mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1399 @@
1
+ // Copyright © 2023 Apple Inc.
2
+
3
+ // Required for using M_2_SQRTPI in MSVC.
4
+ #define _USE_MATH_DEFINES
5
+
6
+ #include <algorithm>
7
+ #include <cmath>
8
+ #include <numeric>
9
+ #include <sstream>
10
+ #include <vector>
11
+ #include "doctest/doctest.h"
12
+
13
+ #include "mlx/graph_utils.h"
14
+ #include "mlx/mlx.h"
15
+
16
+ #include "mlx/backend/cuda/cuda.h"
17
+
18
+ using namespace mlx::core;
19
+
20
+ TEST_CASE("test stop gradient") {
21
+ auto x = zeros({5, 5});
22
+ auto y = stop_gradient(x);
23
+ CHECK(array_equal(y, zeros({5, 5})).item<bool>());
24
+
25
+ x = zeros({5, 5}, int32);
26
+ y = stop_gradient(x);
27
+ CHECK_EQ(y.dtype(), int32);
28
+ CHECK(array_equal(y, zeros({5, 5}, int32)).item<bool>());
29
+
30
+ {
31
+ auto fun = [](array input) { return stop_gradient(add(input, ones({2}))); };
32
+ auto vfun = vmap(fun);
33
+ auto out = vfun(ones({3, 2}));
34
+ CHECK(array_equal(out, full({3, 2}, 2.0)).item<bool>());
35
+ }
36
+
37
+ {
38
+ auto fun = [](array input) { return add(stop_gradient(input), ones({2})); };
39
+ auto vfun = vmap(fun);
40
+ auto out = vfun(ones({3, 2}));
41
+ CHECK(array_equal(out, full({3, 2}, 2.0)).item<bool>());
42
+ }
43
+
44
+ {
45
+ auto x = array(1.);
46
+ auto fun = [](array in) { return stop_gradient(add(in, in)); };
47
+ auto out = vjp(fun, x, array(1.)).second;
48
+ CHECK(array_equal(out, array(0.)).item<bool>());
49
+
50
+ out = jvp(fun, x, array(1.)).second;
51
+ CHECK(array_equal(out, array(0.)).item<bool>());
52
+ }
53
+
54
+ {
55
+ auto x = array(1.);
56
+ auto fun = [](array in) { return add(in, stop_gradient(in)); };
57
+ auto out = vjp(fun, x, array(1.)).second;
58
+ CHECK(array_equal(out, array(1.)).item<bool>());
59
+
60
+ out = jvp(fun, x, array(1.)).second;
61
+ CHECK(array_equal(out, array(1.)).item<bool>());
62
+ }
63
+
64
+ {
65
+ auto x = array(1.);
66
+ auto fun = [](array in) {
67
+ for (int i = 0; i < 10; ++i) {
68
+ in = add(in, in);
69
+ }
70
+ return stop_gradient(in);
71
+ };
72
+ {
73
+ auto out = vjp(fun, x, array(1.)).second;
74
+ std::ostringstream g_ss;
75
+ print_graph(g_ss, out);
76
+ auto g_str = g_ss.str();
77
+ auto count = std::count(g_str.begin(), g_str.end(), '\n');
78
+ CHECK(count < 5);
79
+ }
80
+ {
81
+ auto out = jvp(fun, x, array(1.)).second;
82
+ std::ostringstream g_ss;
83
+ print_graph(g_ss, out);
84
+ auto g_str = g_ss.str();
85
+ auto count = std::count(g_str.begin(), g_str.end(), '\n');
86
+ CHECK(count < 5);
87
+ }
88
+ }
89
+ }
90
+
91
+ TEST_CASE("test jvp") {
92
+ {
93
+ auto fun = [](const std::vector<array>& inputs) {
94
+ return std::vector<array>{add(inputs[0], inputs[1])};
95
+ };
96
+ auto x = array(1.0f);
97
+ auto y = array(1.0f);
98
+ auto [out, dout] = jvp(fun, {x, y}, {array(1.0f), array(3.0f)});
99
+ CHECK_EQ(out[0].item<float>(), 2.0f);
100
+ CHECK_EQ(dout[0].item<float>(), 4.0f);
101
+ }
102
+
103
+ // Evaling in function while tracing performs graph retention
104
+ {
105
+ auto fun1 = [](const array& x) {
106
+ auto y = 3 * x;
107
+ eval(y);
108
+ CHECK(y.is_available());
109
+ CHECK(y.has_primitive());
110
+ CHECK(y.is_tracer());
111
+ return 2 * y;
112
+ };
113
+ CHECK_EQ(jvp(fun1, array(1.0f), array(1.0f)).second.item<float>(), 6.0f);
114
+ }
115
+
116
+ // Only one argument
117
+ {
118
+ auto x = array(1.0f);
119
+ auto fun = [x](array in) { return add(x, in); };
120
+ auto y = array(1.0f);
121
+ auto out = jvp(fun, y, array(3.0f)).second;
122
+ CHECK_EQ(out.item<float>(), 3.0f);
123
+ }
124
+
125
+ // Input also in capture clause
126
+ {
127
+ auto x = array(1.0f);
128
+ auto fun = [x](array in) { return in + x; };
129
+ auto out = jvp(fun, x, array(1.0f)).second;
130
+ CHECK_EQ(out.item<float>(), 1.0f);
131
+ }
132
+
133
+ // Throws on incorrectly shaped inputs
134
+ {
135
+ auto fun = [](array in) { return add(in, in); };
136
+ CHECK_THROWS_AS(jvp(fun, array(1), array({1, 1})), std::invalid_argument);
137
+ }
138
+
139
+ // Throws on wrong number of inputs
140
+ {
141
+ auto fun = [](std::vector<array> inputs) {
142
+ return std::vector<array>{inputs[0], inputs[1]};
143
+ };
144
+ CHECK_THROWS_AS(
145
+ jvp(fun, {array(1), array(1)}, {array(1)}), std::invalid_argument);
146
+ }
147
+
148
+ // No dependence between input and output
149
+ {
150
+ auto fun = [](array in) { return array({1.0, 1.0}); };
151
+ auto out = jvp(fun, array(1.0f), array(1.0f)).second;
152
+ CHECK(array_equal(out, zeros({2})).item<bool>());
153
+ }
154
+ }
155
+
156
+ TEST_CASE("test vjp") {
157
+ {
158
+ auto x = array(1.0f);
159
+ auto y = array(1.0f);
160
+ auto fun = [y](array in) { return add(in, y); };
161
+ auto [out, dout] = vjp(fun, x, array(1.0f));
162
+ CHECK_EQ(out.item<float>(), 2.0f);
163
+ CHECK_EQ(dout.item<float>(), 1.0f);
164
+ }
165
+
166
+ {
167
+ auto x = array(1.0f);
168
+ auto fun = [](array in) { return in + in + in; };
169
+ auto out = vjp(fun, x, array(1.0f)).second;
170
+ CHECK_EQ(out.item<float>(), 3.0f);
171
+ out = vjp(fun, x, array(2.)).second;
172
+ CHECK_EQ(out.item<float>(), 6.0f);
173
+ }
174
+
175
+ // Input also in capture clause
176
+ {
177
+ auto x = array(1.0f);
178
+ auto fun = [x](array in) { return in + x; };
179
+ auto out = vjp(fun, x, array(1.0f)).second;
180
+ CHECK_EQ(out.item<float>(), 1.0f);
181
+ }
182
+
183
+ // Throws on incorrectly shaped outputs
184
+ {
185
+ auto fun = [](array in) { return add(in, in); };
186
+ CHECK_THROWS_AS(vjp(fun, zeros({1}), zeros({2})), std::invalid_argument);
187
+ }
188
+
189
+ // Throws on wrong number of outputs
190
+ {
191
+ auto fun = [](std::vector<array> inputs) {
192
+ return std::vector<array>{inputs[0], inputs[0]};
193
+ };
194
+ CHECK_THROWS_AS(
195
+ vjp(fun, {zeros({1})}, {zeros({2})}), std::invalid_argument);
196
+ }
197
+
198
+ // No dependence between input and output
199
+ {
200
