mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,880 @@
1
+ # Copyright © 2023 Apple Inc.
2
+
3
+ import gc
4
+ import unittest
5
+
6
+ import mlx.core as mx
7
+ import mlx_tests
8
+
9
+
10
+ class TestAutograd(mlx_tests.MLXTestCase):
11
+ def test_jvp(self):
12
+ fun = lambda x: 2 * x
13
+ out, dout = mx.jvp(fun, [mx.array(1.0)], [mx.array(2.0)])
14
+ self.assertEqual(out[0].item(), 2.0)
15
+ self.assertEqual(dout[0].item(), 4.0)
16
+
17
+ fun = lambda x, y: x * y
18
+ _, out = mx.jvp(
19
+ fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0), mx.array(2.0)]
20
+ )
21
+ self.assertEqual(out[0].item(), 4.0 * 2.0 + 2.0 * 3.0)
22
+
23
+ fun = lambda x, y, z: (x * y, y * z)
24
+ _, out = mx.jvp(
25
+ fun,
26
+ [mx.array(2.0), mx.array(4.0), mx.array(6.0)],
27
+ [mx.array(1.0), mx.array(3.0), mx.array(1.0)],
28
+ )
29
+ self.assertEqual(len(out), 2)
30
+ self.assertEqual(out[0].item(), 4.0 * 1.0 + 2.0 * 3.0)
31
+ self.assertEqual(out[1].item(), 4.0 * 1.0 + 6.0 * 3.0)
32
+
33
+ def test_vjp(self):
34
+ fun = lambda x: 2 * x
35
+ out, dout = mx.vjp(fun, [mx.array(1.0)], [mx.array(2.0)])
36
+ self.assertEqual(out[0].item(), 2.0)
37
+ self.assertEqual(dout[0].item(), 4.0)
38
+
39
+ fun = lambda x, y: x * y
40
+ _, dout = mx.vjp(fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0)])
41
+ self.assertEqual(dout[0].item(), 6.0)
42
+ self.assertEqual(dout[1].item(), 12.0)
43
+
44
+ fun = lambda x, y, z: (x * y, y * z)
45
+ _, out = mx.vjp(
46
+ fun,
47
+ [mx.array(2.0), mx.array(4.0), mx.array(6.0)],
48
+ [mx.array(1.0), mx.array(3.0)],
49
+ )
50
+ self.assertEqual(len(out), 3)
51
+ self.assertEqual(out[0].item(), 4.0 * 1.0)
52
+ self.assertEqual(out[1].item(), 2.0 * 1.0 + 6.0 * 3.0)
53
+ self.assertEqual(out[2].item(), 4.0 * 3.0)
54
+
55
+ def test_grad(self):
56
+ fun = lambda x: x * x
57
+
58
+ value, dfdx = mx.value_and_grad(fun)(mx.array(0.5))
59
+ self.assertEqual(value.item(), 0.25)
60
+ self.assertEqual(dfdx.item(), 1.0)
61
+
62
+ dfdx = mx.grad(fun)(mx.array(0.5))
63
+ self.assertEqual(dfdx.item(), 1.0)
64
+
65
+ df2dx2 = mx.grad(mx.grad(fun))(mx.array(0.5))
66
+ self.assertEqual(df2dx2.item(), 2.0)
67
+ df3dx3 = mx.grad(mx.grad(mx.grad(fun)))(mx.array(0.5))
68
+ self.assertEqual(df3dx3.item(), 0.0)
69
+
70
+ fun = lambda x, y: x * y
71
+ x = mx.array(2.0)
72
+ y = mx.array(3.0)
73
+ dfdx = mx.grad(fun, argnums=0)(x, y)
74
+ self.assertEqual(dfdx.item(), 3.0)
75
+ dfdx = mx.grad(fun, argnums=1)(x, y)
76
+ self.assertEqual(dfdx.item(), 2.0)
77
+
78
+ # Pass non array args to functions works
79
+ fun = lambda x, y: x
80
+ value, dfdx = mx.value_and_grad(fun)(mx.array(2.0), "hello")
81
+ self.assertEqual(value.item(), 2.0)
82
+ self.assertEqual(dfdx.item(), 1.0)
83
+
84
+ dfdx = mx.grad(fun)(mx.array(2.0), "hello")
85
+ self.assertEqual(dfdx.item(), 1.0)
86
+
87
+ # Raises when function does not return array
88
+ fun = lambda x: "hello"
89
+ with self.assertRaises(ValueError):
90
+ mx.grad(fun)(mx.array(2.0))
91
+
92
+ # Raises for invalid argument number or argument type
93
+ fun = lambda x: x
94
+ with self.assertRaises(ValueError):
95
+ mx.grad(fun, argnums=2)(mx.array(2.0))
96
+ with self.assertRaises(ValueError):
97
+ mx.grad(fun, argnums=-2)(mx.array(2.0))
98
+ with self.assertRaises(ValueError):
99
+ mx.grad(fun)("hello")
100
+
101
+ # Raises when output is not a scalar array
102
+ fun = lambda x: mx.sum(x, keepdims=True)
103
+ with self.assertRaises(ValueError):
104
+ mx.grad(fun)(mx.ones((2, 2)))
105
+
106
+ def test_grad_trees(self):
107
+ fun = lambda x, y: x * y
108
