mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,392 @@
|
|
|
1
|
+
# Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import math
|
|
4
|
+
import unittest
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
import mlx_tests
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class TestRandom(mlx_tests.MLXTestCase):
|
|
11
|
+
def test_global_rng(self):
|
|
12
|
+
mx.random.seed(3)
|
|
13
|
+
a = mx.random.uniform()
|
|
14
|
+
b = mx.random.uniform()
|
|
15
|
+
|
|
16
|
+
mx.random.seed(3)
|
|
17
|
+
x = mx.random.uniform()
|
|
18
|
+
y = mx.random.uniform()
|
|
19
|
+
|
|
20
|
+
self.assertEqual(a.item(), x.item())
|
|
21
|
+
self.assertEqual(y.item(), b.item())
|
|
22
|
+
|
|
23
|
+
def test_key(self):
|
|
24
|
+
k1 = mx.random.key(0)
|
|
25
|
+
k2 = mx.random.key(0)
|
|
26
|
+
self.assertTrue(mx.array_equal(k1, k2))
|
|
27
|
+
|
|
28
|
+
k2 = mx.random.key(1)
|
|
29
|
+
self.assertFalse(mx.array_equal(k1, k2))
|
|
30
|
+
|
|
31
|
+
def test_key_split(self):
|
|
32
|
+
key = mx.random.key(0)
|
|
33
|
+
|
|
34
|
+
k1, k2 = mx.random.split(key)
|
|
35
|
+
self.assertFalse(mx.array_equal(k1, k2))
|
|
36
|
+
|
|
37
|
+
r1, r2 = mx.random.split(key)
|
|
38
|
+
self.assertTrue(mx.array_equal(k1, r1))
|
|
39
|
+
self.assertTrue(mx.array_equal(k2, r2))
|
|
40
|
+
|
|
41
|
+
keys = mx.random.split(key, 10)
|
|
42
|
+
self.assertEqual(keys.shape, (10, 2))
|
|
43
|
+
|
|
44
|
+
def test_uniform(self):
|
|
45
|
+
key = mx.random.key(0)
|
|
46
|
+
a = mx.random.uniform(key=key)
|
|
47
|
+
self.assertEqual(a.shape, ())
|
|
48
|
+
self.assertEqual(a.dtype, mx.float32)
|
|
49
|
+
|
|
50
|
+
b = mx.random.uniform(key=key)
|
|
51
|
+
self.assertEqual(a.item(), b.item())
|
|
52
|
+
|
|
53
|
+
a = mx.random.uniform(shape=(2, 3))
|
|
54
|
+
self.assertEqual(a.shape, (2, 3))
|
|
55
|
+
|
|
56
|
+
a = mx.random.uniform(shape=(1000,), low=-1, high=5)
|
|
57
|
+
self.assertTrue(mx.all((a > -1) < 5).item())
|
|
58
|
+
|
|
59
|
+
a = mx.random.uniform(shape=(1000,), low=mx.array(-1), high=5)
|
|
60
|
+
self.assertTrue(mx.all((a > -1) < 5).item())
|
|
61
|
+
|
|
62
|
+
a = mx.random.uniform(low=-0.1, high=0.1, shape=(1,), dtype=mx.bfloat16)
|
|
63
|
+
self.assertEqual(a.dtype, mx.bfloat16)
|
|
64
|
+
|
|
65
|
+
self.assertEqual(mx.random.uniform().dtype, mx.random.uniform(dtype=None).dtype)
|
|
66
|
+
|
|
67
|
+
def test_normal_and_laplace(self):