+ auto fun = [](array in) { return array(1.); };
201
+ auto out = vjp(fun, zeros({2}), array(1.)).second;
202
+ CHECK(array_equal(out, zeros({2})).item<bool>());
203
+ }
204
+
205
+ // Handles multiple outputs
206
+ {
207
+ auto x = array(1.);
208
+ auto y = array(2.);
209
+ auto z = array(3.);
210
+ auto fun = [](const std::vector<array>& in) {
211
+ return std::vector<array>{in[0] * in[1], in[1] * in[2]};
212
+ };
213
+ auto out = vjp(fun, {x, y, z}, {array(2.), array(3.)}).second;
214
+ CHECK_EQ(out.size(), 3);
215
+ CHECK_EQ(out[0].item<float>(), 2.0f * 2.0f);
216
+ CHECK_EQ(out[1].item<float>(), 1.0f * 2.0f + 3.0f * 3.0f);
217
+ CHECK_EQ(out[2].item<float>(), 3.0f * 2.0f);
218
+ }
219
+ }
220
+
221
+ TEST_CASE("test grad") {
222
+ {
223
+ auto x = array(1.0);
224
+ auto fun = [](array in) { return in + 1; };
225
+ auto [y, dfdx] = value_and_grad(fun)(x);
226
+ CHECK_EQ(y.item<float>(), 2.0f);
227
+ CHECK_EQ(dfdx.item<float>(), 1.0f);
228
+ auto [z, d2fdx2] = value_and_grad(grad(fun))(x);
229
+ CHECK_EQ(z.item<float>(), 1.0f);
230
+ CHECK_EQ(d2fdx2.item<float>(), 0.0f);
231
+ }
232
+
233
+ {
234
+ auto x = array(1.);
235
+ auto fun = [](array in) { return add(in, array(1.)); };
236
+ auto dfdx = grad(fun);
237
+ CHECK(array_equal(dfdx(x), array(1.)).item<bool>());
238
+ auto d2fdx2 = grad(grad(fun));
239
+ CHECK(array_equal(d2fdx2(x), array(0.)).item<bool>());
240
+ }
241
+
242
+ {
243
+ auto x = array(1.);
244
+ auto expfn = [](array input) { return exp(input); };
245
+ auto dfdx = grad(expfn);
246
+ CHECK_EQ(dfdx(x).item<float>(), doctest::Approx(std::exp(1.0f)));
247
+ auto d2fdx2 = grad(grad(expfn));
248
+ CHECK_EQ(d2fdx2(x).item<float>(), doctest::Approx(std::exp(1.0f)));
249
+ auto d3fdx3 = grad(grad(grad(expfn)));
250
+ CHECK_EQ(d3fdx3(x).item<float>(), doctest::Approx(std::exp(1.0f)));
251
+ }
252
+
253
+ {
254
+ // No graph retention since the output is independent of y
255
+ auto y = ones({3, 3});
256
+ auto fn1 = [y](array x) {
257
+ x = x + 2.0f;
258
+ eval(y);
259
+ CHECK(x.is_tracer());
260
+ CHECK(!y.is_tracer());
261
+ CHECK(y.is_available());
262
+ CHECK(!y.has_primitive());
263
+ return square(x);
264
+ };
265
+ auto dfdx = grad(fn1)(array(1.0f));
266
+ CHECK_EQ(dfdx.item<float>(), 6.0f);
267
+
268
+ // Graph automatically retained to compute the grad
269
+ auto fn2 = [](array x) {
270
+ x = x + 2.0f;
271
+ eval(x);
272
+ CHECK(x.is_tracer());
273
+ CHECK(x.is_available());
274
+ CHECK(x.has_primitive());
275
+ return square(x);
276
+ };
277
+ dfdx = grad(fn2)(array(1.0f));
278
+ CHECK_EQ(dfdx.item<float>(), 6.0f);
279
+ }
280
+
281
+ // Control flow in grad computation
282
+ {
283
+ auto fn = [](array x) {
284
+ x = x + array(2.0f);
285
+ if (x.item<float>() > 3) {
286
+ return square(x);
287
+ } else {
288
+ return 4 * x;
289
+ }
290
+ };
291
+
292
+ auto dfdx = grad(fn)(array(0.5f));
293
+ CHECK_EQ(dfdx.item<float>(), 4.0f);
294
+
295
+ dfdx = grad(fn)(array(1.5f));
296
+ CHECK_EQ(dfdx.item<float>(), 7.0f);
297
+ }
298
+
299
+ // Grad with multiple inputs
300
+ {
301
+ auto fn = [](std::vector<array> inputs) { return inputs[0] * inputs[1]; };
302
+ auto x = array(2.0f);
303
+ auto y = array(3.0f);
304
+
305
+ auto [value, grads] = value_and_grad(fn)({x, y});
306
+ CHECK_EQ(value.item<float>(), 6.0f);
307
+ CHECK_EQ(grads[0].item<float>(), 3.0f);
308
+
309
+ auto dfdx = grad(fn)({x, y})[0];
310
+ CHECK_EQ(dfdx.item<float>(), 3.0f);
311
+
312
+ auto dfdy = grad(fn, 1)({x, y})[0];
313
+ CHECK_EQ(dfdy.item<float>(), 2.0f);
314
+
315
+ // Negative indexing
316
+ dfdy = grad(fn, -1)({x, y})[0];
317
+ CHECK_EQ(dfdy.item<float>(), 2.0f);
318
+
319
+ grads = grad(fn, {0, 1})({x, y});
320
+ CHECK_EQ(grads[0].item<float>(), 3.0f);
321
+ CHECK_EQ(grads[1].item<float>(), 2.0f);
322
+
323
+ CHECK_THROWS_AS(
324
+ grad(fn, std::vector<int>{})({x, y}), std::invalid_argument);
325
+ CHECK_THROWS_AS(grad(fn, {0, 1, 2})({x, y}), std::invalid_argument);
326
+ CHECK_THROWS_AS(grad(fn, {0, 0})({x, y}), std::invalid_argument);
327
+ CHECK_THROWS_AS(grad(fn, -3)({x, y}), std::invalid_argument);
328
+ }
329
+ }
330
+
331
+ TEST_CASE("test creation grads") {
332
+ // Test astype
333
+ {
334
+ auto fn = [](array a) { return astype(a, int32); };
335
+ auto x = ones({4, 4}, float32);
336
+ auto out = vjp(fn, x, full({4, 4}, 2, int32)).second;
337
+ CHECK_EQ(out.dtype(), float32);
338
+ CHECK(array_equal(out, full({4, 4}, 2.0f)).item<bool>());
339
+
340
+ out = jvp(fn, x, full({4, 4}, 2, float32)).second;
341
+ CHECK_EQ(out.dtype(), int32);
342
+ CHECK(array_equal(out, full({4, 4}, 2, int32)).item<bool>());
343
+ }
344
+
345
+ // Test full
346
+ {
347
+ auto full_fn = [](array a) { return full({5, 5, 2}, a); };
348
+ auto x = ones({2}, float32);
349
+ auto out = vjp(full_fn, x, full({5, 5, 2}, 2.0f)).second;
350
+ CHECK(array_equal(out, array({50.0f, 50.0f})).item<bool>());
351
+
352
+ out = jvp(full_fn, x, array({3.0f, 3.0f})).second;
353
+ CHECK(array_equal(out, full({5, 5, 2}, 3.0f)).item<bool>());
354
+ }
355
+ }
356
+
357
+ TEST_CASE("test op vjps") {
358
+ // Test abs
359
+ {
360
+ auto out = vjp([](array in) { return abs(in); }, array(-5.0f), array(1.0f));
361
+ CHECK_EQ(out.second.item<float>(), -1.0f);
362
+ }
363
+
364
+ // Test sign
365
+ {
366
+ auto out =
367
+ vjp([](array in) { return sign(in); }, array(-5.0f), array(10.0f));
368
+ CHECK_EQ(out.second.item<float>(), 0.0f);
369
+ }
370
+
371
+ // Test negate
372
+ {
373
+ auto out = vjp([](array in) { return -in; }, array(1.0), array(2.0));
374
+ CHECK(array_equal(out.second, array(-2.)).item<bool>());
375
+ }
376
+
377
+ // Test square
378
+ {
379
+ auto out =
380
+ vjp([](array in) { return square(in); }, array(2.0f), array(3.0f));
381
+ CHECK_EQ(out.second.item<float>(), 12.0f);
382
+ }
383
+
384
+ // Test sqrt
385
+ {
386
+ auto out = vjp(
387
+ [](array in) { return mlx::core::sqrt(in); }, array(4.0f), array(8.0f));
