mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,394 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <metal_simdgroup>
|
|
4
|
+
|
|
5
|
+
using namespace metal;
|
|
6
|
+
|
|
7
|
+
constant bool has_mask [[function_constant(20)]];
|
|
8
|
+
constant bool query_transposed [[function_constant(21)]];
|
|
9
|
+
constant bool do_causal [[function_constant(22)]];
|
|
10
|
+
constant bool bool_mask [[function_constant(23)]];
|
|
11
|
+
constant bool float_mask [[function_constant(24)]];
|
|
12
|
+
constant bool has_sinks [[function_constant(25)]];
|
|
13
|
+
constant int blocks [[function_constant(26)]];
|
|
14
|
+
|
|
15
|
+
template <typename T, int D, int V = D>
|
|
16
|
+
[[kernel]] void sdpa_vector(
|
|
17
|
+
const device T* queries [[buffer(0)]],
|
|
18
|
+
const device T* keys [[buffer(1)]],
|
|
19
|
+
const device T* values [[buffer(2)]],
|
|
20
|
+
device T* out [[buffer(3)]],
|
|
21
|
+
const constant int& gqa_factor [[buffer(4)]],
|
|
22
|
+
const constant int& N [[buffer(5)]],
|
|
23
|
+
const constant size_t& k_head_stride [[buffer(6)]],
|
|
24
|
+
const constant size_t& k_seq_stride [[buffer(7)]],
|
|
25
|
+
const constant size_t& v_head_stride [[buffer(8)]],
|
|
26
|
+
const constant size_t& v_seq_stride [[buffer(9)]],
|
|
27
|
+
const constant float& scale [[buffer(10)]],
|
|
28
|
+
const device bool* bmask [[buffer(11), function_constant(bool_mask)]],
|
|
29
|
+
const device T* fmask [[buffer(12), function_constant(float_mask)]],
|
|
30
|
+
const constant int& mask_kv_seq_stride
|
|
31
|
+
[[buffer(13), function_constant(has_mask)]],
|
|
32
|
+
const constant int& mask_q_seq_stride
|
|
33
|
+
[[buffer(14), function_constant(has_mask)]],
|
|
34
|
+
const constant int& mask_head_stride
|
|
35
|
+
[[buffer(15), function_constant(has_mask)]],
|
|
36
|
+
const device T* sinks [[buffer(16), function_constant(has_sinks)]],
|
|
37
|
+
const constant int& num_q_heads
|
|
38
|
+
[[buffer(17), function_constant(has_sinks)]],
|
|
39
|
+
uint3 tid [[threadgroup_position_in_grid]],
|
|
40
|
+
uint3 tpg [[threadgroups_per_grid]],
|
|
41
|
+
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
|
42
|
+
uint simd_lid [[thread_index_in_simdgroup]]) {
|
|
43
|
+
constexpr int BN = 32;
|
|
44
|
+
constexpr int BD = 32;
|
|
45
|
+
constexpr int qk_per_thread = D / BD;
|
|
46
|
+
constexpr int v_per_thread = V / BD;
|
|
47
|
+
int inner_k_stride = BN * int(k_seq_stride);
|
|
48
|
+
int inner_v_stride = BN * int(v_seq_stride);
|
|
49
|
+
|
|
50
|
+
typedef float U;
|
|
51
|
+
|
|
52
|
+
thread U q[qk_per_thread];
|
|
53
|
+
thread U k[qk_per_thread];
|
|
54
|
+
thread U o[v_per_thread];
|
|
55
|
+
|
|
56
|
+
threadgroup U outputs[BN * BD];
|
|
57
|
+
threadgroup U max_scores[BN];
|
|
58
|
+
threadgroup U sum_exp_scores[BN];
|
|
59
|
+
|
|
60
|
+
// Adjust positions
|
|
61
|
+
const int q_batch_head_idx = tid.x;
|
|
62
|
+
const int q_seq_idx = tid.y;
|
|
63
|
+
const int kv_head_idx = q_batch_head_idx / gqa_factor;
|
|
64
|
+
const int o_offset = q_batch_head_idx * tpg.y + q_seq_idx;
|
|
65
|
+
const int q_offset =
|
|
66
|
+
