mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,880 @@
|
|
|
1
|
+
# Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import gc
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
import mlx_tests
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestAutograd(mlx_tests.MLXTestCase):
|
|
11
|
+
def test_jvp(self):
|
|
12
|
+
fun = lambda x: 2 * x
|
|
13
|
+
out, dout = mx.jvp(fun, [mx.array(1.0)], [mx.array(2.0)])
|
|
14
|
+
self.assertEqual(out[0].item(), 2.0)
|
|
15
|
+
self.assertEqual(dout[0].item(), 4.0)
|
|
16
|
+
|
|
17
|
+
fun = lambda x, y: x * y
|
|
18
|
+
_, out = mx.jvp(
|
|
19
|
+
fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0), mx.array(2.0)]
|
|
20
|
+
)
|
|
21
|
+
self.assertEqual(out[0].item(), 4.0 * 2.0 + 2.0 * 3.0)
|
|
22
|
+
|
|
23
|
+
fun = lambda x, y, z: (x * y, y * z)
|
|
24
|
+
_, out = mx.jvp(
|
|
25
|
+
fun,
|
|
26
|
+
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
|
|
27
|
+
[mx.array(1.0), mx.array(3.0), mx.array(1.0)],
|
|
28
|
+
)
|
|
29
|
+
self.assertEqual(len(out), 2)
|
|
30
|
+
self.assertEqual(out[0].item(), 4.0 * 1.0 + 2.0 * 3.0)
|
|
31
|
+
self.assertEqual(out[1].item(), 4.0 * 1.0 + 6.0 * 3.0)
|
|
32
|
+
|
|
33
|
+
def test_vjp(self):
|
|
34
|
+
fun = lambda x: 2 * x
|
|
35
|
+
out, dout = mx.vjp(fun, [mx.array(1.0)], [mx.array(2.0)])
|
|
36
|
+
self.assertEqual(out[0].item(), 2.0)
|
|
37
|
+
self.assertEqual(dout[0].item(), 4.0)
|
|
38
|
+
|
|
39
|
+
fun = lambda x, y: x * y
|
|
40
|
+
_, dout = mx.vjp(fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0)])
|
|
41
|
+
self.assertEqual(dout[0].item(), 6.0)
|
|
42
|
+
self.assertEqual(dout[1].item(), 12.0)
|
|
43
|
+
|
|
44
|
+
fun = lambda x, y, z: (x * y, y * z)
|
|
45
|
+
_, out = mx.vjp(
|
|
46
|
+
fun,
|
|
47
|
+
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
|
|
48
|
+
[mx.array(1.0), mx.array(3.0)],
|
|
49
|
+
)
|
|
50
|
+
self.assertEqual(len(out), 3)
|
|
51
|
+
self.assertEqual(out[0].item(), 4.0 * 1.0)
|
|
52
|
+
self.assertEqual(out[1].item(), 2.0 * 1.0 + 6.0 * 3.0)
|
|
53
|
+
self.assertEqual(out[2].item(), 4.0 * 3.0)
|
|
54
|
+
|
|
55
|
+
def test_grad(self):
|
|
56
|
+
fun = lambda x: x * x
|
|
57
|
+
|
|
58
|
+
value, dfdx = mx.value_and_grad(fun)(mx.array(0.5))
|
|
59
|
+
self.assertEqual(value.item(), 0.25)
|
|
60
|
+
self.assertEqual(dfdx.item(), 1.0)
|
|
61
|
+
|
|
62
|
+
dfdx = mx.grad(fun)(mx.array(0.5))
|
|
63
|
+
self.assertEqual(dfdx.item(), 1.0)
|
|
64
|
+
|
|
65
|
+
df2dx2 = mx.grad(mx.grad(fun))(mx.array(0.5))
|
|
66
|
+
self.assertEqual(df2dx2.item(), 2.0)
|
|
67
|
+
df3dx3 = mx.grad(mx.grad(mx.grad(fun)))(mx.array(0.5))
|
|
68
|
+
self.assertEqual(df3dx3.item(), 0.0)
|
|
69
|
+
|
|
70
|
+
fun = lambda x, y: x * y
|
|
71
|
+
x = mx.array(2.0)
|
|
72
|
+
y = mx.array(3.0)
|
|
73
|
+
dfdx = mx.grad(fun, argnums=0)(x, y)
|
|
74
|
+
self.assertEqual(dfdx.item(), 3.0)
|
|
75
|
+
dfdx = mx.grad(fun, argnums=1)(x, y)
|
|
76
|
+
self.assertEqual(dfdx.item(), 2.0)
|
|
77
|
+
|
|
78
|
+
# Pass non array args to functions works
|
|
79
|
+
fun = lambda x, y: x
|
|
80
|
+
value, dfdx = mx.value_and_grad(fun)(mx.array(2.0), "hello")
|
|
81
|
+
self.assertEqual(value.item(), 2.0)
|
|
82
|
+
self.assertEqual(dfdx.item(), 1.0)
|
|
83
|
+
|
|
84
|
+
dfdx = mx.grad(fun)(mx.array(2.0), "hello")
|
|
85
|
+
self.assertEqual(dfdx.item(), 1.0)
|
|
86
|
+
|
|
87
|
+
# Raises when function does not return array
|
|
88
|
+
fun = lambda x: "hello"
|
|
89
|
+
with self.assertRaises(ValueError):
|
|
90
|
+
mx.grad(fun)(mx.array(2.0))
|
|
91
|
+
|
|
92
|
+
# Raises for invalid argument number or argument type
|
|
93
|
+
fun = lambda x: x
|
|
94
|
+
with self.assertRaises(ValueError):
|
|
95
|
+
mx.grad(fun, argnums=2)(mx.array(2.0))
|
|
96
|
+
with self.assertRaises(ValueError):
|
|
97
|
+
mx.grad(fun, argnums=-2)(mx.array(2.0))
|
|
98
|
+
with self.assertRaises(ValueError):
|
|
99
|
+
mx.grad(fun)("hello")
|
|
100
|
+
|
|
101
|
+
# Raises when output is not a scalar array
|
|
102
|
+
fun = lambda x: mx.sum(x, keepdims=True)
|
|
103
|
+
with self.assertRaises(ValueError):
|
|
104
|
+
mx.grad(fun)(mx.ones((2, 2)))
|
|
105
|
+
|
|
106
|
+
def test_grad_trees(self):
|
|
107
|
+
fun = lambda x, y: x * y
|
|
108
|
+