388
+ CHECK_EQ(out.second.item<float>(), 2.0f);
389
+ }
390
+
391
+ // Test rsqrt
392
+ {
393
+ auto out =
394
+ vjp([](array in) { return rsqrt(in); }, array(4.0f), array(8.0f));
395
+ CHECK_EQ(out.second.item<float>(), -0.5f);
396
+ }
397
+
398
+ // Test exp
399
+ {
400
+ auto out = vjp([](array in) { return exp(in); }, array(1.0f), array(2.0f));
401
+ CHECK_EQ(out.second.item<float>(), doctest::Approx(2.0f * std::exp(1.0f)));
402
+ }
403
+
404
+ // Test sin
405
+ {
406
+ auto out =
407
+ vjp([](array input) { return sin(input); }, array(1.0f), array(1.0f));
408
+ CHECK(out.second.item<float>() == doctest::Approx(std::cos(1.0f)));
409
+ }
410
+
411
+ // Test cos
412
+ {
413
+ auto out =
414
+ vjp([](array input) { return cos(input); }, array(1.0f), array(1.0f));
415
+ CHECK(out.second.item<float>() == doctest::Approx(-std::sin(1.0f)));
416
+ }
417
+
418
+ // Test arctan
419
+ {
420
+ auto out = vjp(
421
+ [](array input) { return arctan(input); }, array(2.0f), array(1.0f));
422
+ CHECK(out.second.item<float>() == doctest::Approx(0.2f));
423
+ }
424
+
425
+ // Test arctan2
426
+ {
427
+ auto out = vjp(
428
+ [](const std::vector<array>& xs) {
429
+ return std::vector<array>{arctan2(xs[0], xs[1])};
430
+ },
431
+ {array(2.0f), array(3.0f)},
432
+ {array(1.0f)});
433
+ CHECK(out.second[0].item<float>() == doctest::Approx(3.0f / 13.0f));
434
+ CHECK(out.second[1].item<float>() == doctest::Approx(-2.0f / 13.0f));
435
+ }
436
+
437
+ // Test log
438
+ {
439
+ auto out = vjp([](array in) { return log(in); }, array(2.0f), array(1.0f));
440
+ CHECK_EQ(out.second.item<float>(), 0.5f);
441
+
442
+ out = vjp([](array in) { return log(in); }, array(2.0f), array(2.0f));
443
+ CHECK_EQ(out.second.item<float>(), 1.0f);
444
+ }
445
+
446
+ // Test log1p
447
+ {
448
+ auto out =
449
+ vjp([](array in) { return log1p(in); }, array(1.0f), array(1.0f));
450
+ CHECK_EQ(out.second.item<float>(), 0.5f);
451
+
452
+ out = vjp([](array in) { return log1p(in); }, array(1.0f), array(2.0f));
453
+ CHECK_EQ(out.second.item<float>(), 1.0f);
454
+ }
455
+
456
+ constexpr auto inf = std::numeric_limits<float>::infinity();
457
+
458
+ // Test erf
459
+ {
460
+ auto out = vjp([](array in) { return erf(in); }, array(inf), array(1.0f));
461
+ CHECK_EQ(out.second.item<float>(), doctest::Approx(0.0f));
462
+
463
+ out = vjp([](array in) { return erf(in); }, array(-inf), array(2.0f));
464
+ CHECK_EQ(out.second.item<float>(), doctest::Approx(0.0f));
465
+
466
+ out = vjp([](array in) { return erf(in); }, array(0.0f), array(1.0f));
467
+ CHECK_EQ(out.second.item<float>(), static_cast<float>(M_2_SQRTPI));
468
+ }
469
+
470
+ // Test erfinv
471
+ {
472
+ auto out =
473
+ vjp([](array in) { return erfinv(in); }, array(1.0f), array(1.0f));
474
+ CHECK_EQ(out.second.item<float>(), inf);
475
+
476
+ out = vjp([](array in) { return erfinv(in); }, array(-1.0f), array(2.0f));
477
+ CHECK_EQ(out.second.item<float>(), inf);
478
+
479
+ out = vjp([](array in) { return erfinv(in); }, array(0.0f), array(1.0f));
480
+ CHECK_EQ(out.second.item<float>(), static_cast<float>(1.0 / M_2_SQRTPI));
481
+ }
482
+
483
+ // Test sigmoid
484
+ {
485
+ auto out =
486
+ vjp([](array in) { return sigmoid(in); }, array(0.0f), array(1.0f));
487
+ CHECK_EQ(out.second.item<float>(), 0.25f);
488
+
489
+ out = vjp([](array in) { return sigmoid(in); }, array(0.0f), array(2.0f));
490
+ CHECK_EQ(out.second.item<float>(), 0.5f);
491
+ }
492
+
493
+ // Test add
494
+ {
495
+ auto fun = [](std::vector<array> inputs) {
496
+ return std::vector<array>{inputs[0] + inputs[1]};
497
+ };
498
+ auto out = vjp(fun, {array(1.0), array(2.0)}, {array(3.0)}).second;
499
+ CHECK_EQ(out[0].item<float>(), 3.0);
500
+ CHECK_EQ(out[1].item<float>(), 3.0);
501
+
502
+ // Check with broadcasting
503
+ out = vjp(fun, {ones({3, 1}), ones({1, 2})}, {full({3, 2}, 2.0)}).second;
504
+ CHECK(array_equal(out[0], full({3, 1}, 4.0)).item<bool>());
505
+ CHECK(array_equal(out[1], full({1, 2}, 6.0)).item<bool>());
506
+ }
507
+
508
+ // Test subtract
509
+ {
510
+ auto fun = [](std::vector<array> inputs) {
511
+ return std::vector<array>{inputs[0] - inputs[1]};
512
+ };
513
+ auto out = vjp(fun, {array(1.0), array(2.0)}, {array(3.0)}).second;
514
+ CHECK_EQ(out[0].item<float>(), 3.0);
515
+ CHECK_EQ(out[1].item<float>(), -3.0);
516
+
517
+ // Check with broadcasting
518
+ out = vjp(fun, {ones({3, 1}), ones({1, 2})}, {ones({3, 2})}).second;
519
+ CHECK(array_equal(out[0], full({3, 1}, 2.0)).item<bool>());
520
+ CHECK(array_equal(out[1], full({1, 2}, -3.0)).item<bool>());
521
+ }
522
+
523
+ // Test multiply
524
+ {
525
+ auto fun = [](std::vector<array> inputs) {
526
+ return std::vector<array>{inputs[0] * inputs[1]};
527
+ };
528
+ auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(3.0f)}).second;
529
+ CHECK_EQ(out[0].item<float>(), 6.0f);
530
+ CHECK_EQ(out[1].item<float>(), 12.0f);
531
+
532
+ // Check with broadcasting
533
+ out = vjp(fun, {full({3, 1}, 2.0f), full({1, 2}, 4.0f)}, {ones({3, 2})})
534
+ .second;
535
+ CHECK(array_equal(out[0], full({3, 1}, 8.0f)).item<bool>());
536
+ CHECK(array_equal(out[1], full({1, 2}, 6.0)).item<bool>());
537
+ }
538
+
539
+ // Test divide
540
+ {
541
+ auto fun = [](std::vector<array> inputs) {
542
+ return std::vector<array>{inputs[0] / inputs[1]};
543
+ };
544
+ auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(1.0f)}).second;
545
+ CHECK_EQ(out[0].item<float>(), 0.5f);
546
+ CHECK_EQ(out[1].item<float>(), -1.0f);
547
+
548
+ // Check with broadcasting
549
+ out = vjp(fun, {full({3, 1}, 4.0f), full({1, 2}, 2.0f)}, {ones({3, 2})})
550
+ .second;
551
+ CHECK(array_equal(out[0], full({3, 1}, 1.0f)).item<bool>());
552
+ CHECK(array_equal(out[1], full({1, 2}, -3.0f)).item<bool>());
553
+ }
554
+
555
+ // Test maximum
556
+ {
557
+ auto fun = [](std::vector<array> inputs) {
558