|
|
68
|
+
# Same tests for normal and laplace.
|
|
69
|
+
for distribution_sampler in [mx.random.normal, mx.random.laplace]:
|
|
70
|
+
key = mx.random.key(0)
|
|
71
|
+
a = distribution_sampler(key=key)
|
|
72
|
+
self.assertEqual(a.shape, ())
|
|
73
|
+
self.assertEqual(a.dtype, mx.float32)
|
|
74
|
+
|
|
75
|
+
b = distribution_sampler(key=key)
|
|
76
|
+
self.assertEqual(a.item(), b.item())
|
|
77
|
+
|
|
78
|
+
a = distribution_sampler(shape=(2, 3))
|
|
79
|
+
self.assertEqual(a.shape, (2, 3))
|
|
80
|
+
|
|
81
|
+
## Generate in float16 or bfloat16
|
|
82
|
+
for t in [mx.float16, mx.bfloat16]:
|
|
83
|
+
a = distribution_sampler(dtype=t)
|
|
84
|
+
self.assertEqual(a.dtype, t)
|
|
85
|
+
|
|
86
|
+
# Generate with a given mean and standard deviation
|
|
87
|
+
loc = 1.0
|
|
88
|
+
scale = 2.0
|
|
89
|
+
|
|
90
|
+
a = distribution_sampler(shape=(3, 2), loc=loc, scale=scale, key=key)
|
|
91
|
+
b = scale * distribution_sampler(shape=(3, 2), key=key) + loc
|
|
92
|
+
self.assertTrue(mx.allclose(a, b))
|
|
93
|
+
|
|
94
|
+
a = distribution_sampler(
|
|
95
|
+
shape=(3, 2), loc=loc, scale=scale, dtype=mx.float16, key=key
|
|
96
|
+
)
|
|
97
|
+
b = (
|
|
98
|
+
scale * distribution_sampler(shape=(3, 2), dtype=mx.float16, key=key)
|
|
99
|
+
+ loc
|
|
100
|
+
)
|
|
101
|
+
self.assertTrue(mx.allclose(a, b))
|
|
102
|
+
|
|
103
|
+
self.assertEqual(
|
|
104
|
+
distribution_sampler().dtype, distribution_sampler(dtype=None).dtype
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
# Test not getting -inf or inf with half precison
|
|
108
|
+
for hp in [mx.float16, mx.bfloat16]:
|
|
109
|
+
a = abs(distribution_sampler(shape=(10000,), loc=0, scale=1, dtype=hp))
|
|
110
|
+
self.assertTrue(mx.all(a < mx.inf))
|
|
111
|
+
|
|
112
|
+
def test_multivariate_normal(self):
|
|
113
|
+
key = mx.random.key(0)
|
|
114
|
+
mean = mx.array([0, 0])
|
|
115
|
+
cov = mx.array([[1, 0], [0, 1]])
|
|
116
|
+
|
|
117
|
+
a = mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu)
|
|
118
|
+
self.assertEqual(a.shape, (2,))
|
|
119
|
+
|
|
120
|
+
## Check dtypes
|
|
121
|
+
for t in [mx.float32]:
|
|
122
|
+
a = mx.random.multivariate_normal(
|
|
123
|
+
mean, cov, dtype=t, key=key, stream=mx.cpu
|
|
124
|
+
)
|
|
125
|
+
self.assertEqual(a.dtype, t)
|
|
126
|
+
for t in [
|
|
127
|
+
mx.int8,
|
|
128
|
+
mx.int32,
|
|
129
|
+
mx.int64,
|
|
130
|
+
mx.uint8,
|
|
131
|
+
mx.uint32,
|
|
132
|
+
mx.uint64,
|
|
133
|
+
mx.float16,
|
|
134
|
+
mx.bfloat16,
|
|
135
|
+
]:
|
|
136
|
+
with self.assertRaises(ValueError):
|
|
137
|
+
mx.random.multivariate_normal(
|
|
138
|
+
mean, cov, dtype=t, key=key, stream=mx.cpu
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
## Check incompatible shapes
|
|
142
|
+
with self.assertRaises(ValueError):
|
|
143
|
+
mean = mx.zeros((2, 2))
|
|
144
|
+
cov = mx.zeros((2, 2))
|
|
145
|
+
mx.random.multivariate_normal(mean, cov, shape=(3,), key=key, stream=mx.cpu)
|
|
146
|
+
|
|
147
|
+
with self.assertRaises(ValueError):
|
|
148
|
+
mean = mx.zeros((2))
|
|
149