value, dfdx = mx.value_and_grad(fun, (0, 1))(mx.array(0.5), mx.array(2.0))
|
|
109
|
+
self.assertEqual(value.item(), 1.0)
|
|
110
|
+
self.assertTrue(isinstance(dfdx, tuple))
|
|
111
|
+
self.assertEqual(dfdx[0].item(), 2.0)
|
|
112
|
+
self.assertEqual(dfdx[1].item(), 0.5)
|
|
113
|
+
|
|
114
|
+
fun = lambda x, y: x * y
|
|
115
|
+
value, dfdx = mx.value_and_grad(fun, 1)(mx.array(0.5), mx.array(2.0))
|
|
116
|
+
self.assertEqual(value.item(), 1.0)
|
|
117
|
+
self.assertEqual(dfdx.item(), 0.5)
|
|
118
|
+
|
|
119
|
+
fun = lambda p: p["x"] * p["y"]
|
|
120
|
+
value, dfdx = mx.value_and_grad(fun)({"x": mx.array(0.5), "y": mx.array(2.0)})
|
|
121
|
+
self.assertEqual(value.item(), 1.0)
|
|
122
|
+
self.assertEqual(dfdx["x"].item(), 2.0)
|
|
123
|
+
self.assertEqual(dfdx["y"].item(), 0.5)
|
|
124
|
+
|
|
125
|
+
fun = lambda p: p["x"] * p["y"]
|
|
126
|
+
with self.assertRaises(ValueError):
|
|
127
|
+
mx.value_and_grad(fun)({"x": 0.5, "y": mx.array(2.0)})
|
|
128
|
+
with self.assertRaises(ValueError):
|
|
129
|
+
mx.value_and_grad(fun, (0, 1))({"x": mx.array(0.5), "y": mx.array(2.0)})
|
|
130
|
+
|
|
131
|
+
fun = lambda p, b: mx.square(p[0]["foo"][2]) * b
|
|
132
|
+
value, dfdx = mx.value_and_grad(fun)(
|
|
133
|
+
[{"foo": [[], [], mx.array(2.0)]}], mx.array(0.5)
|
|
134
|
+
)
|
|
135
|
+
self.assertEqual(value.item(), 2.0)
|
|
136
|
+
self.assertEqual(dfdx[0]["foo"][2].item(), 2.0)
|
|
137
|
+
|
|
138
|
+
fun = lambda x: x
|
|
139
|
+
with self.assertRaises(TypeError):
|
|
140
|
+
mx.value_and_grad(fun, (None, None))
|
|
141
|
+
with self.assertRaises(ValueError):
|
|
142
|
+
mx.value_and_grad(fun, tuple())
|
|
143
|
+
with self.assertRaises(ValueError):
|
|
144
|
+
mx.grad(fun, argnums=(0, 0))
|
|
145
|
+
|
|
146
|
+
def test_auxiliary_values(self):
|
|
147
|
+
def fun(x, y):
|
|
148
|
+
l = (x * y).sum()
|
|
149
|
+
extra = {"loss": l, "foo": y.square() + x.square(), "bar": [1, 2, 3, y, x]}
|
|
150
|
+
return l, extra
|
|
151
|
+
|
|
152
|
+
fun_value_grad = mx.value_and_grad(fun)
|
|
153
|
+
fun_grad = mx.grad(fun)
|
|
154
|
+
|
|
155
|
+
(loss, a), b = fun_value_grad(mx.ones((2, 2)), mx.ones((2, 2)))
|
|
156
|
+
self.assertEqual(a["loss"].item(), 4)
|
|
157
|
+
self.assertTrue(mx.array_equal(b, mx.ones((2, 2))))
|
|
158
|
+
self.assertTrue(mx.array_equal(a["foo"], 2 * mx.ones((2, 2))))
|
|
159
|
+
self.assertEqual(a["bar"][:3], [1, 2, 3])
|
|
160
|
+
self.assertTrue(mx.array_equal(a["bar"][3], mx.ones((2, 2))))
|
|
161
|
+
self.assertTrue(mx.array_equal(a["bar"][4], mx.ones((2, 2))))
|
|
162
|
+
|
|
163
|
+
with self.assertRaises(ValueError):
|
|
164
|
+
_ = fun_grad(mx.ones((2, 2)), mx.ones((2, 2)))
|
|
165
|
+
|
|
166
|
+
def test_grad_kwargs(self):
|
|
167
|
+
fun = lambda x, y: x * y
|
|
168
|
+
a, b = mx.array(0.5), mx.array(2.0)
|
|
169
|
+
dfdx = mx.grad(fun)
|
|
170
|
+
self.assertEqual(dfdx(a, b).item(), 2.0)
|
|
171
|
+
self.assertEqual(dfdx(a, y=b).item(), 2.0)
|
|
172
|
+
with self.assertRaises(ValueError):
|
|
173
|
+
dfdx(x=a, y=b).item()
|
|
174
|
+
|
|
175
|
+
dfdy = mx.grad(fun, argnums=[], argnames=["y"])
|
|
176
|
+
with self.assertRaises(ValueError):
|
|
177
|
+
dfdy(a, b)
|
|
178
|
+
grads = dfdy(a, y=b)
|
|
179
|
+
self.assertTrue(isinstance(grads, tuple))
|
|
180
|
+
self.assertTrue(grads[0] is None)
|
|
181
|
+
self.assertTrue(isinstance(grads[1], dict))
|
|
182
|
+
self.assertEqual(grads[1]["y"].item(), 0.5)
|
|
183
|
+
grads = dfdy(x=a, y=b)
|
|
184
|
+
self.assertEqual(grads[1]["y"].item(), 0.5)
|
|
185
|
+
self.assertEqual(len(grads[1]), 1)
|
|
186
|
+
|
|
187
|
+
dfdxy = mx.grad(fun, argnums=[0], argnames=["y"])
|
|
188
|
+
with self.assertRaises(ValueError):
|
|
189
|
+
dfdxy(a, b)
|
|
190
|
+
with self.assertRaises(ValueError):
|
|
191
|
+
dfdxy(x=a, y=b)
|
|
192
|
+
grads = dfdxy(a, y=b)
|
|
193
|
+
self.assertTrue(isinstance(grads, tuple))
|
|
194
|
+
self.assertEqual(grads[0].item(), 2.0)
|
|
195
|
+
self.assertTrue(isinstance(grads[1], dict))
|
|
196
|
+
self.assertEqual(grads[1]["y"].item(), 0.5)
|
|
197
|
+
|
|
198
|
+
fun = lambda x, y, z: x * y * z
|
|
199
|
+
dfdxyz = mx.grad(fun, argnums=[0, 1], argnames=["z"])
|
|
200
|
+
c = mx.array(4.0)
|
|
201
|
+
grads = dfdxyz(a, b, z=c)
|
|
202
|
+