+ return std::vector<array>{maximum(inputs[0], inputs[1])};
559
+ };
560
+ auto out = vjp(fun, {array(5.0f), array(2.0f)}, {array(2.0f)}).second;
561
+ CHECK_EQ(out[0].item<float>(), 2.0f);
562
+ CHECK_EQ(out[1].item<float>(), 0.0f);
563
+
564
+ out = vjp(fun, {array(2.0f), array(2.0f)}, {array(1.0f)}).second;
565
+ auto out_a = out[0].item<float>();
566
+ auto out_b = out[1].item<float>();
567
+ // When inputs are equal at most one gradient is nonzero
568
+ CHECK(
569
+ ((out_a == 1.0f && out_b == 0.0f) || (out_a == 0.0f && out_b == 1.0f)));
570
+ }
571
+
572
+ // Test minimum
573
+ {
574
+ auto fun = [](std::vector<array> inputs) {
575
+ return std::vector<array>{minimum(inputs[0], inputs[1])};
576
+ };
577
+ auto out = vjp(fun, {array(4.0f), array(2.0f)}, {array(2.0f)}).second;
578
+ CHECK_EQ(out[0].item<float>(), 0.0f);
579
+ CHECK_EQ(out[1].item<float>(), 2.0f);
580
+
581
+ out = vjp(fun, {array(2.0f), array(2.0f)}, {array(1.0f)}).second;
582
+ auto out_a = out[0].item<float>();
583
+ auto out_b = out[1].item<float>();
584
+ CHECK(
585
+ ((out_a == 1.0f && out_b == 0.0f) || (out_a == 0.0f && out_b == 1.0f)));
586
+ }
587
+
588
+ // Test logaddexp
589
+ {
590
+ auto fun = [](std::vector<array> inputs) {
591
+ return std::vector<array>{logaddexp(inputs[0], inputs[1])};
592
+ };
593
+
594
+ constexpr auto inf = std::numeric_limits<float>::infinity();
595
+
596
+ auto out = vjp(fun, {array(2.0), array(2.0f)}, {array(1.0f)}).second;
597
+ CHECK_EQ(out[0].item<float>(), 0.5f);
598
+ CHECK_EQ(out[1].item<float>(), 0.5f);
599
+ out = vjp(fun, {array(2.0), array(2.0f)}, {array(2.0f)}).second;
600
+ CHECK_EQ(out[0].item<float>(), 1.0f);
601
+ CHECK_EQ(out[1].item<float>(), 1.0f);
602
+
603
+ out = vjp(fun, {array(inf), array(2.0f)}, {array(1.0f)}).second;
604
+ CHECK_EQ(out[0].item<float>(), 1.0f);
605
+ CHECK_EQ(out[1].item<float>(), 0.0f);
606
+
607
+ out = vjp(fun, {array(-inf), array(2.0f)}, {array(1.0f)}).second;
608
+ CHECK_EQ(out[0].item<float>(), 0.0f);
609
+ CHECK_EQ(out[1].item<float>(), 1.0f);
610
+
611
+ out = vjp(fun, {array(-10.0f), array(-inf)}, {array(1.0f)}).second;
612
+ CHECK_EQ(out[0].item<float>(), 1.0f);
613
+ CHECK_EQ(out[1].item<float>(), 0.0f);
614
+
615
+ out = vjp(fun, {array(-inf), array(-inf)}, {array(1.0f)}).second;
616
+ CHECK(std::isnan(out[0].item<float>()));
617
+ CHECK(std::isnan(out[1].item<float>()));
618
+ }
619
+
620
+ // Test power
621
+ {
622
+ auto fun = [](std::vector<array> inputs) {
623
+ return std::vector<array>{power(inputs[0], inputs[1])};
624
+ };
625
+ auto out = vjp(fun, {array(4.0f), array(3.0f)}, {array(1.0f)}).second;
626
+ CHECK_EQ(out[0].item<float>(), 48.0f);
627
+ CHECK_EQ(out[1].item<float>(), std::log(4.0f) * 64.0f);
628
+ }
629
+
630
+ // Test sum
631
+ {
632
+ std::vector<int> axes;
633
+ auto fun = [&axes](array input) { return sum(input, axes); };
634
+ axes = {};
635
+ auto out = vjp(fun, array(2.0f), array(3.0f)).second;
636
+ CHECK_EQ(out.item<float>(), 3.0f);
637
+
638
+ axes = {0};
639
+ out = vjp(fun, array({}), array(3.0f)).second;
640
+ CHECK_EQ(out.size(), 0);
641
+ CHECK_EQ(out.shape(), Shape{0});
642
+
643
+ axes = {0};
644
+ out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
645
+ .second;
646
+ auto expected =
647
+ array({1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f}, {2, 2, 2});
648
+ CHECK(array_equal(out, expected).item<bool>());
649
+
650
+ axes = {1};
651
+ out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
652
+ .second;
653
+ expected =
654
+ array({1.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f, 4.0f}, {2, 2, 2});
655
+ CHECK(array_equal(out, expected).item<bool>());
656
+
657
+ axes = {2};
658
+ out = vjp(fun, ones({2, 2, 2}), array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}))
659
+ .second;
660
+ expected =
661
+ array({1.0f, 1.0f, 2.0f, 2.0f, 3.0f, 3.0f, 4.0f, 4.0f}, {2, 2, 2});
662
+ CHECK(array_equal(out, expected).item<bool>());
663
+ }
664
+
665
+ // Test prod
666
+ {
667
+ std::vector<int> axes;
668
+ auto fun = [&axes](array input) { return prod(input, axes); };
669
+ axes = {};
670
+ auto out = vjp(fun, array(2.0f), array(3.0f)).second;
671
+ CHECK_EQ(out.item<float>(), 3.0f);
672
+
673
+ axes = {0};
674
+ out = vjp(fun,
675
+ array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3}),
676
+ array(
677
+ {1.0f, 2.0f, 3.0f},
678
+ {
679
+ 3,
680
+ }))
681
+ .second;
682
+ auto expected = array({4.0f, 10.0f, 18.0f, 1.0f, 4.0f, 9.0f}, {2, 3});
683
+ CHECK(array_equal(out, expected).item<bool>());
684
+
685
+ axes = {0, 1};
686
+ out = vjp(fun,
687
+ array({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {2, 3}),
688
+ array(1.0f))
689
+ .second;
690
+ expected = array({720.0f, 360.0f, 240.0f, 180.0f, 144.0f, 120.0f}, {2, 3});
691
+ CHECK(array_equal(out, expected).item<bool>());
692
+ }
693
+ }
694
+
695
+ TEST_CASE("test gather and take grads") {
696
+ // Check linear takes
697
+ auto linear_f = [](array indices) {
698
+ auto fun_linear = [&indices](array input) { return take(input, indices); };
699
+
700
+ return fun_linear;
701
+ };
702
+
703
+ auto src = ones({4, 4});
704
+ auto ind = array({0, 1, 2, 3}, uint32);
705
+ auto out = vjp(linear_f(ind), src, ones({4})).second;
706
+ auto out_1 = take(out, array({0}, uint32), 0);
707
+ auto out_2 = take(out, array({1, 2, 3}, uint32), 0);
708
+ CHECK(array_equal(out_1, ones({1, 4})).item<bool>());
709
+ CHECK(array_equal(out_2, zeros({3, 4})).item<bool>());
710
+ auto tangent = reshape(arange(16), {4, 4});
711
+ out = jvp(linear_f(ind), src, tangent).second;
712
+ CHECK(array_equal(out, array({0, 1, 2, 3})).item<bool>());
713
+
714
+ src = ones({4});
715
+ ind = array({0, 0, 0, 0}, uint32);
716
+ out = vjp(linear_f(ind), src, ones({4})).second;
717
+ out_1 = take(out, array({0}, uint32));
718
+ CHECK_EQ(out_1.item<float>(), 4.0f);
719
+
720
+ tangent = arange(4);
721
+ out = jvp(linear_f(ind), src, tangent).second;