+ value, dfdx = mx.value_and_grad(fun, (0, 1))(mx.array(0.5), mx.array(2.0))
109
+ self.assertEqual(value.item(), 1.0)
110
+ self.assertTrue(isinstance(dfdx, tuple))
111
+ self.assertEqual(dfdx[0].item(), 2.0)
112
+ self.assertEqual(dfdx[1].item(), 0.5)
113
+
114
+ fun = lambda x, y: x * y
115
+ value, dfdx = mx.value_and_grad(fun, 1)(mx.array(0.5), mx.array(2.0))
116
+ self.assertEqual(value.item(), 1.0)
117
+ self.assertEqual(dfdx.item(), 0.5)
118
+
119
+ fun = lambda p: p["x"] * p["y"]
120
+ value, dfdx = mx.value_and_grad(fun)({"x": mx.array(0.5), "y": mx.array(2.0)})
121
+ self.assertEqual(value.item(), 1.0)
122
+ self.assertEqual(dfdx["x"].item(), 2.0)
123
+ self.assertEqual(dfdx["y"].item(), 0.5)
124
+
125
+ fun = lambda p: p["x"] * p["y"]
126
+ with self.assertRaises(ValueError):
127
+ mx.value_and_grad(fun)({"x": 0.5, "y": mx.array(2.0)})
128
+ with self.assertRaises(ValueError):
129
+ mx.value_and_grad(fun, (0, 1))({"x": mx.array(0.5), "y": mx.array(2.0)})
130
+
131
+ fun = lambda p, b: mx.square(p[0]["foo"][2]) * b
132
+ value, dfdx = mx.value_and_grad(fun)(
133
+ [{"foo": [[], [], mx.array(2.0)]}], mx.array(0.5)
134
+ )
135
+ self.assertEqual(value.item(), 2.0)
136
+ self.assertEqual(dfdx[0]["foo"][2].item(), 2.0)
137
+
138
+ fun = lambda x: x
139
+ with self.assertRaises(TypeError):
140
+ mx.value_and_grad(fun, (None, None))
141
+ with self.assertRaises(ValueError):
142
+ mx.value_and_grad(fun, tuple())
143
+ with self.assertRaises(ValueError):
144
+ mx.grad(fun, argnums=(0, 0))
145
+
146
+ def test_auxiliary_values(self):
147
+ def fun(x, y):
148
+ l = (x * y).sum()
149
+ extra = {"loss": l, "foo": y.square() + x.square(), "bar": [1, 2, 3, y, x]}
150
+ return l, extra
151
+
152
+ fun_value_grad = mx.value_and_grad(fun)
153
+ fun_grad = mx.grad(fun)
154
+
155
+ (loss, a), b = fun_value_grad(mx.ones((2, 2)), mx.ones((2, 2)))
156
+ self.assertEqual(a["loss"].item(), 4)
157
+ self.assertTrue(mx.array_equal(b, mx.ones((2, 2))))
158
+ self.assertTrue(mx.array_equal(a["foo"], 2 * mx.ones((2, 2))))
159
+ self.assertEqual(a["bar"][:3], [1, 2, 3])
160
+ self.assertTrue(mx.array_equal(a["bar"][3], mx.ones((2, 2))))
161
+ self.assertTrue(mx.array_equal(a["bar"][4], mx.ones((2, 2))))
162
+
163
+ with self.assertRaises(ValueError):
164
+ _ = fun_grad(mx.ones((2, 2)), mx.ones((2, 2)))
165
+
166
+ def test_grad_kwargs(self):
167
+ fun = lambda x, y: x * y
168
+ a, b = mx.array(0.5), mx.array(2.0)
169
+ dfdx = mx.grad(fun)
170
+ self.assertEqual(dfdx(a, b).item(), 2.0)
171
+ self.assertEqual(dfdx(a, y=b).item(), 2.0)
172
+ with self.assertRaises(ValueError):
173
+ dfdx(x=a, y=b).item()
174
+
175
+ dfdy = mx.grad(fun, argnums=[], argnames=["y"])
176
+ with self.assertRaises(ValueError):
177
+ dfdy(a, b)
178
+ grads = dfdy(a, y=b)
179
+ self.assertTrue(isinstance(grads, tuple))
180
+ self.assertTrue(grads[0] is None)
181
+ self.assertTrue(isinstance(grads[1], dict))
182
+ self.assertEqual(grads[1]["y"].item(), 0.5)
183
+ grads = dfdy(x=a, y=b)
184
+ self.assertEqual(grads[1]["y"].item(), 0.5)
185
+ self.assertEqual(len(grads[1]), 1)
186
+
187
+ dfdxy = mx.grad(fun, argnums=[0], argnames=["y"])
188
+ with self.assertRaises(ValueError):
189
+ dfdxy(a, b)
190
+ with self.assertRaises(ValueError):
191
+ dfdxy(x=a, y=b)
192
+ grads = dfdxy(a, y=b)
193
+ self.assertTrue(isinstance(grads, tuple))
194
+ self.assertEqual(grads[0].item(), 2.0)
195
+ self.assertTrue(isinstance(grads[1], dict))
196
+ self.assertEqual(grads[1]["y"].item(), 0.5)
197
+
198
+ fun = lambda x, y, z: x * y * z
199
+ dfdxyz = mx.grad(fun, argnums=[0, 1], argnames=["z"])