self.assertTrue(isinstance(grads, tuple))
|
|
203
|
+
self.assertTrue(isinstance(grads[0], tuple))
|
|
204
|
+
self.assertEqual(grads[0][0].item(), 8.0)
|
|
205
|
+
self.assertEqual(grads[0][1].item(), 2.0)
|
|
206
|
+
self.assertTrue(isinstance(grads[1], dict))
|
|
207
|
+
self.assertEqual(grads[1]["z"].item(), 1.0)
|
|
208
|
+
|
|
209
|
+
fun = lambda x, y: x * y
|
|
210
|
+
dfdy = mx.grad(fun, argnames=["y"])
|
|
211
|
+
grads = dfdy(a, y=b)
|
|
212
|
+
self.assertTrue(isinstance(grads, tuple))
|
|
213
|
+
self.assertTrue(grads[0] is None)
|
|
214
|
+
self.assertTrue(isinstance(grads[1], dict))
|
|
215
|
+
self.assertEqual(grads[1]["y"].item(), 0.5)
|
|
216
|
+
|
|
217
|
+
def test_captured(self):
|
|
218
|
+
a = mx.array(5.0)
|
|
219
|
+
f = lambda x: a + x
|
|
220
|
+
g = lambda x: a + a
|
|
221
|
+
h = lambda x: x + x
|
|
222
|
+
|
|
223
|
+
dfdx = mx.grad(f)
|
|
224
|
+
self.assertEqual(dfdx(a).item(), 1.0)
|
|
225
|
+
|
|
226
|
+
dgdx = mx.grad(g)
|
|
227
|
+
self.assertEqual(dgdx(a).item(), 0.0)
|
|
228
|
+
|
|
229
|
+
dhdx = mx.grad(h)
|
|
230
|
+
self.assertEqual(dhdx(a).item(), 2.0)
|
|
231
|
+
|
|
232
|
+
d2fdx2 = mx.grad(dfdx)
|
|
233
|
+
self.assertEqual(d2fdx2(a).item(), 0.0)
|
|
234
|
+
|
|
235
|
+
d2gdx2 = mx.grad(dgdx)
|
|
236
|
+
self.assertEqual(d2gdx2(a).item(), 0.0)
|
|
237
|
+
|
|
238
|
+
d2hdx2 = mx.grad(dhdx)
|
|
239
|
+
self.assertEqual(d2hdx2(a).item(), 0.0)
|
|
240
|
+
|
|
241
|
+
def test_stop_gradient(self):
|
|
242
|
+
shape_in = (4, 4)
|
|
243
|
+
w_in = mx.ones(shape_in)
|
|
244
|
+
x_in = mx.ones(shape_in)
|
|
245
|
+
cotan = mx.ones(shape_in)
|
|
246
|
+
|
|
247
|
+
def h(w, x):
|
|
248
|
+
x1 = 2 * x
|
|
249
|
+
y = mx.stop_gradient(x1)
|
|
250
|
+
y1 = 3 * y
|
|
251
|
+
return w @ y1
|
|
252
|
+
|
|
253
|
+
vals, vjps = mx.vjp(h, [w_in, x_in], [cotan])
|
|
254
|
+
mx.eval(vjps)
|
|
255
|
+
|
|
256
|
+
self.assertTrue(mx.allclose(vjps[0], 24.0 * mx.ones(shape_in)))
|
|
257
|
+
self.assertTrue(mx.allclose(vjps[1], mx.zeros(shape_in)))
|
|
258
|
+
|
|
259
|
+
g = lambda x: h(w_in, x)
|
|
260
|
+
vals, vjps = mx.vjp(g, [x_in], [cotan])
|
|
261
|
+
mx.eval(vjps)
|
|
262
|
+
|
|
263
|
+
self.assertTrue(mx.allclose(vjps[0], mx.zeros(shape_in)))
|
|
264
|
+
|
|
265
|
+
def test_update_state(self):
|
|
266
|
+
y = mx.array([1.0])
|
|
267
|
+
state = mx.zeros((2,))
|
|
268
|
+
|
|
269
|
+
def fn(y, x):
|
|
270
|
+
nonlocal state
|
|
271
|
+
x = y * x
|
|
272
|
+
state = state + x
|
|
273
|
+
return x.sum()
|
|
274
|
+
|
|
275
|
+
x = mx.ones((2,))
|
|
276
|
+
mx.grad(fn)(y, x)
|
|
277
|
+
mx.eval(state)
|
|
278
|
+
self.assertTrue(mx.allclose(state, mx.ones((2,))))
|
|
279
|
+
|
|
280
|
+
def test_scatter_vjp(self):
|
|
281
|
+
def fun(x, idx):
|
|
282
|
+
x[idx] = 2.0
|
|
283
|
+
return x.sum()
|
|
284
|
+
|
|
285
|
+
dfdx = mx.grad(fun)(mx.array([1.0, 2.0, 3.0]), mx.array([1]))
|
|
286
|
+
self.assertTrue(mx.array_equal(dfdx, mx.array([1.0, 0.0, 1.0])))
|
|
287
|
+
self.assertEqual(dfdx.dtype, mx.float32)
|
|
288
|
+
|
|
289
|
+
y = mx.array([0.0, 1.0, 2.0])
|
|
290
|
+
|
|
291
|
+
def fun(x, idx):
|
|
292
|
+
y[idx] = x
|
|
293
|
+
return y.sum()
|
|
294
|
+
|
|
295
|
+
dfdx = mx.grad(fun)(mx.array([2.0]), mx.array([1]))
|
|
296
|
+
self.assertTrue(mx.array_equal(dfdx, mx.array([1.0])))
|
|
297
|
+
self.assertEqual(dfdx.dtype, mx.float32)
|
|
298
|
+
|
|
299
|
+
def test_scatter_max_vjp(self):
|
|
300
|
+
def fun(src, updates):
|
|
301
|
+
x = src.at[1].maximum(updates)
|
|
302
|
+
return x
|
|
303
|
+
|
|
304
|
+
cotan = mx.array([4.0, 5.0, 6.0])
|
|
305
|
+
_, vjps = mx.vjp(fun, [mx.array([1.0, 2.0, 3.0]), mx.array([[3.0]])], [cotan])
|
|
306
|
+
mx.eval(vjps)
|
|
307
|
+
|
|
308
|
+
# Update larger than value
|
|
309
|
+
self.assertTrue(mx.allclose(vjps[0], mx.array([4.0, 0.0, 6.0])))
|
|
310
|
+
self.assertTrue(mx.allclose(vjps[1], mx.array([5.0])))
|
|
311
|
+
|
|
312
|
+
cotan = mx.array([[4.0], [5.0], [6.0]])
|
|
313
|
+
_, vjps = mx.vjp(
|
|
314
|
+
fun, [mx.array([[1.0], [2.0], [3.0]]), mx.array([[[2.0]]])], [cotan]
|
|
315
|
+
)
|
|
316
|
+
mx.eval(vjps)
|
|
317
|
+
|
|
318
|
+
# Update and value are equal
|
|
319
|
+
self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
|
|
320
|
+
