = false;
|
|
38
|
+
size = shape[i];
|
|
39
|
+
break;
|
|
40
|
+
}
|
|
41
|
+
}
|
|
42
|
+
if (!contiguous) {
|
|
43
|
+
to_collapse.push_back(-1);
|
|
44
|
+
}
|
|
45
|
+
if (shape[i] != 1) {
|
|
46
|
+
to_collapse.push_back(i);
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
to_collapse.push_back(-1);
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
Shape out_shape;
|
|
53
|
+
std::vector<Strides> out_strides(strides.size());
|
|
54
|
+
for (int i = 0;;) {
|
|
55
|
+
while (i < to_collapse.size() && to_collapse[i] == -1) {
|
|
56
|
+
++i;
|
|
57
|
+
};
|
|
58
|
+
if (i == to_collapse.size()) {
|
|
59
|
+
break;
|
|
60
|
+
}
|
|
61
|
+
int current_shape = shape[to_collapse[i]];
|
|
62
|
+
int k = i;
|
|
63
|
+
while (to_collapse[++k] != -1) {
|
|
64
|
+
current_shape *= shape[to_collapse[k]];
|
|
65
|
+
}
|
|
66
|
+
out_shape.push_back(current_shape);
|
|
67
|
+
for (int j = 0; j < strides.size(); j++) {
|
|
68
|
+
const auto& st = strides[j];
|
|
69
|
+
out_strides[j].push_back(st[to_collapse[k - 1]]);
|
|
70
|
+
}
|
|
71
|
+
i = k + 1;
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
if (!shape.empty() && out_shape.empty()) {
|
|
75
|
+
out_shape.push_back(1);
|
|
76
|
+
for (auto& out_stride : out_strides) {
|
|
77
|
+
out_stride.push_back(0);
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
return std::make_tuple(out_shape, out_strides);
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
std::pair<Shape, Strides> collapse_contiguous_dims(
|
|
84
|
+
const Shape& shape,
|
|
85
|
+
const Strides& strides,
|
|
86
|
+
int64_t size_cap) {
|
|
87
|
+
Shape collapsed_shape;
|
|
88
|
+
Strides collapsed_strides;
|
|
89
|
+
|
|
90
|
+
if (shape.size() > 0) {
|
|
91
|
+
collapsed_shape.push_back(shape[0]);
|
|
92
|
+
collapsed_strides.push_back(strides[0]);
|
|
93
|
+
for (int i = 1; i < shape.size(); i++) {
|
|
94
|
+
if (shape[i] == 1) {
|
|
95
|
+
continue;
|
|
96
|
+
} else if (
|
|
97
|
+
strides[i] * shape[i] != collapsed_strides.back() ||
|
|
98
|
+
collapsed_shape.back() * static_cast<int64_t>(shape[i]) > size_cap) {
|
|
99
|
+
collapsed_shape.push_back(shape[i]);
|
|
100
|
+
collapsed_strides.push_back(strides[i]);
|
|
101
|
+
} else {
|
|
102
|
+
collapsed_shape.back() *= shape[i];
|
|
103
|
+
collapsed_strides.back() = strides[i];
|
|
104
|
+
}
|
|
105
|
+
}
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
return std::make_pair(collapsed_shape, collapsed_strides);
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
std::pair<Shape, Strides> collapse_contiguous_dims(
|
|
112
|
+
const array& a,
|
|
113
|
+
int64_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
|
|
114
|
+
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
|
|
115
|
+
}
|
|
116
|
+
|
|
117
|
+
Dims get_block_dims_common(int dim0, int dim1, int dim2, int pow2 /* = 10 */) {
|
|
118
|
+
int pows[3] = {0, 0, 0};
|
|
119
|
+
int sum = 0;
|
|
120
|
+
while (true) {
|
|
121
|
+
int presum = sum;
|
|
122
|
+
// Check all the pows
|
|
123
|
+
if (dim0 >= (1 << (pows[0] + 1))) {
|
|
124
|
+
pows[0]++;
|
|
125
|
+
sum++;
|
|
126
|
+
}
|
|
127
|
+
if (sum == 10) {
|
|
128
|
+
break;
|
|
129
|
+
}
|
|
130
|
+
if (dim1 >= (1 << (pows[1] + 1))) {
|
|
131
|
+
pows[1]++;
|
|
132