query_transposed ? tpg.x * q_seq_idx + q_batch_head_idx : o_offset;
|
|
67
|
+
queries += q_offset * D + simd_lid * qk_per_thread;
|
|
68
|
+
keys += kv_head_idx * k_head_stride + simd_gid * k_seq_stride +
|
|
69
|
+
simd_lid * qk_per_thread;
|
|
70
|
+
values += kv_head_idx * v_head_stride + simd_gid * v_seq_stride +
|
|
71
|
+
simd_lid * v_per_thread;
|
|
72
|
+
if (bool_mask) {
|
|
73
|
+
bmask += q_batch_head_idx * mask_head_stride +
|
|
74
|
+
simd_gid * mask_kv_seq_stride + q_seq_idx * mask_q_seq_stride;
|
|
75
|
+
}
|
|
76
|
+
if (float_mask) {
|
|
77
|
+
fmask += q_batch_head_idx * mask_head_stride +
|
|
78
|
+
simd_gid * mask_kv_seq_stride + q_seq_idx * mask_q_seq_stride;
|
|
79
|
+
}
|
|
80
|
+
|
|
81
|
+
out += o_offset * V + simd_gid * v_per_thread;
|
|
82
|
+
|
|
83
|
+
// Read the query and 0 the output accumulator
|
|
84
|
+
for (int i = 0; i < qk_per_thread; i++) {
|
|
85
|
+
q[i] = static_cast<U>(scale) * queries[i];
|
|
86
|
+
}
|
|
87
|
+
for (int i = 0; i < v_per_thread; i++) {
|
|
88
|
+
o[i] = 0;
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
U max_score = Limits<U>::finite_min;
|
|
92
|
+
U sum_exp_score = 0;
|
|
93
|
+
if (has_sinks && simd_gid == 0) {
|
|
94
|
+
max_score = static_cast<U>(sinks[q_batch_head_idx % num_q_heads]);
|
|
95
|
+
sum_exp_score = 1;
|
|
96
|
+
}
|
|
97
|
+
|
|
98
|
+
// For each key
|
|
99
|
+
for (int i = simd_gid; i < N; i += BN) {
|
|
100
|
+
bool use_key = true;
|
|
101
|
+
if (do_causal) {
|
|
102
|
+
use_key = i <= (N - int(tpg.y) + int(q_seq_idx));
|
|
103
|
+
} else if (bool_mask) {
|
|
104
|
+
use_key = bmask[0];
|
|
105
|
+
} else if (float_mask) {
|
|
106
|
+
use_key = (fmask[0] >= Limits<T>::finite_min);
|
|
107
|
+
}
|
|
108
|
+
if (use_key) {
|
|
109
|
+
// Read the key
|
|
110
|
+
for (int j = 0; j < qk_per_thread; j++) {
|
|
111
|
+
k[j] = keys[j];
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
// Compute the i-th score
|
|
115
|
+
U score = 0;
|
|
116
|
+
for (int j = 0; j < qk_per_thread; j++) {
|
|
117
|
+
score += q[j] * k[j];
|
|
118
|
+
}
|
|
119
|
+
score = simd_sum(score);
|
|
120
|
+
if (float_mask) {
|
|
121
|
+
score += static_cast<U>(fmask[0]);
|
|
122
|
+
}
|
|
123
|
+
|
|
124
|
+
// Update the accumulators
|
|
125
|
+
U new_max = max(max_score, score);
|
|
126
|
+
U factor = fast::exp(max_score - new_max);
|
|
127
|
+
U exp_score = fast::exp(score - new_max);
|
|
128
|
+
|
|
129
|
+
max_score = new_max;
|
|
130
|
+
sum_exp_score = sum_exp_score * factor + exp_score;
|
|
131
|
+
|
|
132
|
+
// Update the output accumulator
|
|
133
|
+
for (int j = 0; j < v_per_thread; j++) {
|
|
134
|
+
o[j] = o[j] * factor + exp_score * values[j];
|
|
135
|
+
}
|
|
136
|
+
}
|
|
137
|
+
|
|
138
|
+
// Move the pointers to the next kv
|
|
139
|
+
keys += inner_k_stride;
|
|
140
|
+
values += inner_v_stride;
|
|
141
|
+
if (bool_mask) {
|
|
142
|
+
bmask += BN * mask_kv_seq_stride;
|
|
143
|
+
}
|
|
144
|
+
if (float_mask) {
|
|
145
|
+
fmask += BN * mask_kv_seq_stride;
|
|
146
|
+
}
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
// Each thread has a partial part of the output so we need to combine them.