self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
|
|
321
|
+
|
|
322
|
+
def test_scatter_min_vjp(self):
|
|
323
|
+
def fun(src, updates):
|
|
324
|
+
x = src.at[1].minimum(updates)
|
|
325
|
+
return x
|
|
326
|
+
|
|
327
|
+
cotan = mx.array([4.0, 5.0, 6.0])
|
|
328
|
+
_, vjps = mx.vjp(fun, [mx.array([1.0, 2.0, 3.0]), mx.array([[3.0]])], [cotan])
|
|
329
|
+
mx.eval(vjps)
|
|
330
|
+
|
|
331
|
+
# Update larger than value
|
|
332
|
+
self.assertTrue(mx.allclose(vjps[0], mx.array([4.0, 5.0, 6.0])))
|
|
333
|
+
self.assertTrue(mx.allclose(vjps[1], mx.array([0.0])))
|
|
334
|
+
|
|
335
|
+
cotan = mx.array([[4.0], [5.0], [6.0]])
|
|
336
|
+
_, vjps = mx.vjp(
|
|
337
|
+
fun, [mx.array([[1.0], [2.0], [3.0]]), mx.array([[[2.0]]])], [cotan]
|
|
338
|
+
)
|
|
339
|
+
mx.eval(vjps)
|
|
340
|
+
|
|
341
|
+
# Update and value are equal
|
|
342
|
+
self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
|
|
343
|
+
self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
|
|
344
|
+
|
|
345
|
+
def test_split_against_slice(self):
|
|
346
|
+
def f_split(x):
|
|
347
|
+
a, _, b = x.split(3, -1)
|
|
348
|
+
return (a * b).sum()
|
|
349
|
+
|
|
350
|
+
def f_slice(x):
|
|
351
|
+
step = x.shape[-1] // 3
|
|
352
|
+
a = x[..., :step]
|
|
353
|
+
b = x[..., -step:]
|
|
354
|
+
return (a * b).sum()
|
|
355
|
+
|
|
356
|
+
x = mx.random.uniform(shape=(100, 300))
|
|
357
|
+
mx.eval(x)
|
|
358
|
+
|
|
359
|
+
df1 = mx.grad(f_split)
|
|
360
|
+
df2 = mx.grad(f_slice)
|
|
361
|
+
|
|
362
|
+
self.assertTrue(mx.allclose(df1(x), df2(x)))
|
|
363
|
+
|
|
364
|
+
def test_vjp_types(self):
|
|
365
|
+
def fun(x):
|
|
366
|
+
return x
|
|
367
|
+
|
|
368
|
+
for t in [mx.float16, mx.bfloat16, mx.float32]:
|
|
369
|
+
out = mx.grad(fun)(mx.array(1.0, t))
|
|
370
|
+
self.assertEqual(out.dtype, t)
|
|
371
|
+
|
|
372
|
+
def fun(x):
|
|
373
|
+
return x.sum()
|
|
374
|
+
|
|
375
|
+
for t in [mx.float16, mx.bfloat16, mx.float32]:
|
|
376
|
+
out = mx.grad(fun)(mx.array(1.0, t))
|
|
377
|
+
self.assertEqual(out.dtype, t)
|
|
378
|
+
|
|
379
|
+
def fun(x, y):
|
|
380
|
+
return (x + y).sum()
|
|
381
|
+
|
|
382
|
+
for t in [mx.float16, mx.bfloat16, mx.float32]:
|
|
383
|
+
out = mx.grad(fun)(mx.array(1.0, t), mx.array(1.0, t))
|
|
384
|
+
self.assertEqual(out.dtype, t)
|
|
385
|
+
|
|
386
|
+
def test_power_grad(self):
|
|
387
|
+
x = mx.array(0.0)
|
|
388
|
+
g = mx.grad(lambda x: x**2)(x)
|
|
389
|
+
self.assertEqual(g.item(), 0.0)
|
|
390
|
+
|
|
391
|
+
x = mx.array(0.0)
|
|
392
|
+
g = mx.grad(lambda x: x**1.5)(x)
|
|
393
|
+
self.assertEqual(g.item(), 0.0)
|
|
394
|
+
|
|
395
|
+
x = mx.array(2.0)
|
|
396
|
+
g = mx.grad(lambda x: x**2)(x)
|
|
397
|
+
self.assertAlmostEqual(g.item(), 4.0)
|
|
398
|
+
|
|
399
|
+
def test_eval_in_grad(self):
|
|
400
|
+
arr = mx.array([1.0])
|
|
401
|
+
cotan = mx.array([1.0, 1.0])
|
|
402
|
+
y = mx.array([2.0, 2.0])
|
|
403
|
+
|
|
404
|
+
def func(x):
|
|
405
|
+
x = x + y
|
|
406
|
+
cond = x < 1
|
|
407
|
+
cond.tolist()
|
|
408
|
+
return x**2
|
|
409
|
+
|
|
410
|
+
_, vjps = mx.vjp(func, (arr,), (cotan,))
|
|
411
|
+
self.assertEqual(vjps[0].item(), 12.0)
|
|
412
|
+
|
|
413
|
+
def func(x):
|
|
414
|
+
x = x + mx.array([1.0, 1.0])
|
|
415
|
+
mx.eval(x)
|
|
416
|
+
return x**2
|
|
417
|
+
|
|
418
|
+
_, vjps = mx.vjp(func, (arr,), (cotan,))
|
|
419
|
+
self.assertEqual(vjps[0].item(), 8.0)
|
|
420
|
+
|
|
421
|
+
def test_power_grad(self):
|
|
422
|
+
def fun(x, y):
|
|
423
|
+
res = x - y
|
|
424
|
+
return res**x
|
|
425
|
+
|
|
426
|
+
grad = mx.grad(fun)(mx.array(1.0), mx.array(1.0))
|
|
427
|
+
self.assertEqual(grad.item(), 1.0)
|
|
428
|
+
|
|
429
|
+
def test_cumprod_grad(self):
|
|
430
|
+
def fun(y):
|
|
431
|
+
return mx.cumprod(y).sum()
|
|
432
|
+
|
|
433
|
+
y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
|
|
434
|
+
out = mx.grad(fun)(y)
|
|
435
|
+
expected = mx.array([20.0, 38.0, 18.0, 16.0, 8.0])
|
|
436
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
437
|
+
|
|
438
|
+
y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
|
|
439
|
+
out = mx.grad(fun)(y)
|
|
440
|
+
expected = mx.array([1.0, 38.0, 0.0, 0.0, 0.0])
|
|
441
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
442
|
+
|
|
443
|
+