200
+ c = mx.array(4.0)
201
+ grads = dfdxyz(a, b, z=c)
202
+ self.assertTrue(isinstance(grads, tuple))
203
+ self.assertTrue(isinstance(grads[0], tuple))
204
+ self.assertEqual(grads[0][0].item(), 8.0)
205
+ self.assertEqual(grads[0][1].item(), 2.0)
206
+ self.assertTrue(isinstance(grads[1], dict))
207
+ self.assertEqual(grads[1]["z"].item(), 1.0)
208
+
209
+ fun = lambda x, y: x * y
210
+ dfdy = mx.grad(fun, argnames=["y"])
211
+ grads = dfdy(a, y=b)
212
+ self.assertTrue(isinstance(grads, tuple))
213
+ self.assertTrue(grads[0] is None)
214
+ self.assertTrue(isinstance(grads[1], dict))
215
+ self.assertEqual(grads[1]["y"].item(), 0.5)
216
+
217
+ def test_captured(self):
218
+ a = mx.array(5.0)
219
+ f = lambda x: a + x
220
+ g = lambda x: a + a
221
+ h = lambda x: x + x
222
+
223
+ dfdx = mx.grad(f)
224
+ self.assertEqual(dfdx(a).item(), 1.0)
225
+
226
+ dgdx = mx.grad(g)
227
+ self.assertEqual(dgdx(a).item(), 0.0)
228
+
229
+ dhdx = mx.grad(h)
230
+ self.assertEqual(dhdx(a).item(), 2.0)
231
+
232
+ d2fdx2 = mx.grad(dfdx)
233
+ self.assertEqual(d2fdx2(a).item(), 0.0)
234
+
235
+ d2gdx2 = mx.grad(dgdx)
236
+ self.assertEqual(d2gdx2(a).item(), 0.0)
237
+
238
+ d2hdx2 = mx.grad(dhdx)
239
+ self.assertEqual(d2hdx2(a).item(), 0.0)
240
+
241
+ def test_stop_gradient(self):
242
+ shape_in = (4, 4)
243
+ w_in = mx.ones(shape_in)
244
+ x_in = mx.ones(shape_in)
245
+ cotan = mx.ones(shape_in)
246
+
247
+ def h(w, x):
248
+ x1 = 2 * x
249
+ y = mx.stop_gradient(x1)
250
+ y1 = 3 * y
251
+ return w @ y1
252
+
253
+ vals, vjps = mx.vjp(h, [w_in, x_in], [cotan])
254
+ mx.eval(vjps)
255
+
256
+ self.assertTrue(mx.allclose(vjps[0], 24.0 * mx.ones(shape_in)))
257
+ self.assertTrue(mx.allclose(vjps[1], mx.zeros(shape_in)))
258
+
259
+ g = lambda x: h(w_in, x)
260
+ vals, vjps = mx.vjp(g, [x_in], [cotan])
261
+ mx.eval(vjps)
262
+
263
+ self.assertTrue(mx.allclose(vjps[0], mx.zeros(shape_in)))
264
+
265
+ def test_update_state(self):
266
+ y = mx.array([1.0])
267
+ state = mx.zeros((2,))
268
+
269
+ def fn(y, x):
270
+ nonlocal state
271
+ x = y * x
272
+ state = state + x
273
+ return x.sum()
274
+
275
+ x = mx.ones((2,))
276
+ mx.grad(fn)(y, x)
277
+ mx.eval(state)
278
+ self.assertTrue(mx.allclose(state, mx.ones((2,))))
279
+
280
+ def test_scatter_vjp(self):
281
+ def fun(x, idx):
282
+ x[idx] = 2.0
283
+ return x.sum()
284
+
285
+ dfdx = mx.grad(fun)(mx.array([1.0, 2.0, 3.0]), mx.array([1]))
286
+ self.assertTrue(mx.array_equal(dfdx, mx.array([1.0, 0.0, 1.0])))
287
+ self.assertEqual(dfdx.dtype, mx.float32)
288
+
289
+ y = mx.array([0.0, 1.0, 2.0])
290
+
291
+ def fun(x, idx):
292
+ y[idx] = x
293
+ return y.sum()
294
+
295
+ dfdx = mx.grad(fun)(mx.array([2.0]), mx.array([1]))
296
+ self.assertTrue(mx.array_equal(dfdx, mx.array([1.0])))
297
+ self.assertEqual(dfdx.dtype, mx.float32)
298
+
299
+ def test_scatter_max_vjp(self):
300
+ def fun(src, updates):
301
+ x = src.at[1].maximum(updates)
302
+ return x
303
+
304
+ cotan = mx.array([4.0, 5.0, 6.0])
305
+ _, vjps = mx.vjp(fun, [mx.array([1.0, 2.0, 3.0]), mx.array([[3.0]])], [cotan])
306
+ mx.eval(vjps)
307
+
308
+ # Update larger than value
309
+ self.assertTrue(mx.allclose(vjps[0], mx.array([4.0, 0.0, 6.0])))
310
+ self.assertTrue(mx.allclose(vjps[1], mx.array([5.0])))
311
+
312
+ cotan = mx.array([[4.0], [5.0], [6.0]])
313
+ _, vjps = mx.vjp(
314
+ fun, [mx.array([[1.0], [2.0], [3.0]]), mx.array([[[2.0]]])], [cotan]
315
+ )
316
+ mx.eval(vjps)
317
+
318
+ # Update and value are equal
319
+ self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
320