|
|
150
|
+
|
|
151
|
+
// First let's communicate the max and sum_exp
|
|
152
|
+
if (simd_lid == 0) {
|
|
153
|
+
max_scores[simd_gid] = max_score;
|
|
154
|
+
sum_exp_scores[simd_gid] = sum_exp_score;
|
|
155
|
+
}
|
|
156
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
157
|
+
max_score = max_scores[simd_lid];
|
|
158
|
+
U new_max = simd_max(max_score);
|
|
159
|
+
U factor = fast::exp(max_score - new_max);
|
|
160
|
+
sum_exp_score = simd_sum(sum_exp_scores[simd_lid] * factor);
|
|
161
|
+
|
|
162
|
+
// Now we need to aggregate all the outputs
|
|
163
|
+
for (int i = 0; i < v_per_thread; i++) {
|
|
164
|
+
outputs[simd_lid * BD + simd_gid] = o[i];
|
|
165
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
166
|
+
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid] * factor);
|
|
167
|
+
o[i] = sum_exp_score == 0 ? o[i] : (o[i] / sum_exp_score);
|
|
168
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
169
|
+
}
|
|
170
|
+
|
|
171
|
+
// And write the output
|
|
172
|
+
if (simd_lid == 0) {
|
|
173
|
+
for (int i = 0; i < v_per_thread; i++) {
|
|
174
|
+
out[i] = static_cast<T>(o[i]);
|
|
175
|
+
}
|
|
176
|
+
}
|
|
177
|
+
}
|
|
178
|
+
|
|
179
|
+
template <typename T, int D, int V = D>
|
|
180
|
+
[[kernel]] void sdpa_vector_2pass_1(
|
|
181
|
+
const device T* queries [[buffer(0)]],
|
|
182
|
+
const device T* keys [[buffer(1)]],
|
|
183
|
+
const device T* values [[buffer(2)]],
|
|
184
|
+
device T* out [[buffer(3)]],
|
|
185
|
+
device float* sums [[buffer(4)]],
|
|
186
|
+
device float* maxs [[buffer(5)]],
|
|
187
|
+
const constant int& N [[buffer(7)]],
|
|
188
|
+
const constant size_t& k_head_stride [[buffer(8)]],
|
|
189
|
+
const constant size_t& k_seq_stride [[buffer(9)]],
|
|
190
|
+
const constant size_t& v_head_stride [[buffer(10)]],
|
|
191
|
+
const constant size_t& v_seq_stride [[buffer(11)]],
|
|
192
|
+
const constant float& scale [[buffer(12)]],
|
|
193
|
+
const device bool* bmask [[buffer(13), function_constant(bool_mask)]],
|
|
194
|
+
const device T* fmask [[buffer(14), function_constant(float_mask)]],
|
|
195
|
+
const constant int& mask_kv_seq_stride
|
|
196
|
+
[[buffer(15), function_constant(has_mask)]],
|
|
197
|
+
const constant int& mask_q_seq_stride
|
|
198
|
+
[[buffer(16), function_constant(has_mask)]],
|
|
199
|
+
const constant int& mask_head_stride
|
|
200
|
+
[[buffer(17), function_constant(has_mask)]],
|
|
201
|
+
const device T* sinks [[buffer(18), function_constant(has_sinks)]],
|
|
202
|
+
uint3 tptg [[threads_per_threadgroup]],
|
|
203
|
+
uint3 tidtg [[thread_position_in_threadgroup]],
|
|
204
|
+
uint3 tid [[threadgroup_position_in_grid]],
|
|
205
|
+
uint3 tpg [[threadgroups_per_grid]],
|
|
206
|
+
uint simd_lid [[thread_index_in_simdgroup]]) {
|
|
207
|
+
constexpr int BD = 32;
|
|
208
|
+
constexpr int qk_per_thread = D / BD;
|
|
209
|
+
constexpr int v_per_thread = V / BD;
|
|
210
|
+
|
|
211
|
+
typedef float U;
|
|
212
|
+
|
|
213
|
+
thread U q[qk_per_thread];
|
|
214
|
+
thread U o[v_per_thread] = {0};
|
|
215
|
+
|
|
216
|
+
// Adjust positions
|
|
217
|
+
const int kv_head_idx = tid.x;
|
|