|
+
cov = mx.zeros((2, 2, 2))
|
|
150
|
+
mx.random.multivariate_normal(mean, cov, shape=(3,), key=key, stream=mx.cpu)
|
|
151
|
+
|
|
152
|
+
with self.assertRaises(ValueError):
|
|
153
|
+
mean = mx.zeros((3,))
|
|
154
|
+
cov = mx.zeros((2, 2))
|
|
155
|
+
mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu)
|
|
156
|
+
|
|
157
|
+
with self.assertRaises(ValueError):
|
|
158
|
+
mean = mx.zeros((2,))
|
|
159
|
+
cov = mx.zeros((2, 3))
|
|
160
|
+
mx.random.multivariate_normal(mean, cov, key=key, stream=mx.cpu)
|
|
161
|
+
|
|
162
|
+
## Different shape of mean and cov
|
|
163
|
+
mean = mx.array([[0, 7], [1, 2], [3, 4]])
|
|
164
|
+
cov = mx.array([[1, 0.5], [0.5, 1]])
|
|
165
|
+
a = mx.random.multivariate_normal(mean, cov, shape=(4, 3), stream=mx.cpu)
|
|
166
|
+
self.assertEqual(a.shape, (4, 3, 2))
|
|
167
|
+
|
|
168
|
+
## Check correcteness of the mean and covariance
|
|
169
|
+
n_test = int(1e5)
|
|
170
|
+
|
|
171
|
+
def check_jointly_gaussian(data, mean, cov):
|
|
172
|
+
empirical_mean = mx.mean(data, axis=0)
|
|
173
|
+
empirical_cov = (
|
|
174
|
+
(data - empirical_mean).T @ (data - empirical_mean) / data.shape[0]
|
|
175
|
+
)
|
|
176
|
+
N = data.shape[1]
|
|
177
|
+
self.assertTrue(
|
|
178
|
+
mx.allclose(
|
|
179
|
+
empirical_mean, mean, rtol=0.0, atol=10 * N**2 / math.sqrt(n_test)
|
|
180
|
+
)
|
|
181
|
+
)
|
|
182
|
+
self.assertTrue(
|
|
183
|
+
mx.allclose(
|
|
184
|
+
empirical_cov, cov, rtol=0.0, atol=10 * N**2 / math.sqrt(n_test)
|
|
185
|
+
)
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
mean = mx.array([4.0, 7.0])
|
|
189
|
+
cov = mx.array([[2, 0.5], [0.5, 1]])
|
|
190
|
+
data = mx.random.multivariate_normal(
|
|
191
|
+
mean, cov, shape=(n_test,), key=key, stream=mx.cpu
|
|
192
|
+
)
|
|
193
|
+
check_jointly_gaussian(data, mean, cov)
|
|
194
|
+
|
|
195
|
+
mean = mx.arange(3)
|
|
196
|
+
cov = mx.array([[1, -1, 0.5], [-1, 1, -0.5], [0.5, -0.5, 1]])
|
|
197
|
+
data = mx.random.multivariate_normal(
|
|
198
|
+
mean, cov, shape=(n_test,), key=key, stream=mx.cpu
|
|
199
|
+
)
|
|
200
|
+
check_jointly_gaussian(data, mean, cov)
|
|
201
|
+
|
|
202
|
+
def test_randint(self):
|
|
203
|
+
a = mx.random.randint(0, 1, [])
|
|
204
|
+
self.assertEqual(a.shape, ())
|
|
205
|
+
self.assertEqual(a.dtype, mx.int32)
|
|
206
|
+
|
|
207
|
+
shape = (88,)
|
|
208
|
+
low = mx.array(3)
|
|
209
|
+
high = mx.array(15)
|
|
210
|
+
|
|
211
|
+
key = mx.random.key(0)
|
|
212
|
+
a = mx.random.randint(low, high, shape, key=key)
|
|
213
|
+
self.assertEqual(a.shape, shape)
|
|
214
|
+
self.assertEqual(a.dtype, mx.int32)
|
|
215
|
+
|
|
216
|
+
# Check using the same key yields the same value
|
|
217
|
+
b = mx.random.randint(low, high, shape, key=key)
|
|
218
|
+
self.assertListEqual(a.tolist(), b.tolist())
|
|
219
|
+
|
|
220
|
+
shape = (3, 4)
|
|
221
|
+
low = mx.reshape(mx.array([0] * 3), [3, 1])
|
|
222
|
+
high = mx.reshape(mx.array([12, 13, 14, 15]), [1, 4])
|
|
223
|
+
|
|
224
|
+
a = mx.random.randint(low, high, shape)
|
|
225
|
+