722
+ CHECK(array_equal(out, array({0, 0, 0, 0})).item<bool>());
723
+
724
+ // Check axis takes
725
+ src = ones({4, 4});
726
+ ind = array({0, 1, 2, 3}, uint32);
727
+
728
+ auto fun = [&ind](array input) { return take(input, ind, 0); };
729
+
730
+ out = vjp(fun, src, ones({4, 4})).second;
731
+ CHECK(array_equal(out, src).item<bool>());
732
+
733
+ out = jvp(fun, src, ones({4, 4})).second;
734
+ CHECK(array_equal(out, src).item<bool>());
735
+
736
+ // Check index throw
737
+ auto fun_throw = [](std::vector<array> inputs) {
738
+ return std::vector<array>{take(inputs[0], inputs[1])};
739
+ };
740
+
741
+ CHECK_THROWS_AS(
742
+ vjp(fun_throw, {src, ind}, {ones({4, 4})}), std::invalid_argument);
743
+
744
+ CHECK_THROWS_AS(
745
+ jvp(fun_throw, {src, ind}, {ones({4, 4}), ind}), std::invalid_argument);
746
+ }
747
+
748
+ TEST_CASE("test slice grads") {
749
+ Shape start = {5, 0, 0};
750
+ Shape stop = {7, 2, 4};
751
+ Shape strides = {1, 1, 1};
752
+
753
+ auto fn = [&start, &stop, &strides](array input) {
754
+ return slice(input, start, stop, strides);
755
+ };
756
+
757
+ auto src = ones({8, 8, 8});
758
+ auto out = vjp(fn, src, ones({2, 2, 4})).second;
759
+ CHECK_EQ(sum(out).item<float>(), 16.);
760
+
761
+ out = jvp(fn, src, full({8, 8, 8}, 2.0f)).second;
762
+ CHECK(array_equal(out, full({2, 2, 4}, 2.0f)).item<bool>());
763
+
764
+ src = ones({4, 4});
765
+ start = {2, 0};
766
+ stop = {4, 4};
767
+ strides = {1, 1};
768
+ out = vjp(fn, src, ones({2, 4})).second;
769
+ auto out_1 = take(out, array({0, 1}, uint32), 0);
770
+ auto out_2 = take(out, array({2, 3}, uint32), 0);
771
+
772
+ CHECK(array_equal(out_1, zeros({2, 4})).item<bool>());
773
+ CHECK(array_equal(out_2, ones({2, 4})).item<bool>());
774
+
775
+ start = {0, 0};
776
+ stop = {4, 4};
777
+ strides = {2, 2};
778
+ auto cotangent = array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
779
+ out = vjp(fn, src, cotangent).second;
780
+ auto expected = astype(
781
+ array({1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 0}, {4, 4}), float32);
782
+ CHECK(array_equal(out, expected).item<bool>());
783
+
784
+ out = jvp(fn, src, ones({4, 4})).second;
785
+ CHECK(array_equal(out, ones({2, 2})).item<bool>());
786
+
787
+ // Empty slices.
788
+ start = {0, 0};
789
+ stop = {0, 4};
790
+ cotangent = reshape(array({}), {0, 2});
791
+ out = vjp(fn, src, cotangent).second;
792
+ CHECK(array_equal(out, zeros({4, 4})).item<bool>());
793
+
794
+ out = jvp(fn, src, ones({4, 4})).second;
795
+ CHECK_EQ(out.size(), 0);
796
+ }
797
+
798
+ TEST_CASE("test min and max vjp") {
799
+ // Test min
800
+ {
801
+ std::vector<int> axes;
802
+ array in({});
803
+ array v({});
804
+ array expected({});
805
+ array out({});
806
+ auto fun = [&axes](array input) { return min(input, axes); };
807
+
808
+ axes = {};
809
+ in = array({2.0f});
810
+ out = vjp(fun, array(2.0f), array(3.0f)).second;
811
+ CHECK_EQ(out.item<float>(), 3.0f);
812
+
813
+ axes = {0};
814
+ in = reshape(array({1.0f, 2.0f, 2.0f, -1.0f}), {2, 2});
815
+ v = array({3.0f, 7.0f});
816
+ out = vjp(fun, in, v).second;
817
+ expected = array({3.0f, 0.0f, 0.0f, 7.0f});
818
+ expected = reshape(expected, {2, 2});
819
+ CHECK(array_equal(out, expected).item<bool>());
820
+
821
+ axes = {0, 2};
822
+ in = reshape(
823
+ array({1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f}), {2, 2, 2});
824
+ v = array({3.0f, 7.0f});
825
+ out = vjp(fun, in, v).second;
826
+ expected = array({0.0f, 0.0f, 3.5f, 0.0f, 1.5f, 1.5f, 0.0f, 3.5f});
827
+ expected = reshape(expected, {2, 2, 2});
828
+ CHECK(array_equal(out, expected).item<bool>());
829
+ }
830
+
831
+ // Test max
832
+ {
833
+ std::vector<int> axes;
834
+ array in({});
835
+ array v({});
836
+ array expected({});
837
+ array out({});
838
+ auto fun = [&axes](array input) { return max(input, axes); };
839
+
840
+ axes = {};
841
+ in = array({2.0f});
842
+ out = vjp(fun, array(2.0f), array(3.0f)).second;
843
+ CHECK_EQ(out.item<float>(), 3.0f);
844
+
845
+ axes = {0};
846
+ in = reshape(array({1.0f, 2.0f, 2.0f, -1.0f}), {2, 2});
847
+ v = array({3.0f, 7.0f});
848
+ out = vjp(fun, in, v).second;
849
+ expected = array({0.0f, 7.0f, 3.0f, 0.0f});
850
+ expected = reshape(expected, {2, 2});
851
+ CHECK(array_equal(out, expected).item<bool>());
852
+
853
+ axes = {0, 2};
854
+ in = reshape(
855
+ array({1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f}), {2, 2, 2});
856
+ v = array({3.0f, 7.0f});
857
+ out = vjp(fun, in, v).second;
858
+ expected = array({3.0f, 0.0f, 0.0f, 3.5f, 0.0f, 0.0f, 3.5f, 0.0f});
859
+ expected = reshape(expected, {2, 2, 2});
860
+ CHECK(array_equal(out, expected).item<bool>());
861
+ }
862
+ }
863
+
864
+ TEST_CASE("test reshape and transpose grads") {
865
+ {
866
+ auto fn = [](array a) { return reshape(a, {3, 4}); };
867
+
868
+ auto out = vjp(fn, ones({12}), full({3, 4}, 2.0f)).second;
869
+ CHECK(array_equal(out, full({12}, 2.0f)).item<bool>());
870
+
871
+ out = jvp(fn, ones({12}), full({12}, 2.0f)).second;
872
+ CHECK(array_equal(out, full({3, 4}, 2.0f)).item<bool>());
873
+ }
874
+
875
+ {
876
+ auto fn = [](array a) { return transpose(a, {1, 2, 0}); };
877
+
878
+ auto cotan = reshape(arange(24), {3, 4, 2});
879
+ auto out = vjp(fn, ones({2, 3, 4}), cotan).second;
880
+ CHECK(array_equal(out, transpose(cotan, {2, 0, 1})).item<bool>());
881
+
882
+ auto tangent = reshape(arange(24), {2, 3, 4});
883
+ out = jvp(fn, ones({2, 3, 4}), tangent).second;
884
+ CHECK(array_equal(out, transpose(tangent, {1, 2, 0})).item<bool>());
885
+ }
886
+ }
887
+
888
+ TEST_CASE("test copy grads") {
889
+ auto fn = [](array a) { return copy(a); };
890
+
891
+ auto cotan = arange(4, float32);
892
+ auto out = vjp(fn, ones({4}), cotan).second;
893
+ CHECK(array_equal(out, arange(4, float32)).item<bool>());
894
+
895
+ auto tangent = arange(4, float32);
896