218
|
+
const int batch_idx = tid.y;
|
|
219
|
+
const int block_idx = tid.z;
|
|
220
|
+
const int gqa_factor = tptg.y;
|
|
221
|
+
const int q_seq_len = tptg.z;
|
|
222
|
+
const int q_seq_idx = tidtg.z;
|
|
223
|
+
const int q_head_idx = gqa_factor * kv_head_idx + tidtg.y;
|
|
224
|
+
const int num_kv_heads = tpg.x;
|
|
225
|
+
const int num_q_heads = num_kv_heads * gqa_factor;
|
|
226
|
+
const int q_batch_head_idx = (batch_idx * num_q_heads + q_head_idx);
|
|
227
|
+
const int o_offset = q_batch_head_idx * q_seq_len + q_seq_idx;
|
|
228
|
+
const int q_offset =
|
|
229
|
+
query_transposed ? num_q_heads * q_seq_idx + q_batch_head_idx : o_offset;
|
|
230
|
+
|
|
231
|
+
queries += q_offset * D + simd_lid * qk_per_thread;
|
|
232
|
+
|
|
233
|
+
const int kv_batch_head_idx = batch_idx * num_kv_heads + kv_head_idx;
|
|
234
|
+
keys += kv_batch_head_idx * k_head_stride + block_idx * k_seq_stride +
|
|
235
|
+
simd_lid * qk_per_thread;
|
|
236
|
+
values += kv_batch_head_idx * v_head_stride + block_idx * v_seq_stride +
|
|
237
|
+
simd_lid * v_per_thread;
|
|
238
|
+
out += o_offset * blocks * V + block_idx * V + simd_lid * v_per_thread;
|
|
239
|
+
if (bool_mask) {
|
|
240
|
+
bmask += q_batch_head_idx * mask_head_stride +
|
|
241
|
+
block_idx * mask_kv_seq_stride + q_seq_idx * mask_q_seq_stride;
|
|
242
|
+
}
|
|
243
|
+
if (float_mask) {
|
|
244
|
+
fmask += q_batch_head_idx * mask_head_stride +
|
|
245
|
+
block_idx * mask_kv_seq_stride + q_seq_idx * mask_q_seq_stride;
|
|
246
|
+
}
|
|
247
|
+
sums += o_offset * blocks + block_idx;
|
|
248
|
+
maxs += o_offset * blocks + block_idx;
|
|
249
|
+
|
|
250
|
+
// Read the query
|
|
251
|
+
for (int i = 0; i < qk_per_thread; i++) {
|
|
252
|
+
q[i] = static_cast<U>(scale) * queries[i];
|
|
253
|
+
}
|
|
254
|
+
|
|
255
|
+
U max_score = Limits<U>::finite_min;
|
|
256
|
+
U sum_exp_score = 0;
|
|
257
|
+
if (has_sinks && block_idx == 0) {
|
|
258
|
+
max_score = static_cast<U>(sinks[q_head_idx]);
|
|
259
|
+
sum_exp_score = 1;
|
|
260
|
+
}
|
|
261
|
+
|
|
262
|
+
// For each key
|
|
263
|
+
for (int i = block_idx; i < N; i += blocks) {
|
|
264
|
+
bool use_key = true;
|
|
265
|
+
if (do_causal) {
|
|
266
|
+
use_key = i <= (N - q_seq_len + int(q_seq_idx));
|
|
267
|
+
} else if (bool_mask) {
|
|
268
|
+
use_key = bmask[0];
|
|
269
|
+
} else if (float_mask) {
|
|
270
|
+
use_key = (fmask[0] >= Limits<T>::finite_min);
|
|
271
|
+
}
|
|
272
|
+
if (use_key) {
|
|
273
|
+
// Compute the i-th score
|
|
274
|
+
U score = 0;
|
|
275
|
+
for (int i = 0; i < qk_per_thread; i++) {
|
|
276
|
+
score += q[i] * keys[i];
|
|
277
|
+
}
|
|
278
|
+
score = simd_sum(score);
|
|
279
|
+
|
|
280
|
+
if (float_mask) {
|
|
281
|
+
score += fmask[0];
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
// Update the accumulators
|
|
285
|
+
U new_max = max(max_score, score);
|
|
286
|
+
U factor = fast::exp(max_score - new_max);
|
|
287
|
+
U exp_score = fast::exp(score - new_max);
|
|
288
|
+
|
|
289
|
+
max_score = new_max;
|
|
290
|
+
sum_exp_score = sum_exp_score * factor + exp_score;
|
|
291
|
+
|
|
292
|
+
// Update the output accumulator