+ self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
321
+
322
+ def test_scatter_min_vjp(self):
323
+ def fun(src, updates):
324
+ x = src.at[1].minimum(updates)
325
+ return x
326
+
327
+ cotan = mx.array([4.0, 5.0, 6.0])
328
+ _, vjps = mx.vjp(fun, [mx.array([1.0, 2.0, 3.0]), mx.array([[3.0]])], [cotan])
329
+ mx.eval(vjps)
330
+
331
+ # Update larger than value
332
+ self.assertTrue(mx.allclose(vjps[0], mx.array([4.0, 5.0, 6.0])))
333
+ self.assertTrue(mx.allclose(vjps[1], mx.array([0.0])))
334
+
335
+ cotan = mx.array([[4.0], [5.0], [6.0]])
336
+ _, vjps = mx.vjp(
337
+ fun, [mx.array([[1.0], [2.0], [3.0]]), mx.array([[[2.0]]])], [cotan]
338
+ )
339
+ mx.eval(vjps)
340
+
341
+ # Update and value are equal
342
+ self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
343
+ self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
344
+
345
+ def test_split_against_slice(self):
346
+ def f_split(x):
347
+ a, _, b = x.split(3, -1)
348
+ return (a * b).sum()
349
+
350
+ def f_slice(x):
351
+ step = x.shape[-1] // 3
352
+ a = x[..., :step]
353
+ b = x[..., -step:]
354
+ return (a * b).sum()
355
+
356
+ x = mx.random.uniform(shape=(100, 300))
357
+ mx.eval(x)
358
+
359
+ df1 = mx.grad(f_split)
360
+ df2 = mx.grad(f_slice)
361
+
362
+ self.assertTrue(mx.allclose(df1(x), df2(x)))
363
+
364
+ def test_vjp_types(self):
365
+ def fun(x):
366
+ return x
367
+
368
+ for t in [mx.float16, mx.bfloat16, mx.float32]:
369
+ out = mx.grad(fun)(mx.array(1.0, t))
370
+ self.assertEqual(out.dtype, t)
371
+
372
+ def fun(x):
373
+ return x.sum()
374
+
375
+ for t in [mx.float16, mx.bfloat16, mx.float32]:
376
+ out = mx.grad(fun)(mx.array(1.0, t))
377
+ self.assertEqual(out.dtype, t)
378
+
379
+ def fun(x, y):
380
+ return (x + y).sum()
381
+
382
+ for t in [mx.float16, mx.bfloat16, mx.float32]:
383
+ out = mx.grad(fun)(mx.array(1.0, t), mx.array(1.0, t))
384
+ self.assertEqual(out.dtype, t)
385
+
386
+ def test_power_grad(self):
387
+ x = mx.array(0.0)
388
+ g = mx.grad(lambda x: x**2)(x)
389
+ self.assertEqual(g.item(), 0.0)
390
+
391
+ x = mx.array(0.0)
392
+ g = mx.grad(lambda x: x**1.5)(x)
393
+ self.assertEqual(g.item(), 0.0)
394
+
395
+ x = mx.array(2.0)
396
+ g = mx.grad(lambda x: x**2)(x)
397
+ self.assertAlmostEqual(g.item(), 4.0)
398
+
399
+ def test_eval_in_grad(self):
400
+ arr = mx.array([1.0])
401
+ cotan = mx.array([1.0, 1.0])
402
+ y = mx.array([2.0, 2.0])
403
+
404
+ def func(x):
405
+ x = x + y
406
+ cond = x < 1
407
+ cond.tolist()
408
+ return x**2
409
+
410
+ _, vjps = mx.vjp(func, (arr,), (cotan,))
411
+ self.assertEqual(vjps[0].item(), 12.0)
412
+
413
+ def func(x):
414
+ x = x + mx.array([1.0, 1.0])
415
+ mx.eval(x)
416
+ return x**2
417
+
418
+ _, vjps = mx.vjp(func, (arr,), (cotan,))
419
+ self.assertEqual(vjps[0].item(), 8.0)
420
+
421
+ def test_power_grad(self):
422
+ def fun(x, y):
423
+ res = x - y
424
+ return res**x
425
+
426
+ grad = mx.grad(fun)(mx.array(1.0), mx.array(1.0))
427
+ self.assertEqual(grad.item(), 1.0)
428
+
429
+ def test_cumprod_grad(self):
430
+ def fun(y):
431
+ return mx.cumprod(y).sum()
432
+
433
+ y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
434
+ out = mx.grad(fun)(y)
435
+ expected = mx.array([20.0, 38.0, 18.0, 16.0, 8.0])
436
+ self.assertTrue(mx.allclose(out, expected))
437
+
438
+ y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
439
+ out = mx.grad(fun)(y)
440
+ expected = mx.array([1.0, 38.0, 0.0, 0.0, 0.0])
441
+ self.assertTrue(mx.allclose(out, expected))
442
+
443
+ y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
444
+ out = mx.grad(fun)(y)