y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
|
|
444
|
+
out = mx.grad(fun)(y)
|
|
445
|
+
expected = mx.array([1.0, 6.0, 0.0, 0.0, 0.0])
|
|
446
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
447
|
+
|
|
448
|
+
def fun(y):
|
|
449
|
+
return mx.cumprod(y, inclusive=False).sum()
|
|
450
|
+
|
|
451
|
+
y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
|
|
452
|
+
out = mx.grad(fun)(y)
|
|
453
|
+
expected = mx.array([8.0, 14.0, 6.0, 4.0, 0.0])
|
|
454
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
455
|
+
|
|
456
|
+
y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
|
|
457
|
+
out = mx.grad(fun)(y)
|
|
458
|
+
expected = mx.array([1.0, 14.0, 0.0, 0.0, 0.0])
|
|
459
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
460
|
+
|
|
461
|
+
y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
|
|
462
|
+
out = mx.grad(fun)(y)
|
|
463
|
+
expected = mx.array([1.0, 6.0, 0.0, 0.0, 0.0])
|
|
464
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
465
|
+
|
|
466
|
+
def fun(y):
|
|
467
|
+
return mx.cumprod(y, inclusive=False, reverse=True).sum()
|
|
468
|
+
|
|
469
|
+
y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
|
|
470
|
+
out = mx.grad(fun)(y)
|
|
471
|
+
expected = mx.array([0.0, 12.0, 12.0, 15.0, 11.0])
|
|
472
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
473
|
+
|
|
474
|
+
y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
|
|
475
|
+
out = mx.grad(fun)(y)
|
|
476
|
+
expected = mx.array([0.0, 12.0, 6.0, 9.0, 7.0])
|
|
477
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
478
|
+
|
|
479
|
+
y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
|
|
480
|
+
out = mx.grad(fun)(y)
|
|
481
|
+
expected = mx.array([0.0, 0.0, 0.0, 9.0, 1.0])
|
|
482
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
483
|
+
|
|
484
|
+
def fun(y):
|
|
485
|
+
return mx.cumprod(y, reverse=True).sum()
|
|
486
|
+
|
|
487
|
+
y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
|
|
488
|
+
out = mx.grad(fun)(y)
|
|
489
|
+
expected = mx.array([12.0, 36.0, 24.0, 27.0, 19.0])
|
|
490
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
491
|
+
|
|
492
|
+
y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
|
|
493
|
+
out = mx.grad(fun)(y)
|
|
494
|
+
expected = mx.array([0.0, 36.0, 6.0, 9.0, 7.0])
|
|
495
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
496
|
+
|
|
497
|
+
y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
|
|
498
|
+
out = mx.grad(fun)(y)
|
|
499
|
+
expected = mx.array([0.0, 0.0, 0.0, 9.0, 1.0])
|
|
500
|
+
self.assertTrue(mx.allclose(out, expected))
|
|
501
|
+
|
|
502
|
+
def test_topk_grad(self):
|
|
503
|
+
a = mx.array([[1, 2, 6, 4, 5], [9, 5, 6, 7, 8]], mx.float32)
|
|
504
|
+
|
|
505
|
+
def fun(x):
|
|
506
|
+
return mx.topk(x, 2)
|
|
507
|
+
|
|
508
|
+
out = mx.vjp(fun, (a,), (mx.ones((2, 2)),))[1][0]
|
|
509
|
+
expected = mx.array([[0, 0, 1, 0, 1], [1, 0, 0, 0, 1]], mx.float32)
|
|
510
|
+
self.assertTrue(mx.array_equal(out, expected))
|
|
511
|
+
|
|
512
|
+
def test_custom_function(self):
|
|
513
|
+
# Make a custom function
|
|
514
|
+
my_exp = mx.custom_function(mx.exp)
|
|
515
|
+
|
|
516
|
+
# Ensure everything works
|
|
517
|
+
dy = mx.grad(my_exp)(mx.array(1.0))
|
|
518
|
+
self.assertTrue(mx.allclose(dy, mx.exp(mx.array(1.0))))
|
|
519
|
+
(ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
|
|
520
|
+
self.assertTrue(mx.allclose(dex, mx.exp(mx.array(1.0))))
|
|
521
|
+
self.assertTrue(mx.allclose(ex, dex))
|
|
522
|
+
ex = mx.vmap(my_exp)(mx.ones(10))
|
|
523
|
+
self.assertTrue(mx.allclose(ex, mx.exp(mx.ones(10))))
|
|
524
|
+
|
|
525
|
+
# Ensure that the vjp is being overriden but everything else still
|
|
526
|
+
# works.
|
|
527
|
+
@my_exp.vjp
|
|
528
|
+
def my_exp_vjp(x, dx, ex):
|
|
529
|
+
return mx.ones_like(x) * 42
|
|
530
|
+
|
|
531
|
+
dy = mx.grad(my_exp)(mx.array(1.0))
|
|
532
|
+
self.assertTrue(mx.allclose(dy, mx.array(42.0)))
|
|
533
|
+
(ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
|
|
534
|
+
self.assertTrue(mx.allclose(dex, mx.exp(mx.array(1.0))))
|
|
535
|
+
self.assertTrue(mx.allclose(ex, dex))
|
|
536
|
+
ex = mx.vmap(my_exp)(mx.ones(10))
|
|
537
|
+
self.assertTrue(mx.allclose(ex, mx.exp(mx.ones(10))))