self.assertEqual(a.shape, shape)
|
|
226
|
+
|
|
227
|
+
a = mx.random.randint(-10, 10, [1000, 1000])
|
|
228
|
+
self.assertTrue(mx.all(-10 <= a).item() and mx.all(a < 10).item())
|
|
229
|
+
|
|
230
|
+
a = mx.random.randint(10, -10, [1000, 1000])
|
|
231
|
+
self.assertTrue(mx.all(a == 10).item())
|
|
232
|
+
|
|
233
|
+
self.assertEqual(
|
|
234
|
+
mx.random.randint(0, 1).dtype, mx.random.randint(0, 1, dtype=None).dtype
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
def test_bernoulli(self):
|
|
238
|
+
a = mx.random.bernoulli()
|
|
239
|
+
self.assertEqual(a.shape, ())
|
|
240
|
+
self.assertEqual(a.dtype, mx.bool_)
|
|
241
|
+
|
|
242
|
+
a = mx.random.bernoulli(mx.array(0.5), [5])
|
|
243
|
+
self.assertEqual(a.shape, (5,))
|
|
244
|
+
|
|
245
|
+
a = mx.random.bernoulli(mx.array([2.0, -2.0]))
|
|
246
|
+
self.assertEqual(a.tolist(), [True, False])
|
|
247
|
+
self.assertEqual(a.shape, (2,))
|
|
248
|
+
|
|
249
|
+
p = mx.array([0.1, 0.2, 0.3])
|
|
250
|
+
mx.reshape(p, [1, 3])
|
|
251
|
+
x = mx.random.bernoulli(p, [4, 3])
|
|
252
|
+
self.assertEqual(x.shape, (4, 3))
|
|
253
|
+
|
|
254
|
+
with self.assertRaises(ValueError):
|
|
255
|
+
mx.random.bernoulli(p, [2]) # Bad shape
|
|
256
|
+
|
|
257
|
+
with self.assertRaises(ValueError):
|
|
258
|
+
mx.random.bernoulli(0, [2]) # Bad type
|
|
259
|
+
|
|
260
|
+
def test_truncated_normal(self):
|
|
261
|
+
a = mx.random.truncated_normal(-2.0, 2.0)
|
|
262
|
+
self.assertEqual(a.size, 1)
|
|
263
|
+
self.assertEqual(a.dtype, mx.float32)
|
|
264
|
+
|
|
265
|
+
a = mx.random.truncated_normal(mx.array([]), mx.array([]))
|
|
266
|
+
self.assertEqual(a.dtype, mx.float32)
|
|
267
|
+
self.assertEqual(a.size, 0)
|
|
268
|
+
|
|
269
|
+
lower = mx.reshape(mx.array([-2.0, 0.0]), [1, 2])
|
|
270
|
+
upper = mx.reshape(mx.array([0.0, 1.0, 2.0]), [3, 1])
|
|
271
|
+
a = mx.random.truncated_normal(lower, upper)
|
|
272
|
+
|
|
273
|
+
self.assertEqual(a.shape, (3, 2))
|
|
274
|
+
self.assertTrue(mx.all(lower <= a).item() and mx.all(a <= upper).item())
|
|
275
|
+
|
|
276
|
+
a = mx.random.truncated_normal(2.0, -2.0)
|
|
277
|
+
self.assertTrue(mx.all(a == 2.0).item())
|
|
278
|
+
|
|
279
|
+
a = mx.random.truncated_normal(-3.0, 3.0, [542, 399])
|
|
280
|
+
self.assertEqual(a.shape, (542, 399))
|
|
281
|
+
|
|
282
|
+
lower = mx.array([-2.0, -1.0])
|
|
283
|
+
higher = mx.array([1.0, 2.0, 3.0])
|
|
284
|
+
with self.assertRaises(ValueError):
|
|
285
|
+
mx.random.truncated_normal(lower, higher) # Bad shape
|
|
286
|
+
|
|
287
|
+
self.assertEqual(
|
|
288
|
+
mx.random.truncated_normal(0, 1).dtype,
|
|
289
|
+
mx.random.truncated_normal(0, 1, dtype=None).dtype,
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
def test_gumbel(self):
|
|
293
|
+
samples = mx.random.gumbel(shape=(100, 100))
|
|
294
|
+
self.assertEqual(samples.shape, (100, 100))
|
|
295
|
+
self.assertEqual(samples.dtype, mx.float32)
|
|
296
|
+
mean = 0.5772
|
|
297
|
+
# Std deviation of the sample mean is small (<0.02),
|
|
298
|
+
# so this test is pretty conservative
|