+ out = jvp(fn, ones({4}), tangent).second;
897
+ CHECK(array_equal(out, tangent).item<bool>());
898
+ }
899
+
900
+ TEST_CASE("test matmul vjp") {
901
+ auto fun = [](std::vector<array> inputs) {
902
+ return std::vector<array>{matmul(inputs[0], inputs[1])};
903
+ };
904
+
905
+ auto a = array({1.0f, 2.0f}, {1, 2});
906
+ auto b = array({3.0f, 4.0f}, {2, 1});
907
+ auto out = vjp(fun, {a, b}, {array({2.0f}, {1, 1})}).second;
908
+
909
+ CHECK(array_equal(out[0], array({6.0f, 8.0f}, {1, 2})).item<bool>());
910
+ CHECK(array_equal(out[1], array({2.0f, 4.0f}, {2, 1})).item<bool>());
911
+
912
+ a = array({1.0f, 2.0f}, {2, 1});
913
+ b = array({3.0f, 4.0f}, {1, 2});
914
+ out = vjp(fun, {a, b}, {array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2})}).second;
915
+ CHECK(array_equal(out[0], array({11.0f, 25.0f}, {2, 1})).item<bool>());
916
+ CHECK(array_equal(out[1], array({7.0f, 10.0f}, {1, 2})).item<bool>());
917
+
918
+ a = array({1.0f, 2.0f, 1.0f, 2.0f}, {2, 2, 1});
919
+ b = array({1.0f, 1.0f, 2.0f, 2.0f}, {2, 1, 2});
920
+ auto vjps = vjp(fun, {a, b}, {ones({2, 2, 2})}).second;
921
+ auto vjpx = array({2.0f, 2.0f, 4.0f, 4.0f}, {2, 2, 1});
922
+ auto vjpy = array({3.0f, 3.0f, 3.0f, 3.0f}, {2, 1, 2});
923
+ CHECK(array_equal(vjps[0], vjpx).item<bool>());
924
+ CHECK(array_equal(vjps[1], vjpy).item<bool>());
925
+ }
926
+
927
+ TEST_CASE("test concatenate grads") {
928
+ auto arrs = split(arange(5, float32), 5);
929
+ eval(arrs);
930
+
931
+ auto fn = [&arrs](const std::vector<array>& inputs) {
932
+ arrs[2] = inputs[0];
933
+ arrs[4] = inputs[1];
934
+ return std::vector<array>{concatenate(arrs, 0)};
935
+ };
936
+ auto out = vjp(fn, {arrs[2], arrs[4]}, {arange(5, float32)}).second;
937
+
938
+ CHECK_EQ(out.size(), 2);
939
+ CHECK_EQ(out[0].item<float>(), 2.0f);
940
+ CHECK_EQ(out[1].item<float>(), 4.0f);
941
+
942
+ out = jvp(fn, {arrs[2], arrs[4]}, {array({2.0f}, {1}), array({3.0f}, {1})})
943
+ .second;
944
+ CHECK_EQ(out.size(), 1);
945
+ CHECK(
946
+ array_equal(out[0], array({0.0f, 0.0f, 2.0f, 0.0f, 3.0f})).item<bool>());
947
+ }
948
+
949
+ TEST_CASE("test split grads") {
950
+ array x = arange(6, float32);
951
+ eval(x);
952
+
953
+ {
954
+ auto fn = [](const array& x) {
955
+ auto parts = split(x, 3);
956
+ return parts[0] * parts[1] + parts[2];
957
+ };
958
+ auto out = vjp(fn, {x}, {ones({2})}).second;
959
+
960
+ CHECK_EQ(out.size(), 6);
961
+ CHECK(array_equal(out, array({2.0f, 3.0f, 0.0f, 1.0f, 1.0f, 1.0f}))
962
+ .item<bool>());
963
+ }
964
+
965
+ {
966
+ auto fn = [](const array& x) {
967
+ auto parts = split(x, 3);
968
+ return parts[0] * parts[2];
969
+ };
970
+ auto out = vjp(fn, {x}, {ones({2})}).second;
971
+
972
+ CHECK_EQ(out.size(), 6);
973
+ CHECK(array_equal(out, array({4.0f, 5.0f, 0.0f, 0.0f, 0.0f, 1.0f}))
974
+ .item<bool>());
975
+ }
976
+ }
977
+
978
+ TEST_CASE("test comparison grads") {
979
+ auto x = ones({3, 1});
980
+ auto y = zeros({1, 3});
981
+
982
+ auto check_vjp_jvp = [&x, &y](auto fn) {
983
+ auto fn_wrap = [&fn](std::vector<array> inputs) {
984
+ return std::vector<array>{fn(inputs[0], inputs[1], default_device())};
985
+ };
986
+ auto out_shape = broadcast_shapes(x.shape(), y.shape());
987
+ std::vector<array> vjps = vjp(fn_wrap, {x, y}, {ones(out_shape)}).second;
988
+ bool correct = array_equal(vjps[0], zeros(x.shape())).item<bool>();
989
+ correct &= array_equal(vjps[1], zeros(y.shape())).item<bool>();
990
+
991
+ std::vector<array> jvps =
992
+ jvp(fn_wrap, {x, y}, {ones(x.shape()), ones(y.shape())}).second;
993
+ correct &= array_equal(jvps[0], zeros(out_shape)).item<bool>();
994
+ return correct;
995
+ };
996
+
997
+ CHECK(check_vjp_jvp(equal));
998
+ CHECK(check_vjp_jvp(greater));
999
+ CHECK(check_vjp_jvp(less));
1000
+ CHECK(check_vjp_jvp(greater_equal));
1001
+ CHECK(check_vjp_jvp(less_equal));
1002
+ }
1003
+
1004
+ TEST_CASE("test as_strided grads") {
1005
+ auto x = ones({11});
1006
+ Shape shape = {5, 5};
1007
+ Strides strides = {1, 1};
1008
+ size_t offset = 0;
1009
+
1010
+ auto fun = [&shape, &strides, &offset](array x) {
1011
+ return as_strided(x, shape, strides, offset);
1012
+ };
1013
+
1014
+ auto out = vjp(fun, x, ones(shape)).second;
1015
+ auto expected = array({1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0});
1016
+ CHECK(array_equal(out, expected).item<bool>());
1017
+
1018
+ offset = 1;
1019
+ out = vjp(fun, x, ones(shape)).second;
1020
+ expected = array({0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0});
1021
+ CHECK(array_equal(out, expected).item<bool>());
1022
+
1023
+ offset = 3;
1024
+ shape = {3, 3};
1025
+ strides = {0, 1};
1026
+ out = vjp(fun, x, ones(shape)).second;
1027
+ expected = array({0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0});
1028
+ CHECK(array_equal(out, expected).item<bool>());
1029
+
1030
+ offset = 3;
1031
+ shape = {3, 3};
1032
+ strides = {0, 1};
1033
+ out = vjp(fun, x, reshape(astype(arange(9), x.dtype()), {3, 3})).second;
1034
+ expected = array({0, 0, 0, 9, 12, 15, 0, 0, 0, 0, 0});
1035
+ CHECK(array_equal(out, expected).item<bool>());
1036
+ }
1037
+
1038
+ TEST_CASE("test jvp from vjp") {
1039
+ // Unary element-wise ops
1040
+ {
1041
+ auto x = random::uniform({5, 10});
1042
+ eval(x);
1043
+
1044
+ auto compute_derivs = [&x](auto fn) {
1045
+ auto fn_wrap = [&fn](array input) { return fn(input, default_device()); };
1046
+
1047
+ // Compute vjp
1048
+ array vjp_out = vjp(fn_wrap, x, ones(x.shape())).second;
1049
+
1050
+ // Compute jvp
1051
+ array jvp_out = jvp(fn_wrap, x, ones(x.shape())).second;
1052
+
1053
+ return array_equal(vjp_out, jvp_out).item<bool>();
1054
+ };
1055
+
1056
+ CHECK(compute_derivs(mlx::core::abs));
1057
+ CHECK(compute_derivs(mlx::core::cos));
1058
+ CHECK(compute_derivs(mlx::core::erf));
1059
+ CHECK(compute_derivs(mlx::core::erfinv));
1060
+ CHECK(compute_derivs(mlx::core::exp));
1061