|
|
538
|
+
|
|
539
|
+
# Ensure that setting the jvp and vmap also works.
|
|
540
|
+
@my_exp.jvp
|
|
541
|
+
def my_exp_jvp(x, dx):
|
|
542
|
+
return mx.ones_like(x) * 7 * dx
|
|
543
|
+
|
|
544
|
+
@my_exp.vmap
|
|
545
|
+
def my_exp_vmap(x, axis):
|
|
546
|
+
return mx.ones_like(x) * 3, axis
|
|
547
|
+
|
|
548
|
+
dy = mx.grad(my_exp)(mx.array(1.0))
|
|
549
|
+
self.assertTrue(mx.allclose(dy, mx.array(42.0)))
|
|
550
|
+
(ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
|
|
551
|
+
self.assertTrue(mx.allclose(dex, mx.array(7.0)))
|
|
552
|
+
self.assertTrue(mx.allclose(ex, mx.exp(mx.array(1.0))))
|
|
553
|
+
ex = mx.vmap(my_exp)(mx.ones(10))
|
|
554
|
+
self.assertTrue(mx.allclose(ex, 3 * mx.ones(10)))
|
|
555
|
+
|
|
556
|
+
# Test pytrees
|
|
557
|
+
@mx.custom_function
|
|
558
|
+
def my_double(params):
|
|
559
|
+
return {"out": 2 * params["x"] * params["y"]}
|
|
560
|
+
|
|
561
|
+
dy = mx.grad(lambda p: my_double(p)["out"].sum())(
|
|
562
|
+
{"x": mx.ones(2), "y": mx.ones(2)}
|
|
563
|
+
)
|
|
564
|
+
self.assertTrue(mx.allclose(dy["x"], mx.ones(2) * 2))
|
|
565
|
+
self.assertTrue(mx.allclose(dy["y"], mx.ones(2) * 2))
|
|
566
|
+
|
|
567
|
+
@my_double.vjp
|
|
568
|
+
def random_grads(primals, cotangents, outputs):
|
|
569
|
+
return {"x": mx.zeros_like(primals["x"]), "y": mx.ones_like(primals["y"])}
|
|
570
|
+
|
|
571
|
+
dy = mx.grad(lambda p: my_double(p)["out"].sum())(
|
|
572
|
+
{"x": mx.ones(2), "y": mx.ones(2)}
|
|
573
|
+
)
|
|
574
|
+
self.assertTrue(mx.allclose(dy["x"], mx.zeros(2)))
|
|
575
|
+
self.assertTrue(mx.allclose(dy["y"], mx.ones(2)))
|
|
576
|
+
|
|
577
|
+
def outer_f(a, b):
|
|
578
|
+
return my_double({"x": a, "y": b})["out"]
|
|
579
|
+
|
|
580
|
+
inputs = [mx.random.normal(shape=(2,)) for i in range(2)]
|
|
581
|
+
tans = [mx.random.normal(shape=(2,)) for i in range(2)]
|
|
582
|
+
out1, dout1 = mx.jvp(outer_f, inputs, tans)
|
|
583
|
+
|
|
584
|
+
@my_double.jvp
|
|
585
|
+
def random_grads(primals, tangents):
|
|
586
|
+
return {
|
|
587
|
+
"out": 2 * primals["x"] * tangents["y"]
|
|
588
|
+
+ 2 * primals["y"] * tangents["x"]
|
|
589
|
+
+ 1
|
|
590
|
+
}
|
|
591
|
+
|
|
592
|
+
out2, dout2 = mx.jvp(outer_f, inputs, tans)
|
|
593
|
+
self.assertTrue(mx.allclose(out1[0], out2[0]))
|
|
594
|
+
self.assertTrue(mx.allclose(dout1[0] + 1, dout2[0]))
|
|
595
|
+
|
|
596
|
+
def test_complex_vjps(self):
|
|
597
|
+
def fun(x):
|
|
598
|
+
return (2.0 * mx.real(x)).sum()
|
|
599
|
+
|
|
600
|
+
x = mx.array([0.0 + 1j, 1.0 + 0.0j, 0.5 + 0.5j])
|
|
601
|
+
dfdx = mx.grad(fun)(x)
|
|
602
|
+
self.assertTrue(mx.allclose(dfdx, 2 * mx.ones_like(x)))
|
|
603
|
+
|
|
604
|
+
def fun(x):
|
|
605
|
+
return (2.0 * mx.imag(x)).sum()
|
|
606
|
+
|
|
607
|
+
x = mx.array([0.0 + 1j, 1.0 + 0.0j, 0.5 + 0.5j])
|
|
608
|
+
dfdx = mx.grad(fun)(x)
|
|
609
|
+
self.assertTrue(mx.allclose(dfdx, 2j * mx.ones_like(x)))
|
|
610
|
+
|
|
611
|
+
def test_flatten_unflatten_vjps(self):
|
|
612
|
+
def fun(x):
|
|
613
|
+
y = mx.unflatten(x, 0, (2, 2))
|
|
614
|
+
return y.sum()
|
|
615
|
+
|
|
616
|
+
x = mx.zeros((4, 8))
|
|
617
|
+
self.assertEqual(mx.grad(fun)(x).shape, (4, 8))
|
|
618
|
+
|
|
619
|
+
def fun(x):
|
|
620
|
+
y = mx.flatten(x, 0, 2)
|
|
621
|
+
return y.sum()
|
|
622
|
+
|
|
623
|
+
x = mx.zeros((2, 4, 8))
|
|
624
|
+
self.assertEqual(mx.grad(fun)(x).shape, (2, 4, 8))
|
|
625
|
+
|
|
626
|
+
def test_concatenate_vjps(self):
|
|
627
|
+
def fun(x, y):
|
|
628
|
+
return mx.concatenate([x, y])
|
|
629
|
+
|
|
630
|
+
x = mx.array([1, 2, 3], mx.float32)
|
|
631
|
+
y = mx.array([1, 2, 3], mx.float16)
|
|
632
|
+
grads = mx.vjp(fun, (x, y), (mx.ones((6,)),))[1]
|
|
633
|
+
self.assertTrue(mx.allclose(grads[0], mx.ones(3)))
|
|
634
|
+
self.assertTrue(mx.allclose(grads[1], mx.ones(3)))
|
|
635
|
+
self.assertEqual(grads[0].dtype, mx.float32)
|
|
636
|
+
self.assertEqual(grads[1].dtype, mx.float16)
|
|
637
|
+
|
|
638
|
+
def test_matmul_jvps(self):
|
|
639
|
+
a = mx.random.uniform(shape=(4, 4))
|
|
640
|
+
b = mx.random.uniform(shape=(4, 4))
|
|
641
|
+
c = mx.random.uniform(shape=(4, 4))
|
|
642
|
+
d = mx.random.uniform(shape=(4, 4))
|
|
643
|
+
|
|
644
|
+
_, tangent = mx.jvp(lambda a: a @ b, (a,), (c,))
|
|
645
|
+
self.assertTrue(mx.allclose(tangent[0], c @ b))
|
|
646
|
+
|
|
647
|
+
_, tangent = mx.jvp(lambda b: a @ b, (b,), (d,))
|
|
648