445
+ expected = mx.array([1.0, 6.0, 0.0, 0.0, 0.0])
446
+ self.assertTrue(mx.allclose(out, expected))
447
+
448
+ def fun(y):
449
+ return mx.cumprod(y, inclusive=False).sum()
450
+
451
+ y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
452
+ out = mx.grad(fun)(y)
453
+ expected = mx.array([8.0, 14.0, 6.0, 4.0, 0.0])
454
+ self.assertTrue(mx.allclose(out, expected))
455
+
456
+ y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
457
+ out = mx.grad(fun)(y)
458
+ expected = mx.array([1.0, 14.0, 0.0, 0.0, 0.0])
459
+ self.assertTrue(mx.allclose(out, expected))
460
+
461
+ y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
462
+ out = mx.grad(fun)(y)
463
+ expected = mx.array([1.0, 6.0, 0.0, 0.0, 0.0])
464
+ self.assertTrue(mx.allclose(out, expected))
465
+
466
+ def fun(y):
467
+ return mx.cumprod(y, inclusive=False, reverse=True).sum()
468
+
469
+ y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
470
+ out = mx.grad(fun)(y)
471
+ expected = mx.array([0.0, 12.0, 12.0, 15.0, 11.0])
472
+ self.assertTrue(mx.allclose(out, expected))
473
+
474
+ y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
475
+ out = mx.grad(fun)(y)
476
+ expected = mx.array([0.0, 12.0, 6.0, 9.0, 7.0])
477
+ self.assertTrue(mx.allclose(out, expected))
478
+
479
+ y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
480
+ out = mx.grad(fun)(y)
481
+ expected = mx.array([0.0, 0.0, 0.0, 9.0, 1.0])
482
+ self.assertTrue(mx.allclose(out, expected))
483
+
484
+ def fun(y):
485
+ return mx.cumprod(y, reverse=True).sum()
486
+
487
+ y = mx.array([2.0, 1.0, 2.0, 2.0, 3.0])
488
+ out = mx.grad(fun)(y)
489
+ expected = mx.array([12.0, 36.0, 24.0, 27.0, 19.0])
490
+ self.assertTrue(mx.allclose(out, expected))
491
+
492
+ y = mx.array([2.0, 0.0, 2.0, 2.0, 3.0])
493
+ out = mx.grad(fun)(y)
494
+ expected = mx.array([0.0, 36.0, 6.0, 9.0, 7.0])
495
+ self.assertTrue(mx.allclose(out, expected))
496
+
497
+ y = mx.array([2.0, 0.0, 2.0, 0.0, 3.0])
498
+ out = mx.grad(fun)(y)
499
+ expected = mx.array([0.0, 0.0, 0.0, 9.0, 1.0])
500
+ self.assertTrue(mx.allclose(out, expected))
501
+
502
+ def test_topk_grad(self):
503
+ a = mx.array([[1, 2, 6, 4, 5], [9, 5, 6, 7, 8]], mx.float32)
504
+
505
+ def fun(x):
506
+ return mx.topk(x, 2)
507
+
508
+ out = mx.vjp(fun, (a,), (mx.ones((2, 2)),))[1][0]
509
+ expected = mx.array([[0, 0, 1, 0, 1], [1, 0, 0, 0, 1]], mx.float32)
510
+ self.assertTrue(mx.array_equal(out, expected))
511
+
512
+ def test_custom_function(self):
513
+ # Make a custom function
514
+ my_exp = mx.custom_function(mx.exp)
515
+
516
+ # Ensure everything works
517
+ dy = mx.grad(my_exp)(mx.array(1.0))
518
+ self.assertTrue(mx.allclose(dy, mx.exp(mx.array(1.0))))
519
+ (ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
520
+ self.assertTrue(mx.allclose(dex, mx.exp(mx.array(1.0))))
521
+ self.assertTrue(mx.allclose(ex, dex))
522
+ ex = mx.vmap(my_exp)(mx.ones(10))
523
+ self.assertTrue(mx.allclose(ex, mx.exp(mx.ones(10))))
524
+
525
+ # Ensure that the vjp is being overriden but everything else still
526
+ # works.
527
+ @my_exp.vjp
528
+ def my_exp_vjp(x, dx, ex):
529
+ return mx.ones_like(x) * 42
530
+
531
+ dy = mx.grad(my_exp)(mx.array(1.0))
532
+ self.assertTrue(mx.allclose(dy, mx.array(42.0)))
533
+ (ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
534
+ self.assertTrue(mx.allclose(dex, mx.exp(mx.array(1.0))))
535
+ self.assertTrue(mx.allclose(ex, dex))
536
+ ex = mx.vmap(my_exp)(mx.ones(10))
537
+ self.assertTrue(mx.allclose(ex, mx.exp(mx.ones(10))))
538
+
539
+ # Ensure that setting the jvp and vmap also works.