+ CHECK(compute_derivs(mlx::core::log));
1062
+ CHECK(compute_derivs(mlx::core::log1p));
1063
+ CHECK(compute_derivs(mlx::core::negative));
1064
+ CHECK(compute_derivs(mlx::core::sigmoid));
1065
+ CHECK(compute_derivs(mlx::core::sign));
1066
+ CHECK(compute_derivs(mlx::core::sin));
1067
+ CHECK(compute_derivs(mlx::core::square));
1068
+ CHECK(compute_derivs(mlx::core::sqrt));
1069
+ CHECK(compute_derivs(mlx::core::rsqrt));
1070
+ }
1071
+
1072
+ // Binary element-wise ops
1073
+ {
1074
+ auto x = random::uniform({5, 10});
1075
+ auto y = random::uniform({5, 10});
1076
+ eval(x, y);
1077
+
1078
+ auto compute_derivs = [&x, &y](auto fn) {
1079
+ auto fn_wrap = [&fn](std::vector<array> inputs) {
1080
+ return std::vector<array>{fn(inputs[0], inputs[1], default_device())};
1081
+ };
1082
+
1083
+ // Compute vjp and add results
1084
+ auto vjps = vjp(fn_wrap, {x, y}, {ones(x.shape())}).second;
1085
+ array vjp_out = add(vjps[0], vjps[1]);
1086
+
1087
+ // Compute jvp
1088
+ array jvp_out =
1089
+ jvp(fn_wrap, {x, y}, {ones(x.shape()), ones(y.shape())}).second[0];
1090
+ return array_equal(vjp_out, jvp_out).item<bool>();
1091
+ };
1092
+
1093
+ CHECK(compute_derivs(add));
1094
+ CHECK(compute_derivs(divide));
1095
+ CHECK(compute_derivs(logaddexp));
1096
+ CHECK(compute_derivs(maximum));
1097
+ CHECK(compute_derivs(minimum));
1098
+ CHECK(compute_derivs(multiply));
1099
+ CHECK(compute_derivs(subtract));
1100
+ CHECK(compute_derivs(power));
1101
+ }
1102
+
1103
+ // Conditional selection element-wise op
1104
+ {
1105
+ auto condition = random::randint(0, 2, {5, 10});
1106
+ auto x = random::uniform({5, 10});
1107
+ auto y = random::uniform({5, 10});
1108
+ eval(condition, x, y);
1109
+
1110
+ auto compute_derivs = [&condition, &x, &y](auto fn) {
1111
+ auto fn_wrap = [&fn](std::vector<array> inputs) {
1112
+ return std::vector<array>{
1113
+ fn(inputs[0], inputs[1], inputs[2], default_device())};
1114
+ };
1115
+
1116
+ // Compute vjp and add results
1117
+ auto vjps = vjp(fn_wrap, {condition, x, y}, {ones(x.shape())}).second;
1118
+ auto vjp_out = add(add(vjps[0], vjps[1]), vjps[2]);
1119
+
1120
+ // Compute jvp
1121
+ array jvp_out =
1122
+ jvp(fn_wrap,
1123
+ {condition, x, y},
1124
+ {ones(condition.shape()), ones(y.shape()), ones(x.shape())})
1125
+ .second[0];
1126
+
1127
+ array result = array_equal(vjp_out, jvp_out);
1128
+ return result.item<bool>();
1129
+ };
1130
+
1131
+ CHECK(compute_derivs(where));
1132
+ }
1133
+ }
1134
+
1135
+ TEST_CASE("test complex gradients") {
1136
+ {
1137
+ auto add_fn = [](std::vector<array> inputs) {
1138
+ return std::vector<array>{add(inputs[0], inputs[1], default_device())};
1139
+ };
1140
+
1141
+ // Compute jvp
1142
+ auto x = array(complex64_t{1.0, 1.0});
1143
+ auto y = array(complex64_t{1.0, 1.0});
1144
+ auto x_tan = array(complex64_t{1.0, 2.0});
1145
+ auto y_tan = array(complex64_t{2.0, 1.0});
1146
+ auto jvp_out = jvp(add_fn, {x, y}, {x_tan, y_tan}).second;
1147
+ CHECK_EQ(jvp_out[0].item<complex64_t>(), complex64_t{3.0, 3.0});
1148
+
1149
+ // Compute vjp
1150
+ auto cotan = array(complex64_t{3.0, 3.0});
1151
+ auto vjp_out = vjp(add_fn, {x, y}, {cotan}).second;
1152
+ CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{3.0, 3.0});
1153
+ CHECK_EQ(vjp_out[1].item<complex64_t>(), complex64_t{3.0, 3.0});
1154
+ }
1155
+
1156
+ {
1157
+ auto multiply_fn =
1158
+ [](const std::vector<array>& inputs) -> std::vector<array> {
1159
+ return {multiply(inputs[0], inputs[1])};
1160
+ };
1161
+
1162
+ // Compute jvp
1163
+ auto x = array(complex64_t{2.0, 4.0});
1164
+ auto y = array(3.0f);
1165
+ auto x_tan = array(complex64_t{1.0, 2.0});
1166
+ auto y_tan = array(2.0f);
1167
+ auto jvp_out = jvp(multiply_fn, {x, y}, {x_tan, y_tan}).second;
1168
+ CHECK_EQ(jvp_out[0].item<complex64_t>(), complex64_t{7.0, 14.0});
1169
+
1170
+ // Compute vjp
1171
+ auto cotan = array(complex64_t{2.0, 3.0});
1172
+ auto vjp_out = vjp(multiply_fn, {x, y}, {cotan}).second;
1173
+ CHECK_EQ(vjp_out[0].dtype(), complex64);
1174
+ CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{6.0, 9.0});
1175
+ CHECK_EQ(vjp_out[1].dtype(), float32);
1176
+ CHECK_EQ(vjp_out[1].item<float>(), 16);
1177
+ }
1178
+
1179
+ {
1180
+ auto divide_fn =
1181
+ [](const std::vector<array>& inputs) -> std::vector<array> {
1182
+ return {divide(inputs[0], inputs[1])};
1183
+ };
1184
+
1185
+ // Compute jvp
1186
+ auto x = array(complex64_t{2.0, 3.0});
1187
+ auto y = array(complex64_t{1.0, 2.0});
1188
+ auto x_tan = array(complex64_t{3.0, 4.0});
1189
+ auto y_tan = array(complex64_t{4.0, -2.0});
1190
+ auto jvp_out = jvp(divide_fn, {x, y}, {x_tan, y_tan}).second;
1191
+ CHECK_EQ(
1192
+ jvp_out[0].item<complex64_t>(), doctest::Approx(complex64_t{2.6, 2.8}));
1193
+
1194
+ // Compute vjp
1195
+ auto cotan = array(complex64_t{2.0, -4.0});
1196
+ auto vjp_out = vjp(divide_fn, {x, y}, {cotan}).second;
1197
+ CHECK_EQ(vjp_out[0].item<complex64_t>(), complex64_t{2.0, 0.0});
1198
+ CHECK_EQ(vjp_out[1].item<complex64_t>(), complex64_t{-3.2, -0.4});
1199
+ }
1200
+ }
1201
+
1202
+ TEST_CASE("test scan grads") {
1203
+ // Test cumsum
1204
+ {
1205
+ int axis = 0;
1206
+ int reverse = false;
1207
+ int inclusive = true;
1208
+ auto fun = [&axis, &reverse, &inclusive](array x) {
1209
+ return cumsum(x, axis, reverse, inclusive);
1210
+ };
1211
+
1212
+ auto out = vjp(fun, ones({4}), ones({4})).second;
1213
+ auto expected = array({4.0f, 3.0f, 2.0f, 1.0f}, {4});
1214
+ CHECK(array_equal(out, expected).item<bool>());
1215
+
1216
+ reverse = true;
1217
+ out = vjp(fun, ones({4}), ones({4})).second;
1218
+ expected = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
1219
+ CHECK(array_equal(out, expected).item<bool>());
1220
+
1221
+ reverse = true;
1222
+ inclusive = false;
1223
+ out = vjp(fun, ones({4}), ones({4})).second;
1224
+ expected = array({0.0f, 1.0f, 2.0f, 3.0f}, {4});