|
+
self.assertTrue(mx.allclose(tangent[0], a @ d))
|
|
649
|
+
|
|
650
|
+
_, tangent = mx.jvp(lambda a, b: a @ b, (a, b), (c, d))
|
|
651
|
+
self.assertTrue(mx.allclose(tangent[0], a @ d + c @ b))
|
|
652
|
+
|
|
653
|
+
x = mx.random.uniform(shape=(4, 4))
|
|
654
|
+
y = mx.random.uniform(shape=(4, 4))
|
|
655
|
+
z = mx.random.uniform(shape=(4, 4))
|
|
656
|
+
|
|
657
|
+
_, (tangent,) = mx.jvp(lambda a, b, c: a @ b + c, (a, b, c), (x, y, z))
|
|
658
|
+
_, (expected,) = mx.jvp(lambda a, b, c: mx.addmm(c, a, b), (a, b, c), (x, y, z))
|
|
659
|
+
self.assertTrue(mx.allclose(tangent, expected))
|
|
660
|
+
|
|
661
|
+
_, (tangent,) = mx.jvp(lambda a, c: a @ b + c, (a, c), (x, z))
|
|
662
|
+
_, (expected,) = mx.jvp(lambda a, c: mx.addmm(c, a, b), (a, c), (x, z))
|
|
663
|
+
self.assertTrue(mx.allclose(tangent, expected))
|
|
664
|
+
|
|
665
|
+
_, (tangent,) = mx.jvp(lambda b, c: a @ b + c, (b, c), (y, z))
|
|
666
|
+
_, (expected,) = mx.jvp(lambda b, c: mx.addmm(c, a, b), (b, c), (y, z))
|
|
667
|
+
self.assertTrue(mx.allclose(tangent, expected))
|
|
668
|
+
|
|
669
|
+
_, (tangent,) = mx.jvp(lambda c: a @ b + c, (c,), (z,))
|
|
670
|
+
_, (expected,) = mx.jvp(lambda c: mx.addmm(c, a, b), (c,), (z,))
|
|
671
|
+
self.assertTrue(mx.allclose(tangent, expected))
|
|
672
|
+
|
|
673
|
+
def test_put_along_axis_grads(self):
|
|
674
|
+
a = mx.zeros((5, 1))
|
|
675
|
+
b = mx.ones((2, 1))
|
|
676
|
+
|
|
677
|
+
def fun(a, b):
|
|
678
|
+
idx = mx.array([[0], [3]])
|
|
679
|
+
return mx.put_along_axis(a, idx, b, axis=0)
|
|
680
|
+
|
|
681
|
+
# Test VJP
|
|
682
|
+
cotan = mx.full((5, 1), 2.0)
|
|
683
|
+
_, (da, db) = mx.vjp(fun, (a, b), (cotan,))
|
|
684
|
+
expected_da = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
|
|
685
|
+
expected_db = mx.array([2.0, 2.0])[:, None]
|
|
686
|
+
self.assertTrue(mx.allclose(expected_da, da))
|
|
687
|
+
self.assertTrue(mx.allclose(expected_db, db))
|
|
688
|
+
|
|
689
|
+
# Test JVP
|
|
690
|
+
tan_a = mx.full((5, 1), 2.0)
|
|
691
|
+
tan_b = mx.full((2, 1), 3.0)
|
|
692
|
+
_, (jout,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
|
|
693
|
+
expected = mx.array([3.0, 2.0, 2.0, 3.0, 2.0])[:, None]
|
|
694
|
+
self.assertTrue(mx.allclose(expected, jout))
|
|
695
|
+
|
|
696
|
+
def fun(a):
|
|
697
|
+
idx = mx.array([[0], [3]])
|
|
698
|
+
return mx.put_along_axis(a, idx, b, axis=0)
|
|
699
|
+
|
|
700
|
+
_, (jout,) = mx.jvp(fun, (a,), (tan_a,))
|
|
701
|
+
expected = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
|
|
702
|
+
self.assertTrue(mx.allclose(expected, jout))
|
|
703
|
+
|
|
704
|
+
def test_slice_grads(self):
|
|
705
|
+
# Slice
|
|
706
|
+
def fun(a):
|
|
707
|
+
return a[5:-6:-1]
|
|
708
|
+
|
|
709
|
+
a = mx.ones(shape=(5,))
|
|
710
|
+
cotan = mx.random.uniform(shape=(5,))
|
|
711
|
+
_, (grad,) = mx.vjp(fun, (a,), (cotan,))
|
|
712
|
+
self.assertTrue(mx.allclose(grad, cotan[::-1]))
|
|
713
|
+
|
|
714
|
+
tan = mx.random.uniform(shape=(5,))
|
|
715
|
+
mx.eval(tan)
|
|
716
|
+
_, (grad,) = mx.jvp(fun, (a,), (tan,))
|
|
717
|
+
self.assertTrue(mx.allclose(grad, tan[::-1]))
|
|
718
|
+
|
|
719
|
+
# Slice update
|
|
720
|
+
def fun(a, b):
|
|
721
|
+
a[4:-5:-2] = b
|
|
722
|
+
return a
|
|
723
|
+
|
|
724
|
+
a = mx.ones(shape=(4,))
|
|
725
|
+
b = mx.zeros(shape=(2,))
|
|
726
|
+
|
|
727
|
+
cotan = mx.random.uniform(shape=(4,))
|
|
728
|
+
_, (grad_a, grad_b) = mx.vjp(fun, (a, b), (cotan,))
|
|
729
|
+
expected_a = mx.array(cotan)
|
|
730
|
+
expected_a[1::2] = 0.0
|
|
731
|
+
self.assertTrue(mx.allclose(grad_a, expected_a))
|
|
732
|
+
self.assertTrue(mx.allclose(grad_b, cotan[4:-5:-2]))
|
|
733
|
+
|
|
734
|
+
tan_a = mx.random.uniform(shape=(4,))
|
|
735
|
+
tan_b = mx.random.uniform(shape=(2,))
|
|
736
|
+
_, (grad,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
|
|
737
|
+
expected = tan_a
|
|
738
|
+
expected[4:-5:-2] = tan_b
|
|
739
|
+
self.assertTrue(mx.allclose(grad, expected))
|
|
740
|
+
|
|
741
|
+
def test_leaks(self):
|
|
742
|
+
for transform in [
|
|
743
|
+
mx.grad,
|
|
744
|
+
mx.value_and_grad,
|
|
745
|
+
mx.custom_function,
|
|
746
|
+
mx.checkpoint,
|
|
747
|
+
]:
|
|
748
|
+
mx.synchronize()
|
|
749
|
+
gc.collect()
|
|
750
|
+
mem_pre = mx.get_active_memory()
|
|
751
|
+
|
|
752
|
+
def outer():
|
|
753
|
+
d = {}
|
|
754
|
+
|
|
755
|
+
def f(x):
|
|
756
|
+
return d["x"]