540
+ @my_exp.jvp
541
+ def my_exp_jvp(x, dx):
542
+ return mx.ones_like(x) * 7 * dx
543
+
544
+ @my_exp.vmap
545
+ def my_exp_vmap(x, axis):
546
+ return mx.ones_like(x) * 3, axis
547
+
548
+ dy = mx.grad(my_exp)(mx.array(1.0))
549
+ self.assertTrue(mx.allclose(dy, mx.array(42.0)))
550
+ (ex,), (dex,) = mx.jvp(my_exp, [mx.array(1.0)], [mx.array(1.0)])
551
+ self.assertTrue(mx.allclose(dex, mx.array(7.0)))
552
+ self.assertTrue(mx.allclose(ex, mx.exp(mx.array(1.0))))
553
+ ex = mx.vmap(my_exp)(mx.ones(10))
554
+ self.assertTrue(mx.allclose(ex, 3 * mx.ones(10)))
555
+
556
+ # Test pytrees
557
+ @mx.custom_function
558
+ def my_double(params):
559
+ return {"out": 2 * params["x"] * params["y"]}
560
+
561
+ dy = mx.grad(lambda p: my_double(p)["out"].sum())(
562
+ {"x": mx.ones(2), "y": mx.ones(2)}
563
+ )
564
+ self.assertTrue(mx.allclose(dy["x"], mx.ones(2) * 2))
565
+ self.assertTrue(mx.allclose(dy["y"], mx.ones(2) * 2))
566
+
567
+ @my_double.vjp
568
+ def random_grads(primals, cotangents, outputs):
569
+ return {"x": mx.zeros_like(primals["x"]), "y": mx.ones_like(primals["y"])}
570
+
571
+ dy = mx.grad(lambda p: my_double(p)["out"].sum())(
572
+ {"x": mx.ones(2), "y": mx.ones(2)}
573
+ )
574
+ self.assertTrue(mx.allclose(dy["x"], mx.zeros(2)))
575
+ self.assertTrue(mx.allclose(dy["y"], mx.ones(2)))
576
+
577
+ def outer_f(a, b):
578
+ return my_double({"x": a, "y": b})["out"]
579
+
580
+ inputs = [mx.random.normal(shape=(2,)) for i in range(2)]
581
+ tans = [mx.random.normal(shape=(2,)) for i in range(2)]
582
+ out1, dout1 = mx.jvp(outer_f, inputs, tans)
583
+
584
+ @my_double.jvp
585
+ def random_grads(primals, tangents):
586
+ return {
587
+ "out": 2 * primals["x"] * tangents["y"]
588
+ + 2 * primals["y"] * tangents["x"]
589
+ + 1
590
+ }
591
+
592
+ out2, dout2 = mx.jvp(outer_f, inputs, tans)
593
+ self.assertTrue(mx.allclose(out1[0], out2[0]))
594
+ self.assertTrue(mx.allclose(dout1[0] + 1, dout2[0]))
595
+
596
+ def test_complex_vjps(self):
597
+ def fun(x):
598
+ return (2.0 * mx.real(x)).sum()
599
+
600
+ x = mx.array([0.0 + 1j, 1.0 + 0.0j, 0.5 + 0.5j])
601
+ dfdx = mx.grad(fun)(x)
602
+ self.assertTrue(mx.allclose(dfdx, 2 * mx.ones_like(x)))
603
+
604
+ def fun(x):
605
+ return (2.0 * mx.imag(x)).sum()
606
+
607
+ x = mx.array([0.0 + 1j, 1.0 + 0.0j, 0.5 + 0.5j])
608
+ dfdx = mx.grad(fun)(x)
609
+ self.assertTrue(mx.allclose(dfdx, 2j * mx.ones_like(x)))
610
+
611
+ def test_flatten_unflatten_vjps(self):
612
+ def fun(x):
613
+ y = mx.unflatten(x, 0, (2, 2))
614
+ return y.sum()
615
+
616
+ x = mx.zeros((4, 8))
617
+ self.assertEqual(mx.grad(fun)(x).shape, (4, 8))
618
+
619
+ def fun(x):
620
+ y = mx.flatten(x, 0, 2)
621
+ return y.sum()
622
+
623
+ x = mx.zeros((2, 4, 8))
624
+ self.assertEqual(mx.grad(fun)(x).shape, (2, 4, 8))
625
+
626
+ def test_concatenate_vjps(self):
627
+ def fun(x, y):
628
+ return mx.concatenate([x, y])
629
+
630
+ x = mx.array([1, 2, 3], mx.float32)
631
+ y = mx.array([1, 2, 3], mx.float16)
632
+ grads = mx.vjp(fun, (x, y), (mx.ones((6,)),))[1]
633
+ self.assertTrue(mx.allclose(grads[0], mx.ones(3)))
634
+ self.assertTrue(mx.allclose(grads[1], mx.ones(3)))
635
+ self.assertEqual(grads[0].dtype, mx.float32)
636
+ self.assertEqual(grads[1].dtype, mx.float16)
637
+
638
+ def test_matmul_jvps(self):
639
+ a = mx.random.uniform(shape=(4, 4))
640
+ b = mx.random.uniform(shape=(4, 4))
641
+ c = mx.random.uniform(shape=(4, 4))
642
+ d = mx.random.uniform(shape=(4, 4))
643
+
644
+ _, tangent = mx.jvp(lambda a: a @ b, (a,), (c,))
645
+ self.assertTrue(mx.allclose(tangent[0], c @ b))
646
+
647
+ _, tangent = mx.jvp(lambda b: a @ b, (b,), (d,))
648