|
|
293
|
+
for (int i = 0; i < v_per_thread; i++) {
|
|
294
|
+
o[i] = o[i] * factor + exp_score * values[i];
|
|
295
|
+
}
|
|
296
|
+
}
|
|
297
|
+
|
|
298
|
+
// Move the pointers to the next kv
|
|
299
|
+
keys += blocks * int(k_seq_stride);
|
|
300
|
+
values += blocks * int(v_seq_stride);
|
|
301
|
+
if (bool_mask) {
|
|
302
|
+
bmask += blocks * mask_kv_seq_stride;
|
|
303
|
+
}
|
|
304
|
+
if (float_mask) {
|
|
305
|
+
fmask += blocks * mask_kv_seq_stride;
|
|
306
|
+
}
|
|
307
|
+
}
|
|
308
|
+
|
|
309
|
+
// Write the sum and max and outputs
|
|
310
|
+
if (simd_lid == 0) {
|
|
311
|
+
sums[0] = sum_exp_score;
|
|
312
|
+
maxs[0] = max_score;
|
|
313
|
+
}
|
|
314
|
+
|
|
315
|
+
for (int i = 0; i < v_per_thread; i++) {
|
|
316
|
+
out[i] = static_cast<T>(o[i]);
|
|
317
|
+
}
|
|
318
|
+
}
|
|
319
|
+
|
|
320
|
+
template <typename T, int D>
|
|
321
|
+
[[kernel]] void sdpa_vector_2pass_2(
|
|
322
|
+
const device T* partials [[buffer(0)]],
|
|
323
|
+
const device float* sums [[buffer(1)]],
|
|
324
|
+
const device float* maxs [[buffer(2)]],
|
|
325
|
+
device T* out [[buffer(3)]],
|
|
326
|
+
const constant int& blocks [[buffer(4)]],
|
|
327
|
+
uint3 tid [[threadgroup_position_in_grid]],
|
|
328
|
+
uint3 tpg [[threadgroups_per_grid]],
|
|
329
|
+
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
|
330
|
+
uint simd_lid [[thread_index_in_simdgroup]]) {
|
|
331
|
+
constexpr int BN = 32;
|
|
332
|
+
constexpr int BD = 32;
|
|
333
|
+
constexpr int elem_per_thread = D / BD;
|
|
334
|
+
|
|
335
|
+
typedef float U;
|
|
336
|
+
|
|
337
|
+
thread U o[elem_per_thread] = {0};
|
|
338
|
+
threadgroup U outputs[BN * BD];
|
|
339
|
+
|
|
340
|
+
// Adjust positions
|
|
341
|
+
const int head_idx = tid.x;
|
|
342
|
+
const int q_seq_idx = tid.y;
|
|
343
|
+
const int q_offset = head_idx * tpg.y + q_seq_idx;
|
|
344
|
+
partials += q_offset * blocks * D + simd_gid * D + simd_lid * elem_per_thread;
|
|
345
|
+
sums += q_offset * blocks;
|
|
346
|
+
maxs += q_offset * blocks;
|
|
347
|
+
out += q_offset * D + simd_gid * elem_per_thread;
|
|
348
|
+
|
|
349
|
+
// Set defaults
|
|
350
|
+
U sum_exp_score = 0.0;
|
|
351
|
+
U max_score = Limits<U>::finite_min;
|
|
352
|
+
|
|
353
|
+
// Reduce the max
|
|
354
|
+
for (int b = 0; b < blocks / BN; ++b) {
|
|
355
|
+
max_score = max(max_score, maxs[simd_lid + BN * b]);
|
|
356
|
+
}
|
|
357
|
+
max_score = simd_max(max_score);
|
|
358
|
+
|
|
359
|
+
// Reduce the d
|
|
360
|
+
for (int b = 0; b < blocks / BN; ++b) {
|
|
361
|
+
U factor = fast::exp(maxs[simd_lid + BN * b] - max_score);
|
|
362
|
+
sum_exp_score += factor * sums[simd_lid + BN * b];
|
|
363
|
+
}
|
|
364
|
+
sum_exp_score = simd_sum(sum_exp_score);
|
|
365
|
+
|
|
366
|
+
// Reduce the sum exp and partials
|
|
367
|
+
for (int b = 0; b < blocks / BN; ++b) {
|
|
368
|
+
U factor = fast::exp(maxs[simd_gid] - max_score);
|
|
369
|
+
|
|
370
|
+
// Update the output accumulator
|
|
371
|
+
for (int i = 0; i < elem_per_thread; i++) {
|
|
372
|
+
o[i] += factor * static_cast<U>(partials[i]);
|
|
373
|
+
}
|
|
374
|
+
maxs += BN;
|
|
375
|
+
sums += BN;
|
|
376