|
299
|
+
self.assertTrue(mx.abs(mx.mean(samples) - mean) < 0.2)
|
|
300
|
+
|
|
301
|
+
self.assertEqual(
|
|
302
|
+
mx.random.gumbel((1, 1)).dtype, mx.random.gumbel((1, 1), dtype=None).dtype
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
def test_categorical(self):
|
|
306
|
+
logits = mx.zeros((10, 20))
|
|
307
|
+
self.assertEqual(mx.random.categorical(logits, -1).shape, (10,))
|
|
308
|
+
self.assertEqual(mx.random.categorical(logits, 0).shape, (20,))
|
|
309
|
+
self.assertEqual(mx.random.categorical(logits, 1).shape, (10,))
|
|
310
|
+
|
|
311
|
+
out = mx.random.categorical(logits)
|
|
312
|
+
self.assertEqual(out.shape, (10,))
|
|
313
|
+
self.assertEqual(out.dtype, mx.uint32)
|
|
314
|
+
self.assertTrue(mx.max(out).item() < 20)
|
|
315
|
+
|
|
316
|
+
out = mx.random.categorical(logits, 0, [5, 20])
|
|
317
|
+
self.assertEqual(out.shape, (5, 20))
|
|
318
|
+
self.assertTrue(mx.max(out).item() < 10)
|
|
319
|
+
|
|
320
|
+
out = mx.random.categorical(logits, 1, num_samples=7)
|
|
321
|
+
self.assertEqual(out.shape, (10, 7))
|
|
322
|
+
out = mx.random.categorical(logits, 0, num_samples=7)
|
|
323
|
+
self.assertEqual(out.shape, (20, 7))
|
|
324
|
+
|
|
325
|
+
with self.assertRaises(ValueError):
|
|
326
|
+
mx.random.categorical(logits, shape=[10, 5], num_samples=5)
|
|
327
|
+
|
|
328
|
+
def test_permutation(self):
|
|
329
|
+
x = sorted(mx.random.permutation(4).tolist())
|
|
330
|
+
self.assertEqual([0, 1, 2, 3], x)
|
|
331
|
+
|
|
332
|
+
x = mx.array([0, 1, 2, 3])
|
|
333
|
+
x = sorted(mx.random.permutation(x).tolist())
|
|
334
|
+
self.assertEqual([0, 1, 2, 3], x)
|
|
335
|
+
|
|
336
|
+
x = mx.array([0, 1, 2, 3])
|
|
337
|
+
x = sorted(mx.random.permutation(x).tolist())
|
|
338
|
+
|
|
339
|
+
# 2-D
|
|
340
|
+
x = mx.arange(16).reshape(4, 4)
|
|
341
|
+
out = mx.sort(mx.random.permutation(x, axis=0), axis=0)
|
|
342
|
+
self.assertTrue(mx.array_equal(x, out))
|
|
343
|
+
out = mx.sort(mx.random.permutation(x, axis=1), axis=1)
|
|
344
|
+
self.assertTrue(mx.array_equal(x, out))
|
|
345
|
+
|
|
346
|
+
# Basically 0 probability this should fail.
|
|
347
|
+
sorted_x = mx.arange(16384)
|
|
348
|
+
x = mx.random.permutation(16384)
|
|
349
|
+
self.assertFalse(mx.array_equal(sorted_x, x))
|
|
350
|
+
|
|
351
|
+
# Preserves shape / doesn't cast input to int
|
|
352
|
+
x = mx.random.permutation(mx.array([[1]]))
|
|
353
|
+
self.assertEqual(x.shape, (1, 1))
|
|
354
|
+
|
|
355
|
+
def test_complex_normal(self):
|
|
356
|
+
sample = mx.random.normal(tuple(), dtype=mx.complex64)
|
|
357
|
+
self.assertEqual(sample.shape, tuple())
|
|
358
|
+
self.assertEqual(sample.dtype, mx.complex64)
|
|
359
|
+
|
|
360
|
+
sample = mx.random.normal((1, 2, 3, 4), dtype=mx.complex64)
|
|
361
|
+
self.assertEqual(sample.shape, (1, 2, 3, 4))
|
|
362
|
+
self.assertEqual(sample.dtype, mx.complex64)
|
|
363
|
+
|
|
364
|
+
sample = mx.random.normal((1, 2, 3, 4), dtype=mx.complex64, scale=2.0, loc=3.0)
|
|
365
|
+
self.assertEqual(sample.shape, (1, 2, 3, 4))
|
|
366
|
+