+ self.assertTrue(mx.allclose(tangent[0], a @ d))
649
+
650
+ _, tangent = mx.jvp(lambda a, b: a @ b, (a, b), (c, d))
651
+ self.assertTrue(mx.allclose(tangent[0], a @ d + c @ b))
652
+
653
+ x = mx.random.uniform(shape=(4, 4))
654
+ y = mx.random.uniform(shape=(4, 4))
655
+ z = mx.random.uniform(shape=(4, 4))
656
+
657
+ _, (tangent,) = mx.jvp(lambda a, b, c: a @ b + c, (a, b, c), (x, y, z))
658
+ _, (expected,) = mx.jvp(lambda a, b, c: mx.addmm(c, a, b), (a, b, c), (x, y, z))
659
+ self.assertTrue(mx.allclose(tangent, expected))
660
+
661
+ _, (tangent,) = mx.jvp(lambda a, c: a @ b + c, (a, c), (x, z))
662
+ _, (expected,) = mx.jvp(lambda a, c: mx.addmm(c, a, b), (a, c), (x, z))
663
+ self.assertTrue(mx.allclose(tangent, expected))
664
+
665
+ _, (tangent,) = mx.jvp(lambda b, c: a @ b + c, (b, c), (y, z))
666
+ _, (expected,) = mx.jvp(lambda b, c: mx.addmm(c, a, b), (b, c), (y, z))
667
+ self.assertTrue(mx.allclose(tangent, expected))
668
+
669
+ _, (tangent,) = mx.jvp(lambda c: a @ b + c, (c,), (z,))
670
+ _, (expected,) = mx.jvp(lambda c: mx.addmm(c, a, b), (c,), (z,))
671
+ self.assertTrue(mx.allclose(tangent, expected))
672
+
673
+ def test_put_along_axis_grads(self):
674
+ a = mx.zeros((5, 1))
675
+ b = mx.ones((2, 1))
676
+
677
+ def fun(a, b):
678
+ idx = mx.array([[0], [3]])
679
+ return mx.put_along_axis(a, idx, b, axis=0)
680
+
681
+ # Test VJP
682
+ cotan = mx.full((5, 1), 2.0)
683
+ _, (da, db) = mx.vjp(fun, (a, b), (cotan,))
684
+ expected_da = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
685
+ expected_db = mx.array([2.0, 2.0])[:, None]
686
+ self.assertTrue(mx.allclose(expected_da, da))
687
+ self.assertTrue(mx.allclose(expected_db, db))
688
+
689
+ # Test JVP
690
+ tan_a = mx.full((5, 1), 2.0)
691
+ tan_b = mx.full((2, 1), 3.0)
692
+ _, (jout,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
693
+ expected = mx.array([3.0, 2.0, 2.0, 3.0, 2.0])[:, None]
694
+ self.assertTrue(mx.allclose(expected, jout))
695
+
696
+ def fun(a):
697
+ idx = mx.array([[0], [3]])
698
+ return mx.put_along_axis(a, idx, b, axis=0)
699
+
700
+ _, (jout,) = mx.jvp(fun, (a,), (tan_a,))
701
+ expected = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
702
+ self.assertTrue(mx.allclose(expected, jout))
703
+
704
+ def test_slice_grads(self):
705
+ # Slice
706
+ def fun(a):
707
+ return a[5:-6:-1]
708
+
709
+ a = mx.ones(shape=(5,))
710
+ cotan = mx.random.uniform(shape=(5,))
711
+ _, (grad,) = mx.vjp(fun, (a,), (cotan,))
712
+ self.assertTrue(mx.allclose(grad, cotan[::-1]))
713
+
714
+ tan = mx.random.uniform(shape=(5,))
715
+ mx.eval(tan)
716
+ _, (grad,) = mx.jvp(fun, (a,), (tan,))
717
+ self.assertTrue(mx.allclose(grad, tan[::-1]))
718
+
719
+ # Slice update
720
+ def fun(a, b):
721
+ a[4:-5:-2] = b
722
+ return a
723
+
724
+ a = mx.ones(shape=(4,))
725
+ b = mx.zeros(shape=(2,))
726
+
727
+ cotan = mx.random.uniform(shape=(4,))
728
+ _, (grad_a, grad_b) = mx.vjp(fun, (a, b), (cotan,))
729
+ expected_a = mx.array(cotan)
730
+ expected_a[1::2] = 0.0
731
+ self.assertTrue(mx.allclose(grad_a, expected_a))
732
+ self.assertTrue(mx.allclose(grad_b, cotan[4:-5:-2]))
733
+
734
+ tan_a = mx.random.uniform(shape=(4,))
735
+ tan_b = mx.random.uniform(shape=(2,))
736
+ _, (grad,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
737
+ expected = tan_a
738
+ expected[4:-5:-2] = tan_b
739
+ self.assertTrue(mx.allclose(grad, expected))
740
+
741
+ def test_leaks(self):
742
+ for transform in [
743
+ mx.grad,
744
+ mx.value_and_grad,
745
+ mx.custom_function,
746
+ mx.checkpoint,
747
+ ]:
748
+ mx.synchronize()
749
+ gc.collect()
750
+ mem_pre = mx.get_active_memory()
751
+
752
+ def outer():
753