|
+
sum++;
|
|
133
|
+
}
|
|
134
|
+
if (sum == 10) {
|
|
135
|
+
break;
|
|
136
|
+
}
|
|
137
|
+
if (dim2 >= (1 << (pows[2] + 1))) {
|
|
138
|
+
pows[2]++;
|
|
139
|
+
sum++;
|
|
140
|
+
}
|
|
141
|
+
if (sum == presum || sum == pow2) {
|
|
142
|
+
break;
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
return std::make_tuple(1ul << pows[0], 1ul << pows[1], 1ul << pows[2]);
|
|
146
|
+
}
|
|
147
|
+
|
|
148
|
+
Dims get_2d_grid_dims_common(const Shape& shape, const Strides& strides) {
|
|
149
|
+
// Dims with strides of 0 are ignored as they
|
|
150
|
+
// correspond to broadcasted dimensions
|
|
151
|
+
size_t grid_x = 1;
|
|
152
|
+
size_t grid_y = 1;
|
|
153
|
+
for (int i = 0; i < shape.size(); ++i) {
|
|
154
|
+
if (strides[i] == 0) {
|
|
155
|
+
continue;
|
|
156
|
+
}
|
|
157
|
+
if (grid_x * shape[i] < UINT32_MAX) {
|
|
158
|
+
grid_x *= shape[i];
|
|
159
|
+
} else {
|
|
160
|
+
grid_y *= shape[i];
|
|
161
|
+
}
|
|
162
|
+
}
|
|
163
|
+
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
|
|
164
|
+
throw std::runtime_error("Unable to safely factor shape.");
|
|
165
|
+
}
|
|
166
|
+
if (grid_y > grid_x) {
|
|
167
|
+
std::swap(grid_x, grid_y);
|
|
168
|
+
}
|
|
169
|
+
return std::make_tuple(
|
|
170
|
+
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
Dims get_2d_grid_dims_common(
|
|
174
|
+
const Shape& shape,
|
|
175
|
+
const Strides& strides,
|
|
176
|
+
size_t divisor) {
|
|
177
|
+
// Compute the 2d grid dimensions such that the total size of the grid is
|
|
178
|
+
// divided by divisor.
|
|
179
|
+
size_t grid_x = 1;
|
|
180
|
+
size_t grid_y = 1;
|
|
181
|
+
for (int i = 0; i < shape.size(); ++i) {
|
|
182
|
+
if (strides[i] == 0) {
|
|
183
|
+
continue;
|
|
184
|
+
}
|
|
185
|
+
|
|
186
|
+
// No need to add this shape we can just remove it from the divisor.
|
|
187
|
+
if (divisor % shape[i] == 0) {
|
|
188
|
+
divisor /= shape[i];
|
|
189
|
+
continue;
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
if (grid_x * shape[i] < UINT32_MAX) {
|
|
193
|
+
grid_x *= shape[i];
|
|
194
|
+
} else {
|
|
195
|
+
grid_y *= shape[i];
|
|
196
|
+
}
|
|
197
|
+
|
|
198
|
+
if (divisor > 1) {
|
|
199
|
+
if (grid_x % divisor == 0) {
|
|
200
|
+
grid_x /= divisor;
|
|
201
|
+
divisor = 1;
|
|
202
|
+
} else if (grid_y % divisor == 0) {
|
|
203
|
+
grid_y /= divisor;
|
|
204
|
+
divisor = 1;
|
|
205
|
+
}
|
|
206
|
+
}
|
|
207
|
+
}
|
|
208
|
+
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
|
|
209
|
+
throw std::runtime_error("Unable to safely factor shape.");
|
|
210
|
+
}
|
|
211
|
+
if (grid_y > grid_x) {
|
|
212
|
+
std::swap(grid_x, grid_y);
|
|
213
|
+
}
|
|
214
|
+
if (divisor > 1) {
|
|
215
|
+
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
|
|
216
|
+
}
|
|
217
|
+
return std::make_tuple(
|
|
218
|
+
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
|
222
|
+
auto [bx, by, bz] = get_block_dims_common(dim0, dim1, dim2);
|
|
223
|
+
auto gx = (dim0 + bx - 1) / bx;
|
|
224
|
+
auto gy = (dim1 + by - 1) / by;
|
|
225
|
+
auto gz = (dim2 + bz - 1) / bz;
|
|
226
|
+
|
|
227
|
+
return std::make_pair(
|
|
228
|
+
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
|
229
|
+
}
|
|
230
|
+
|
|
231
|
+
} // namespace mlx::core
|