self.assertEqual(sample.dtype, mx.complex64)
|
|
367
|
+
|
|
368
|
+
sample = mx.random.normal(
|
|
369
|
+
(1, 2, 3, 4), dtype=mx.complex64, scale=2.0, loc=3.0 + 1j
|
|
370
|
+
)
|
|
371
|
+
self.assertEqual(sample.shape, (1, 2, 3, 4))
|
|
372
|
+
self.assertEqual(sample.dtype, mx.complex64)
|
|
373
|
+
|
|
374
|
+
def test_broadcastable_scale_loc(self):
|
|
375
|
+
b = mx.random.normal((10, 2))
|
|
376
|
+
sample = mx.random.normal((2, 10, 2), loc=b, scale=b)
|
|
377
|
+
mx.eval(sample)
|
|
378
|
+
self.assertEqual(sample.shape, (2, 10, 2))
|
|
379
|
+
|
|
380
|
+
with self.assertRaises(ValueError):
|
|
381
|
+
b = mx.random.normal((10,))
|
|
382
|
+
sample = mx.random.normal((2, 10, 2), loc=b, scale=b)
|
|
383
|
+
|
|
384
|
+
b = mx.random.normal((3, 1, 2))
|
|
385
|
+
sample = mx.random.normal((3, 4, 2), dtype=mx.float16, loc=b, scale=b)
|
|
386
|
+
mx.eval(sample)
|
|
387
|
+
self.assertEqual(sample.shape, (3, 4, 2))
|
|
388
|
+
self.assertEqual(sample.dtype, mx.float16)
|
|
389
|
+
|
|
390
|
+
|
|
391
|
+
if __name__ == "__main__":
|
|
392
|
+
mlx_tests.MLXTestRunner()
|
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
# Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import unittest
|
|
4
|
+
from itertools import combinations, permutations
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
import mlx_tests
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TestReduce(mlx_tests.MLXTestCase):
|
|
12
|
+
def test_axis_permutation_sums(self):
|
|
13
|
+
for shape in [(5, 5, 1, 5, 5), (65, 65, 1, 65)]:
|
|
14
|
+
with self.subTest(shape=shape):
|
|
15
|
+
x_npy = (np.random.randn(*shape) * 128).astype(np.int32)
|
|
16
|
+
x_mlx = mx.array(x_npy)
|
|
17
|
+
for t in permutations(range(len(shape))):
|
|
18
|
+
with self.subTest(t=t):
|
|
19
|
+
y_npy = np.transpose(x_npy, t)
|
|
20
|
+
y_mlx = mx.transpose(x_mlx, t)
|
|
21
|
+
for n in range(1, len(shape) + 1):
|
|
22
|
+
for a in combinations(range(len(shape)), n):
|
|
23
|
+
with self.subTest(a=a):
|
|
24
|
+
z_npy = np.sum(y_npy, axis=a)
|
|
25
|
+
z_mlx = mx.sum(y_mlx, axis=a)
|
|
26
|
+
mx.eval(z_mlx)
|
|
27
|
+
self.assertTrue(np.all(z_npy == z_mlx))
|
|
28
|
+
|
|
29
|
+
def test_expand_sums(self):
|
|
30
|
+
x_npy = np.random.randn(5, 1, 5, 1, 5, 1).astype(np.float32)
|
|
31
|
+
x_mlx = mx.array(x_npy)
|
|
32
|
+
for m in range(1, 4):
|
|
33
|
+
for ax in combinations([1, 3, 5], m):
|
|
34
|
+
shape = np.array([5, 1, 5, 1, 5, 1])
|
|
35
|
+
shape[list(ax)] = 5
|
|
36
|
+
shape = shape.tolist()
|
|
37
|
+
with self.subTest(shape=shape):
|
|
38
|
+
y_npy = np.broadcast_to(x_npy, shape)
|
|
39
|
+
y_mlx = mx.broadcast_to(x_mlx, shape)
|
|
40
|
+
for n in range(1, 7):
|
|
41
|
+
for a in combinations(range(6), n):
|
|
42
|
+
with self.subTest(a=a):
|
|
43
|
+
z_npy = np.sum(y_npy, axis=a) / 1000
|
|
44
|
+
z_mlx = mx.sum(y_mlx, axis=a) / 1000
|
|
45
|
+
mx.eval(z_mlx)
|
|
46
|
+
self.assertTrue(
|
|
47
|
+
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def test_dtypes(self):
|
|
51
|
+
int_dtypes = [
|
|
52
|
+
"int8",