+ d = {}
754
+
755
+ def f(x):
756
+ return d["x"]
757
+
758
+ d["f"] = transform(f)
759
+ d["x"] = mx.array([0] * 1000)
760
+
761
+ for _ in range(5):
762
+ outer()
763
+ gc.collect()
764
+ mem_post = mx.get_active_memory()
765
+ self.assertEqual(mem_pre, mem_post)
766
+
767
+ def test_grad_with_copies(self):
768
+ a = mx.array(2.0)
769
+ arrays = [a, a, a]
770
+
771
+ def fun(arrays):
772
+ return arrays[0] + arrays[2]
773
+
774
+ grads = mx.grad(fun)(arrays)
775
+ self.assertEqual(grads[0].item(), 1.0)
776
+ self.assertEqual(grads[2].item(), 1.0)
777
+
778
+ def test_grad_ids_pre_post(self):
779
+ def fun(arrs):
780
+ return arrs[0]
781
+
782
+ arrs = [mx.array(1.0)]
783
+ arr = arrs[0]
784
+ mx.grad(fun)(arrs)
785
+ self.assertEqual(id(arr), id(arrs[0]))
786
+
787
+ def fun(arrs):
788
+ arrs[1] = sum(arrs)
789
+ return arrs[1]
790
+
791
+ arrs = [mx.array(1.0), mx.array(1.0), mx.array(1.0)]
792
+ a_0, a_1, a_2 = arrs
793
+
794
+ mx.grad(fun)(arrs)
795
+ self.assertEqual(id(a_0), id(arrs[0]))
796
+ self.assertNotEqual(id(a_1), id(arrs[1]))
797
+ self.assertEqual(id(a_2), id(arrs[2]))
798
+
799
+ def test_grad_with_inplace_update(self):
800
+ def loss_fn(model):
801
+ model[1] = mx.array(2.0)
802
+ return model[0]
803
+
804
+ model = [
805
+ mx.array(0.0),
806
+ mx.array(1.0),
807
+ ]
808
+
809
+ grad_fn = mx.grad(loss_fn)
810
+ grad_fn(model)
811
+ self.assertEqual(model[1].item(), 2.0)
812
+
813
+ def test_autograd_types(self):
814
+ from typing import NamedTuple
815
+
816
+ class Vector(tuple):
817
+ pass
818
+
819
+ class State(NamedTuple):
820
+ a: mx.array
821
+ b: mx.array
822
+
823
+ def transform(x: State):
824
+ return State(x.a + 10, x.b * 10)
825
+
826
+ def transform_tuple(t):
827
+ return (t[0] + 10, t[1] * 10)
828
+
829
+ def transform_vector(t):
830
+ return Vector([t[0] + 10, t[1] * 10])
831
+
832
+ def loss_fn(x):
833
+ out = transform(x)
834
+ return out.a.sum() + out.b.sum()
835
+
836
+ def loss_fn_tuple(x):
837
+ out = transform_tuple(x)
838
+ return out[0].sum() + out[1].sum()
839
+
840
+ def loss_fn_vector(x):
841
+ out = transform_vector(x)
842
+ return out[0].sum() + out[1].sum()
843
+
844
+ x_batch = State(mx.array([1, 2, 3]), mx.array([4, 5, 6]))
845
+ grads = mx.grad(loss_fn)(x_batch)
846
+ self.assertTrue(isinstance(grads, State))
847
+ self.assertTrue(mx.array_equal(grads.a, mx.ones(3)))
848
+ self.assertTrue(mx.array_equal(grads.b, mx.ones(3) * 10))
849
+
850
+ x_batch_tuple = (mx.array([1, 2, 3]), mx.array([4, 5, 6]))
851
+ grads = mx.grad(loss_fn_tuple)(x_batch_tuple)
852
+ self.assertTrue(isinstance(grads, tuple))
853
+ self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
854
+ self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))
855
+
856
+ x_batch_vector = Vector([mx.array([1, 2, 3]), mx.array([4, 5, 6])])
857
+ grads = mx.grad(loss_fn_vector)(x_batch_vector)
858
+ self.assertTrue(isinstance(grads, Vector))
859
+ self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
860
+ self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))
861
+
862
+ def test_reduce_jvp(self):
863
+ a = mx.arange(4)
864
+ b = mx.array([3, 2, 1, 0])
865
+
866
+ out, jout = mx.jvp(mx.sum, primals=(a,), tangents=(b,))
867
+ self.assertEqual(jout[0].item(), 6)
868
+
869
+ out, jout = mx.jvp(mx.prod, primals=(a,), tangents=(b,))
870
+ self.assertEqual(jout[0].item(), 18)
871
+
872
+ out, jout = mx.jvp(mx.min, primals=(a,), tangents=(b,))
873
+ self.assertEqual(jout[0].item(), 3)
874
+
875
+ out, jout = mx.jvp(mx.max, primals=(a,), tangents=(b,))
876
+ self.assertEqual(jout[0].item(), 0)
877
+
878
+
879
+ if __name__ == "__main__":
880
+ mlx_tests.MLXTestRunner()