|
+
partials += BN * D;
|
|
377
|
+
}
|
|
378
|
+
|
|
379
|
+
// Use shared memory to transpose and reduce the final block
|
|
380
|
+
for (int i = 0; i < elem_per_thread; i++) {
|
|
381
|
+
outputs[simd_lid * BD + simd_gid] = o[i];
|
|
382
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
383
|
+
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid]);
|
|
384
|
+
o[i] = sum_exp_score == 0 ? o[i] : (o[i] / sum_exp_score);
|
|
385
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
386
|
+
}
|
|
387
|
+
|
|
388
|
+
// And write the output
|
|
389
|
+
if (simd_lid == 0) {
|
|
390
|
+
for (int i = 0; i < elem_per_thread; i++) {
|
|
391
|
+
out[i] = static_cast<T>(o[i]);
|
|
392
|
+
}
|
|
393
|
+
}
|
|
394
|
+
}
|
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
template <typename T>
|
|
4
|
+
inline T softmax_exp(T x) {
|
|
5
|
+
// Softmax doesn't need high precision exponential cause x is gonna be in
|
|
6
|
+
// (-oo, 0] anyway and subsequently it will be divided by sum(exp(x_i)).
|
|
7
|
+
return fast::exp(x);
|
|
8
|
+
}
|
|
9
|
+
|
|
10
|
+
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
|
11
|
+
[[kernel]] void softmax_single_row(
|
|
12
|
+
const device T* in,
|
|
13
|
+
device T* out,
|
|
14
|
+
constant int& axis_size,
|
|
15
|
+
uint gid [[threadgroup_position_in_grid]],
|
|
16
|
+
uint _lid [[thread_position_in_threadgroup]],
|
|
17
|
+
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
18
|
+
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
19
|
+
int lid = _lid;
|
|
20
|
+
|
|
21
|
+
constexpr int SIMD_SIZE = 32;
|
|
22
|
+
|
|
23
|
+
threadgroup AccT local_max[SIMD_SIZE];
|
|
24
|
+
threadgroup AccT local_normalizer[SIMD_SIZE];
|
|
25
|
+
|
|
26
|
+
AccT ld[N_READS];
|
|
27
|
+
|
|
28
|
+
in += gid * size_t(axis_size) + lid * N_READS;
|
|
29
|
+
if (lid * N_READS + N_READS <= axis_size) {
|
|
30
|
+
for (int i = 0; i < N_READS; i++) {
|
|
31
|
+
ld[i] = AccT(in[i]);
|
|
32
|
+
}
|
|
33
|
+
} else {
|
|
34
|
+
for (int i = 0; i < N_READS; i++) {
|
|
35
|
+
ld[i] =
|
|
36
|
+
((lid * N_READS + i) < axis_size) ? AccT(in[i]) : Limits<AccT>::min;
|
|
37
|
+
}
|
|
38
|
+
}
|
|
39
|
+
if (simd_group_id == 0) {
|
|
40
|
+
local_max[simd_lane_id] = Limits<AccT>::min;
|
|
41
|
+
local_normalizer[simd_lane_id] = 0;
|
|
42
|
+
}
|
|
43
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
44
|
+
|
|
45
|
+
// Get the max
|
|
46
|
+
AccT maxval = Limits<AccT>::finite_min;
|
|
47
|
+
for (int i = 0; i < N_READS; i++) {
|
|
48
|
+
maxval = (maxval < ld[i]) ? ld[i] : maxval;
|
|
49
|
+
}
|
|
50
|
+
maxval = simd_max(maxval);
|
|
51
|
+
if (simd_lane_id == 0) {
|
|
52
|
+
local_max[simd_group_id] = maxval;
|
|
53
|
+
}
|
|
54
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
55
|
+
if (simd_group_id == 0) {
|
|
56
|
+
maxval = simd_max(local_max[simd_lane_id]);
|
|
57
|
+
if (simd_lane_id == 0) {
|
|
58
|
+
local_max[0] = maxval;
|
|
59
|
+
}
|
|
60
|
+
}
|
|
61
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
62
|
+
maxval = local_max[0];
|
|
63
|
+
|
|
64
|
+
// Compute exp(x_i - maxval) and store the partial sums in local_normalizer
|
|