|
|
53
|
+
"int16",
|
|
54
|
+
"int32",
|
|
55
|
+
"uint8",
|
|
56
|
+
"uint16",
|
|
57
|
+
"uint32",
|
|
58
|
+
"int64",
|
|
59
|
+
"uint64",
|
|
60
|
+
"complex64",
|
|
61
|
+
]
|
|
62
|
+
float_dtypes = ["float32"]
|
|
63
|
+
|
|
64
|
+
for dtype in int_dtypes + float_dtypes:
|
|
65
|
+
with self.subTest(dtype=dtype):
|
|
66
|
+
x = np.random.uniform(0, 2, size=(3, 3, 3)).astype(getattr(np, dtype))
|
|
67
|
+
y = mx.array(x)
|
|
68
|
+
|
|
69
|
+
for op in ("sum", "prod", "min", "max"):
|
|
70
|
+
with self.subTest(op=op):
|
|
71
|
+
np_op = getattr(np, op)
|
|
72
|
+
mlx_op = getattr(mx, op)
|
|
73
|
+
|
|
74
|
+
for axes in (None, 0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)):
|
|
75
|
+
with self.subTest(axes=axes):
|
|
76
|
+
if op in ("sum", "prod"):
|
|
77
|
+
r_np = np_op(
|
|
78
|
+
x, axis=axes, dtype=(getattr(np, dtype))
|
|
79
|
+
)
|
|
80
|
+
else:
|
|
81
|
+
r_np = np_op(x, axis=axes)
|
|
82
|
+
r_mlx = mlx_op(y, axis=axes)
|
|
83
|
+
mx.eval(r_mlx)
|
|
84
|
+
self.assertTrue(np.allclose(r_np, r_mlx, atol=1e-4))
|
|
85
|
+
|
|
86
|
+
def test_arg_reduce(self):
|
|
87
|
+
dtypes = [
|
|
88
|
+
"uint8",
|
|
89
|
+
"uint16",
|
|
90
|
+
"uint32",
|
|
91
|
+
"uint64",
|
|
92
|
+
"int8",
|
|
93
|
+
"int16",
|
|
94
|
+
"int32",
|
|
95
|
+
"int64",
|
|
96
|
+
"float16",
|
|
97
|
+
"float32",
|
|
98
|
+
]
|
|
99
|
+
for dtype in dtypes:
|
|
100
|
+
with self.subTest(dtype=dtype):
|
|
101
|
+
data = np.random.rand(10, 12, 13).astype(getattr(np, dtype))
|
|
102
|
+
x = mx.array(data)
|
|
103
|
+
for op in ["argmin", "argmax"]:
|
|
104
|
+
for axis in range(3):
|
|
105
|
+
for kd in [True, False]:
|
|
106
|
+
a = getattr(mx, op)(x, axis, kd)
|
|
107
|
+
b = getattr(np, op)(data, axis, keepdims=kd)
|
|
108
|
+
self.assertEqual(a.tolist(), b.tolist())
|
|
109
|
+
|
|
110
|
+
for op in ["argmin", "argmax"]:
|
|
111
|
+
a = getattr(mx, op)(x, keepdims=True)
|
|
112
|
+
b = getattr(np, op)(data, keepdims=True)
|
|
113
|
+
self.assertEqual(a.tolist(), b.tolist())
|
|
114
|
+
a = getattr(mx, op)(x)
|
|
115
|
+
b = getattr(np, op)(data)
|
|
116
|
+
self.assertEqual(a.item(), b)
|
|
117
|
+
|
|
118
|
+
def test_edge_case(self):
|
|
119
|
+
x = (mx.random.normal((100, 1, 100, 100)) * 128).astype(mx.int32)
|
|
120
|
+
x = x.transpose(0, 3, 1, 2)
|
|
121
|
+
|
|
122
|
+
y = x.sum((0, 2, 3))
|
|
123
|
+
mx.eval(y)
|
|
124
|
+
z = np.array(x).sum((0, 2, 3))
|
|
125
|
+
self.assertTrue(np.all(z == y))
|
|
126
|
+
|
|
127
|
+
def test_sum_bool(self):
|
|
128
|
+
x = np.random.uniform(0, 1, size=(10, 10, 10)) > 0.5
|
|
129
|
+
y = mx.array(x)
|
|
130
|
+
npsum = x.sum().item()
|
|
131
|
+
mxsum = y.sum().item()
|
|
132
|
+
self.assertEqual(npsum, mxsum)
|
|
133
|
+
|
|
134
|
+
def test_many_reduction_axes(self):
|
|
135
|
+
|
|
136
|
+
def check(x, axes):
|
|
137
|
+
expected = x
|
|
138
|
+
for ax in axes:
|
|
139
|
+
expected = mx.sum(expected, axis=ax, keepdims=True)
|
|
140
|
+
out = mx.sum(x, axis=axes, keepdims=True)
|
|
141
|
+
self.assertTrue(mx.array_equal(out, expected))
|