|
|
757
|
+
|
|
758
|
+
d["f"] = transform(f)
|
|
759
|
+
d["x"] = mx.array([0] * 1000)
|
|
760
|
+
|
|
761
|
+
for _ in range(5):
|
|
762
|
+
outer()
|
|
763
|
+
gc.collect()
|
|
764
|
+
mem_post = mx.get_active_memory()
|
|
765
|
+
self.assertEqual(mem_pre, mem_post)
|
|
766
|
+
|
|
767
|
+
def test_grad_with_copies(self):
|
|
768
|
+
a = mx.array(2.0)
|
|
769
|
+
arrays = [a, a, a]
|
|
770
|
+
|
|
771
|
+
def fun(arrays):
|
|
772
|
+
return arrays[0] + arrays[2]
|
|
773
|
+
|
|
774
|
+
grads = mx.grad(fun)(arrays)
|
|
775
|
+
self.assertEqual(grads[0].item(), 1.0)
|
|
776
|
+
self.assertEqual(grads[2].item(), 1.0)
|
|
777
|
+
|
|
778
|
+
def test_grad_ids_pre_post(self):
|
|
779
|
+
def fun(arrs):
|
|
780
|
+
return arrs[0]
|
|
781
|
+
|
|
782
|
+
arrs = [mx.array(1.0)]
|
|
783
|
+
arr = arrs[0]
|
|
784
|
+
mx.grad(fun)(arrs)
|
|
785
|
+
self.assertEqual(id(arr), id(arrs[0]))
|
|
786
|
+
|
|
787
|
+
def fun(arrs):
|
|
788
|
+
arrs[1] = sum(arrs)
|
|
789
|
+
return arrs[1]
|
|
790
|
+
|
|
791
|
+
arrs = [mx.array(1.0), mx.array(1.0), mx.array(1.0)]
|
|
792
|
+
a_0, a_1, a_2 = arrs
|
|
793
|
+
|
|
794
|
+
mx.grad(fun)(arrs)
|
|
795
|
+
self.assertEqual(id(a_0), id(arrs[0]))
|
|
796
|
+
self.assertNotEqual(id(a_1), id(arrs[1]))
|
|
797
|
+
self.assertEqual(id(a_2), id(arrs[2]))
|
|
798
|
+
|
|
799
|
+
def test_grad_with_inplace_update(self):
|
|
800
|
+
def loss_fn(model):
|
|
801
|
+
model[1] = mx.array(2.0)
|
|
802
|
+
return model[0]
|
|
803
|
+
|
|
804
|
+
model = [
|
|
805
|
+
mx.array(0.0),
|
|
806
|
+
mx.array(1.0),
|
|
807
|
+
]
|
|
808
|
+
|
|
809
|
+
grad_fn = mx.grad(loss_fn)
|
|
810
|
+
grad_fn(model)
|
|
811
|
+
self.assertEqual(model[1].item(), 2.0)
|
|
812
|
+
|
|
813
|
+
def test_autograd_types(self):
|
|
814
|
+
from typing import NamedTuple
|
|
815
|
+
|
|
816
|
+
class Vector(tuple):
|
|
817
|
+
pass
|
|
818
|
+
|
|
819
|
+
class State(NamedTuple):
|
|
820
|
+
a: mx.array
|
|
821
|
+
b: mx.array
|
|
822
|
+
|
|
823
|
+
def transform(x: State):
|
|
824
|
+
return State(x.a + 10, x.b * 10)
|
|
825
|
+
|
|
826
|
+
def transform_tuple(t):
|
|
827
|
+
return (t[0] + 10, t[1] * 10)
|
|
828
|
+
|
|
829
|
+
def transform_vector(t):
|
|
830
|
+
return Vector([t[0] + 10, t[1] * 10])
|
|
831
|
+
|
|
832
|
+
def loss_fn(x):
|
|
833
|
+
out = transform(x)
|
|
834
|
+
return out.a.sum() + out.b.sum()
|
|
835
|
+
|
|
836
|
+
def loss_fn_tuple(x):
|
|
837
|
+
out = transform_tuple(x)
|
|
838
|
+
return out[0].sum() + out[1].sum()
|
|
839
|
+
|
|
840
|
+
def loss_fn_vector(x):
|
|
841
|
+
out = transform_vector(x)
|
|
842
|
+
return out[0].sum() + out[1].sum()
|
|
843
|
+
|
|
844
|
+
x_batch = State(mx.array([1, 2, 3]), mx.array([4, 5, 6]))
|
|
845
|
+
grads = mx.grad(loss_fn)(x_batch)
|
|
846
|
+
self.assertTrue(isinstance(grads, State))
|
|
847
|
+
self.assertTrue(mx.array_equal(grads.a, mx.ones(3)))
|
|
848
|
+
self.assertTrue(mx.array_equal(grads.b, mx.ones(3) * 10))
|
|
849
|
+
|
|
850
|
+
x_batch_tuple = (mx.array([1, 2, 3]), mx.array([4, 5, 6]))
|
|
851
|
+
grads = mx.grad(loss_fn_tuple)(x_batch_tuple)
|
|
852
|
+
self.assertTrue(isinstance(grads, tuple))
|
|
853
|
+
self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
|
|
854
|
+
self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))
|
|
855
|
+
|
|
856
|
+
x_batch_vector = Vector([mx.array([1, 2, 3]), mx.array([4, 5, 6])])
|
|
857
|
+
grads = mx.grad(loss_fn_vector)(x_batch_vector)
|
|
858
|
+
self.assertTrue(isinstance(grads, Vector))
|
|
859
|
+
self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
|
|
860
|
+
self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))
|
|
861
|
+
|
|
862
|
+
def test_reduce_jvp(self):
|
|
863
|
+
a = mx.arange(4)
|
|
864
|
+
b = mx.array([3, 2, 1, 0])
|
|
865
|
+
|
|
866
|
+
out, jout = mx.jvp(mx.sum, primals=(a,), tangents=(b,))
|
|
867
|
+
self.assertEqual(jout[0].item(), 6)
|
|
868
|
+
|
|
869
|
+
out, jout = mx.jvp(mx.prod, primals=(a,), tangents=(b,))
|
|
870
|
+
self.assertEqual(jout[0].item(), 18)
|
|
871
|
+
|
|
872
|
+
out, jout = mx.jvp(mx.min, primals=(a,), tangents=(b,))
|
|
873
|
+
self.assertEqual(jout[0].item(), 3)
|
|
874
|
+
|
|
875
|
+
out, jout = mx.jvp(mx.max, primals=(a,), tangents=(b,))
|
|
876
|
+
self.assertEqual(jout[0].item(), 0)
|
|
877
|
+
|
|
878
|
+
|
|
879
|
+
if __name__ == "__main__":
|
|
880
|
+
mlx_tests.MLXTestRunner()
|