65
|
+
AccT normalizer = 0;
|
|
66
|
+
for (int i = 0; i < N_READS; i++) {
|
|
67
|
+
AccT exp_x = softmax_exp(ld[i] - maxval);
|
|
68
|
+
ld[i] = exp_x;
|
|
69
|
+
normalizer += exp_x;
|
|
70
|
+
}
|
|
71
|
+
normalizer = simd_sum(normalizer);
|
|
72
|
+
if (simd_lane_id == 0) {
|
|
73
|
+
local_normalizer[simd_group_id] = normalizer;
|
|
74
|
+
}
|
|
75
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
76
|
+
if (simd_group_id == 0) {
|
|
77
|
+
normalizer = simd_sum(local_normalizer[simd_lane_id]);
|
|
78
|
+
if (simd_lane_id == 0) {
|
|
79
|
+
local_normalizer[0] = normalizer;
|
|
80
|
+
}
|
|
81
|
+
}
|
|
82
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
83
|
+
normalizer = 1 / local_normalizer[0];
|
|
84
|
+
|
|
85
|
+
// Normalize and write to the output
|
|
86
|
+
out += gid * size_t(axis_size) + lid * N_READS;
|
|
87
|
+
if (lid * N_READS + N_READS <= axis_size) {
|
|
88
|
+
for (int i = 0; i < N_READS; i++) {
|
|
89
|
+
out[i] = T(ld[i] * normalizer);
|
|
90
|
+
}
|
|
91
|
+
} else {
|
|
92
|
+
for (int i = 0; i < N_READS; i++) {
|
|
93
|
+
if ((lid * N_READS + i) < axis_size) {
|
|
94
|
+
out[i] = T(ld[i] * normalizer);
|
|
95
|
+
}
|
|
96
|
+
}
|
|
97
|
+
}
|
|
98
|
+
}
|
|
99
|
+
|
|
100
|
+
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
|
101
|
+
[[kernel]] void softmax_looped(
|
|
102
|
+
const device T* in,
|
|
103
|
+
device T* out,
|
|
104
|
+
constant int& axis_size,
|
|
105
|
+
uint gid [[threadgroup_position_in_grid]],
|
|
106
|
+
uint lid [[thread_position_in_threadgroup]],
|
|
107
|
+
uint lsize [[threads_per_threadgroup]],
|
|
108
|
+
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
109
|
+
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
110
|
+
in += gid * size_t(axis_size);
|
|
111
|
+
|
|
112
|
+
constexpr int SIMD_SIZE = 32;
|
|
113
|
+
|
|
114
|
+
threadgroup AccT local_max[SIMD_SIZE];
|
|
115
|
+
threadgroup AccT local_normalizer[SIMD_SIZE];
|
|
116
|
+
|
|
117
|
+
// Get the max and the normalizer in one go
|
|
118
|
+
AccT prevmax;
|
|
119
|
+
AccT maxval = Limits<AccT>::finite_min;
|
|
120
|
+
AccT normalizer = 0;
|
|
121
|
+
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
|
|
122
|
+
r++) {
|
|
123
|
+
int offset = r * lsize * N_READS + lid * N_READS;
|
|
124
|
+
AccT vals[N_READS];
|
|
125
|
+
if (offset + N_READS <= axis_size) {
|
|
126
|
+
for (int i = 0; i < N_READS; i++) {
|
|
127
|
+
vals[i] = AccT(in[offset + i]);
|
|
128
|
+
}
|
|
129
|
+
} else {
|
|
130
|
+
for (int i = 0; i < N_READS; i++) {
|
|
131
|
+
vals[i] =
|
|
132
|
+
(offset + i < axis_size) ? AccT(in[offset + i]) : Limits<AccT>::min;
|
|
133
|
+
}
|
|
134
|
+
}
|
|
135
|
+
prevmax = maxval;
|
|
136
|
+
for (int i = 0; i < N_READS; i++) {
|
|
137
|
+
maxval = (maxval < vals[i]) ? vals[i] : maxval;
|
|
138
|
+
}
|
|
139
|
+
normalizer *= softmax_exp(prevmax - maxval);
|
|
140
|
+
for (int i = 0; i < N_READS; i++) {
|
|
141
|
+
normalizer += softmax_exp(vals[i] - maxval);
|
|
142
|
+
}
|
|
143
|
+
}
|
|
144
|
+
// Now we got partial normalizer of N_READS * ceildiv(axis_size, N_READS *
|
|
145
|
+
// lsize) parts. We need to combine them.