1225
+ CHECK(array_equal(out, expected).item<bool>());
1226
+
1227
+ reverse = false;
1228
+ inclusive = false;
1229
+ out = vjp(fun, ones({4}), ones({4})).second;
1230
+ expected = array({3.0f, 2.0f, 1.0f, 0.0f}, {4});
1231
+ CHECK(array_equal(out, expected).item<bool>());
1232
+ }
1233
+
1234
+ // Test cumprod
1235
+ {
1236
+ int axis = 0;
1237
+ int reverse = false;
1238
+ int inclusive = true;
1239
+ auto fun = [&axis, &reverse, &inclusive](array x) {
1240
+ return cumprod(x, axis, reverse, inclusive);
1241
+ };
1242
+
1243
+ auto x = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
1244
+ auto g = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
1245
+ auto out = vjp(fun, x, g).second;
1246
+ auto expected = array({119.0f, 59.0f, 38.0f, 24.0f}, {4});
1247
+ CHECK(allclose(out, expected).item<bool>());
1248
+
1249
+ reverse = true;
1250
+ out = vjp(fun, x, g).second;
1251
+ expected = array({24.0f, 36.0f, 36.0f, 31.0f}, {4});
1252
+ CHECK(array_equal(out, expected).item<bool>());
1253
+
1254
+ inclusive = false;
1255
+ out = vjp(fun, x, g).second;
1256
+ expected = array({0.0f, 12.0f, 16.0f, 15.0f}, {4});
1257
+ CHECK(array_equal(out, expected).item<bool>());
1258
+
1259
+ reverse = false;
1260
+ out = vjp(fun, x, g).second;
1261
+ expected = array({32.0f, 15.0f, 8.0f, 0.0f}, {4});
1262
+ CHECK(array_equal(out, expected).item<bool>());
1263
+ }
1264
+
1265
+ // Test cumsum jvp
1266
+ {
1267
+ int axis = 0;
1268
+ int reverse = false;
1269
+ int inclusive = true;
1270
+ auto fun = [&axis, &reverse, &inclusive](array x) {
1271
+ return cumsum(x, axis, reverse, inclusive);
1272
+ };
1273
+
1274
+ auto x = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
1275
+ auto out = jvp(fun, x, ones({4})).second;
1276
+ auto expected = array({1.0f, 2.0f, 3.0f, 4.0f}, {4});
1277
+ CHECK(array_equal(out, expected).item<bool>());
1278
+
1279
+ reverse = true;
1280
+ out = jvp(fun, x, ones({4})).second;
1281
+ expected = array({4.0f, 3.0f, 2.0f, 1.0f}, {4});
1282
+ CHECK(array_equal(out, expected).item<bool>());
1283
+
1284
+ inclusive = false;
1285
+ out = jvp(fun, x, ones({4})).second;
1286
+ expected = array({3.0f, 2.0f, 1.0f, 0.0f}, {4});
1287
+ CHECK(array_equal(out, expected).item<bool>());
1288
+
1289
+ reverse = false;
1290
+ out = jvp(fun, x, ones({4})).second;
1291
+ expected = array({0.0f, 1.0f, 2.0f, 3.0f}, {4});
1292
+ CHECK(array_equal(out, expected).item<bool>());
1293
+ }
1294
+ }
1295
+
1296
+ TEST_CASE("test update state") {
1297
+ auto y = array({1.0});
1298
+ auto x = array({1.0, 1.0});
1299
+ auto state = array({0.0, 0.0});
1300
+ auto fn = [&state, &x](array y) {
1301
+ x = y * x;
1302
+ state = state + x;
1303
+ return sum(x);
1304
+ };
1305
+ grad(fn)(y);
1306
+ eval(state);
1307
+ CHECK(!state.has_primitive());
1308
+ CHECK(state.is_available());
1309
+ CHECK(array_equal(state, array({1.0, 1.0})).item<bool>());
1310
+ }
1311
+
1312
+ TEST_CASE("test grad types") {
1313
+ {
1314
+ auto fn = [](array x) { return sum(x); };
1315
+
1316
+ for (auto t : {float16, bfloat16, float32}) {
1317
+ auto x = array(1.0, t);
1318
+ auto dfdx = grad(fn)(x);
1319
+ CHECK_EQ(dfdx.dtype(), t);
1320
+ }
1321
+ }
1322
+
1323
+ {
1324
+ // Check for multi-input grad
1325
+ auto fn = [](std::vector<array> inputs) {
1326
+ return sum(inputs[0] + inputs[1]);
1327
+ };
1328
+
1329
+ for (auto t : {float16, bfloat16, float32}) {
1330
+ auto x = array(1.0, t);
1331
+ auto y = array(1.0, t);
1332
+ auto out = grad(fn)({x, y});
1333
+ CHECK_EQ(out[0].dtype(), t);
1334
+ }
1335
+ }
1336
+ }
1337
+
1338
+ TEST_CASE("test grad dynamic slices") {
1339
+ {
1340
+ auto fn = [](const array& x) { return slice(x, array({0}), {0}, {1, 2}); };
1341
+ auto x = array({1, 2, 3, 4}, {2, 2});
1342
+ auto out = vjp(fn, x, array({1, 1}, {1, 2})).second;
1343
+ CHECK(array_equal(out, array({1, 1, 0, 0}, {2, 2})).item<bool>());
1344
+ }
1345
+ {
1346
+ auto fn = [](const std::vector<array>& inputs) {
1347
+ const auto& x = inputs[0];
1348
+ const auto& update = inputs[1];
1349
+ return std::vector<array>{slice_update(x, update, array({0}), {0})};
1350
+ };
1351
+ auto x = zeros({2, 2});
1352
+ auto update = array({3.f, 4.f}, {1, 2});
1353
+ auto outs = vjp(fn, {x, update}, {ones({2, 2})}).second;
1354
+ CHECK(allclose(outs[0], array({0.f, 0.f, 1.f, 1.f}, {2, 2})).item<bool>());
1355
+ CHECK(allclose(outs[1], ones({1, 2})).item<bool>());
1356
+ }
1357
+ }
1358
+
1359
+ TEST_CASE("test masked_scatter autograd") {
1360
+ if (cu::is_available()) {
1361
+ INFO("Skipping masked_scatter cuda autograd tests");
1362
+ return;
1363
+ }
1364
+
1365
+ // Test jvp
1366
+ {
1367
+ auto self = array({10.f, 20.f, 30.f, 40.f}, {4});
1368
+ auto mask = array({false, true, false, true}, bool_);
1369
+ auto src = array({7.f, 8.f}, {2});
1370
+
1371
+ auto self_tan = array({1.f, 2.f, 3.f, 4.f}, {4});
1372
+ auto src_tan = array({9.f, 11.f}, {2});
1373
+
1374
+ auto fun = [&mask](const std::vector<array>& in) {
1375
+ return std::vector<array>{masked_scatter(in[0], mask, in[1])};
1376
+ };
1377
+
1378
+ auto outs = jvp(fun, {self, src}, {self_tan, src_tan}).second;
1379
+ CHECK_EQ(outs.size(), 1);
1380
+ CHECK(array_equal(outs[0], array({1.f, 9.f, 3.f, 11.f}, {4})).item<bool>());
1381
+ }
1382
+
1383
+ // Test vjp
1384
+ {
1385
+ auto self = array({10.f, 20.f, 30.f, 40.f}, {4});
1386
+ auto mask = array({true, false, false, true}, bool_);
1387
+ auto src = array({7.f, 8.f}, {2});
1388
+
1389
+ auto f_sum = [&mask](const std::vector<array>& xs) {
1390
+ return std::vector<array>{sum(masked_scatter(xs[0], mask, xs[1]))};
1391
+ };
1392
+
1393
+ auto v = vjp(f_sum, {self, src}, {array(1.f)});
1394
+ const auto& grads = v.second;
1395
+
1396
+ CHECK(array_equal(grads[0], array({0.f, 1.f, 1.f, 0.f}, {4})).item<bool>());
1397
+ CHECK(array_equal(grads[1], array({1.f, 1.f}, {2})).item<bool>());
1398
+ }
1399
+ }