|
142
|
+
|
|
143
|
+
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4))
|
|
144
|
+
check(x, (0, 2, 4))
|
|
145
|
+
|
|
146
|
+
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4))
|
|
147
|
+
check(x, (0, 2, 4, 6))
|
|
148
|
+
|
|
149
|
+
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4, 4, 4))
|
|
150
|
+
check(x, (0, 2, 4, 6, 8))
|
|
151
|
+
|
|
152
|
+
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4, 4, 4, 128))
|
|
153
|
+
x = x.transpose(1, 0, 2, 3, 4, 5, 6, 7, 8, 9)
|
|
154
|
+
check(x, (1, 3, 5, 7, 9))
|
|
155
|
+
|
|
156
|
+
def test_nan_propagation(self):
|
|
157
|
+
dtypes = [
|
|
158
|
+
"uint8",
|
|
159
|
+
"uint16",
|
|
160
|
+
"uint32",
|
|
161
|
+
"int8",
|
|
162
|
+
"int16",
|
|
163
|
+
"int32",
|
|
164
|
+
"float16",
|
|
165
|
+
"float32",
|
|
166
|
+
]
|
|
167
|
+
|
|
168
|
+
for dtype in dtypes:
|
|
169
|
+
with self.subTest(dtype=dtype):
|
|
170
|
+
x = (mx.random.normal((4, 4)) * 10).astype(getattr(mx, dtype))
|
|
171
|
+
indices = mx.random.randint(0, 4, shape=(6,)).reshape(3, 2)
|
|
172
|
+
for idx in indices:
|
|
173
|
+
x[idx[0], idx[1]] = mx.nan
|
|
174
|
+
x_np = np.array(x)
|
|
175
|
+
|
|
176
|
+
for op in ["max", "min"]:
|
|
177
|
+
for axis in [0, 1]:
|
|
178
|
+
out = getattr(mx, op)(x, axis=axis)
|
|
179
|
+
ref = getattr(np, op)(x_np, axis=axis)
|
|
180
|
+
self.assertTrue(np.array_equal(out, ref, equal_nan=True))
|
|
181
|
+
|
|
182
|
+
def test_nan_propagation_complex64(self):
|
|
183
|
+
complex_array_1 = mx.array(
|
|
184
|
+
[1 + 1j, 2 + 2j, 3 + 3j, mx.nan + 4j], dtype=mx.complex64
|
|
185
|
+
).reshape(2, 2)
|
|
186
|
+
complex_array_2 = mx.array(
|
|
187
|
+
[1 + 1j, 2 + 2j, 3 + mx.nan * 1j, 4 + 4j], dtype=mx.complex64
|
|
188
|
+
).reshape(2, 2)
|
|
189
|
+
complex_array_3 = mx.array(
|
|
190
|
+
[1 + 1j, 2 + mx.nan * 1j, 3 + 3j, 4 + 4j], dtype=mx.complex64
|
|
191
|
+
).reshape(2, 2)
|
|
192
|
+
complex_array_4 = mx.array(
|
|
193
|
+
[mx.nan + 1j, 2 + 2j, 3 + 3j, 4 + 4j], dtype=mx.complex64
|
|
194
|
+
).reshape(2, 2)
|
|
195
|
+
|
|
196
|
+
np_arrays = [
|
|
197
|
+
np.array(complex_array_1),
|
|
198
|
+
np.array(complex_array_2),
|
|
199
|
+
np.array(complex_array_3),
|
|
200
|
+
np.array(complex_array_4),
|
|
201
|
+
]
|
|
202
|
+
|
|
203
|
+
for mx_arr, np_arr in zip(
|
|
204
|
+
[complex_array_1, complex_array_2, complex_array_3, complex_array_4],
|
|
205
|
+
np_arrays,
|
|
206
|
+
):
|
|
207
|
+
for axis in [0, 1]:
|
|
208
|
+
for op in ["max", "min"]:
|
|
209
|
+
out = getattr(mx, op)(mx_arr, axis=axis)
|
|
210
|
+
ref = getattr(np, op)(np_arr, axis=axis)
|
|
211
|
+
self.assertTrue(np.array_equal(out, ref, equal_nan=True))
|
|
212
|
+
|
|
213
|
+
def test_long_column(self):
|
|
214
|
+
a = (np.random.randn(8192, 64) * 32).astype(np.int32)
|
|
215
|
+
b = mx.array(a)
|
|
216
|
+
|
|
217
|
+
c1 = a.sum(0)
|
|
218
|
+
c2 = b.sum(0)
|
|
219
|
+
self.assertTrue(np.all(c1 == c2))
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
if __name__ == "__main__":
|
|
223
|
+
mlx_tests.MLXTestRunner(failfast=True)
|