|
|
146
|
+
// 1. We start by finding the max across simd groups
|
|
147
|
+
// 2. We then change the partial normalizers to account for a possible
|
|
148
|
+
// change in max
|
|
149
|
+
// 3. We sum all normalizers
|
|
150
|
+
prevmax = maxval;
|
|
151
|
+
maxval = simd_max(maxval);
|
|
152
|
+
normalizer *= softmax_exp(prevmax - maxval);
|
|
153
|
+
normalizer = simd_sum(normalizer);
|
|
154
|
+
|
|
155
|
+
// Now the normalizer and max value is correct for each simdgroup. We write
|
|
156
|
+
// them shared memory and combine them.
|
|
157
|
+
prevmax = maxval;
|
|
158
|
+
if (simd_lane_id == 0) {
|
|
159
|
+
local_max[simd_group_id] = maxval;
|
|
160
|
+
}
|
|
161
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
162
|
+
maxval = simd_max(local_max[simd_lane_id]);
|
|
163
|
+
normalizer *= softmax_exp(prevmax - maxval);
|
|
164
|
+
if (simd_lane_id == 0) {
|
|
165
|
+
local_normalizer[simd_group_id] = normalizer;
|
|
166
|
+
}
|
|
167
|
+
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
168
|
+
normalizer = simd_sum(local_normalizer[simd_lane_id]);
|
|
169
|
+
normalizer = 1 / normalizer;
|
|
170
|
+
|
|
171
|
+
// Finally given the normalizer and max value we can directly write the
|
|
172
|
+
// softmax output
|
|
173
|
+
out += gid * size_t(axis_size);
|
|
174
|
+
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
|
|
175
|
+
r++) {
|
|
176
|
+
int offset = r * lsize * N_READS + lid * N_READS;
|
|
177
|
+
if (offset + N_READS <= axis_size) {
|
|
178
|
+
for (int i = 0; i < N_READS; i++) {
|
|
179
|
+
out[offset + i] = T(softmax_exp(in[offset + i] - maxval) * normalizer);
|
|
180
|
+
}
|
|
181
|
+
} else {
|
|
182
|
+
for (int i = 0; i < N_READS; i++) {
|
|
183
|
+
if (offset + i < axis_size) {
|
|
184
|
+
out[offset + i] =
|
|
185
|
+
T(softmax_exp(in[offset + i] - maxval) * normalizer);
|
|
186
|
+
}
|
|
187
|
+
}
|
|
188
|
+
}
|
|
189
|
+
}
|
|
190
|
+
}
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <metal_common>
|
|
4
|
+
#include <metal_simdgroup>
|
|
5
|
+
|
|
6
|
+
using namespace metal;
|
|
7
|
+
|
|
8
|
+
// clang-format off
|
|
9
|
+
#include "mlx/backend/metal/kernels/utils.h"
|
|
10
|
+
#include "mlx/backend/metal/kernels/softmax.h"
|
|
11
|
+
|
|
12
|
+
#define instantiate_softmax(name, itype) \
|
|
13
|
+
instantiate_kernel("block_softmax_" #name, softmax_single_row, itype) \
|
|
14
|
+
instantiate_kernel("looped_softmax_" #name, softmax_looped, itype)
|
|
15
|
+
|
|
16
|
+
#define instantiate_softmax_precise(name, itype) \
|
|
17
|
+
instantiate_kernel("block_softmax_precise_" #name, softmax_single_row, itype, float) \
|
|
18
|
+
instantiate_kernel("looped_softmax_precise_" #name, softmax_looped, itype, float)
|
|
19
|
+
|
|
20
|
+
instantiate_softmax(float32, float)
|
|
21
|
+
instantiate_softmax(float16, half)
|
|
22
|
+
instantiate_softmax(bfloat16, bfloat16_t)
|
|
23
|
+
instantiate_softmax_precise(float16, half)
|
|
24
|
+
instantiate_softmax_precise(bfloat16, bfloat16_t) // clang-format on
|