mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1065 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+ #include <algorithm>
3
+ #include <deque>
4
+ #include <future>
5
+ #include <numeric>
6
+ #include <set>
7
+ #include <sstream>
8
+ #include <stack>
9
+ #include <unordered_map>
10
+ #include <unordered_set>
11
+
12
+ #include "mlx/backend/cpu/eval.h"
13
+ #include "mlx/backend/gpu/eval.h"
14
+ #include "mlx/fence.h"
15
+ #include "mlx/memory.h"
16
+ #include "mlx/ops.h"
17
+ #include "mlx/primitives.h"
18
+ #include "mlx/scheduler.h"
19
+ #include "mlx/transforms.h"
20
+ #include "mlx/transforms_impl.h"
21
+ #include "mlx/utils.h"
22
+
23
+ namespace mlx::core {
24
+
25
+ static constexpr int MAX_ACTIVE_TASKS = 10;
26
+
27
+ /* This class is only meant to be used in eval
28
+ * for synchronizing with the main thread. */
29
+ class Synchronizer : public Primitive {
30
+ public:
31
+ explicit Synchronizer(Stream stream) : Primitive(stream) {}
32
+
33
+ void eval_cpu(const std::vector<array>&, std::vector<array>&) override {}
34
+ void eval_gpu(const std::vector<array>&, std::vector<array>&) override {}
35
+
36
+ DEFINE_NAME(Synchronize);
37
+ };
38
+
39
+ // Initialize the static tracing members from transforms_impl.h
40
+ //
41
+ // These are used to implement the in_tracing() function the returns true if we
42
+ // are currently under a function transformation and the retain_graph()
43
+ // function which returns true if we are forced to retain the graph during
44
+ // evaluation.
45
+ std::vector<std::pair<char, char>>& detail::InTracing::trace_stack() {
46
+ static std::vector<std::pair<char, char>> trace_stack_;
47
+ return trace_stack_;
48
+ }
49
+ int detail::InTracing::grad_counter{0};
50
+ int detail::RetainGraph::tracing_counter{0};
51
+
52
+ array eval_impl(std::vector<array> outputs, bool async) {
53
+ std::deque<array> tape;
54
+
55
+ // Make an effort to choose a good output stream
56
+ Stream stream = default_stream(default_device());
57
+ for (auto& o : outputs) {
58
+ if (o.status() == array::Status::unscheduled && o.has_primitive()) {
59
+ stream = o.primitive().stream();
60
+ break;
61
+ }
62
+ }
63
+
64
+ // Map of array id that needs fence and stream it's computed on
65
+ std::unordered_map<uintptr_t, std::pair<uint32_t, bool>> needs_fence;
66
+
67
+ auto synchronizer = array(
68
+ {}, bool_, std::make_shared<Synchronizer>(stream), std::move(outputs));
69
+
70
+ // Stream fences for inter-stream synchronization
71
+ std::unordered_map<uint32_t, Fence> fences;
72
+
73
+ // Stream events for synchronization after eval
74
+ std::unordered_map<uint32_t, Event> events;
75
+ {
76
+ auto e = Event{stream};
77
+ e.set_value(1);
78
+ synchronizer.attach_event(e);
79
+ events.emplace(stream.index, std::move(e));
80
+ }
81
+
82
+ {
83
+ // Record the degree of each input
84
+ std::unordered_map<std::uintptr_t, int> cache;
85
+
86
+ std::stack<std::pair<std::reference_wrapper<array>, int>> dfs;
87
+ dfs.emplace(synchronizer, 0);
88
+ while (!dfs.empty()) {
89
+ auto& [a_ref, idx] = dfs.top();
90
+ auto& a = a_ref.get();
91
+
92
+ if (idx < a.inputs().size()) {
93
+ // Add an input, and continue
94
+ auto& in = a.inputs()[idx++];
95
+
96
+ if (in.status() == array::Status::unscheduled) {
97
+ if (async && in.is_tracer()) {
98
+ throw std::invalid_argument(
99
+ "[async_eval] Not allowed inside a graph transformation.");
100
+ }
101
+ if (!in.has_primitive()) {
102
+ if (in.is_tracer()) {
103
+ throw std::invalid_argument(
104
+ "[eval] Attempting to eval an array during function"
105
+ " transformations like compile or vmap is not allowed.");
106
+ }
107
+ throw std::runtime_error(
108
+ "[eval] Attempting to eval an array without a primitive.\n"
109
+ "If you are compiling a function, make sure all the inputs "
110
+ "and outputs are captured:\n"
111
+ "https://ml-explore.github.io/mlx/build/html/usage/compile.html#pure-functions.\n"
112
+ "If you are not using compile, this may be a bug. "
113
+ "Please file an issue here:\n"
114
+ "https://github.com/ml-explore/mlx/issues.");
115
+ }
116
+ if (a.primitive().stream() != in.primitive().stream()) {
117
+ bool device_switch =
118
+ a.primitive().stream().device != in.primitive().stream().device;
119
+ auto [it, inserted] = needs_fence.emplace(
120
+ in.id(),
121
+ std::make_pair(in.primitive().stream().index, device_switch));
122
+ if (!inserted) {
123
+ it->second.second |= device_switch;
124
+ }
125
+ }
126
+ }
127
+
128
+ // All siblings have the same degree
129
+ auto cache_it = cache.find(in.id());
130
+ if (cache_it == cache.end()) {
131
+ dfs.emplace(in, 0);
132
+ cache.insert({in.id(), 1});
133
+ for (auto& s : in.siblings()) {
134
+ cache.insert({s.id(), 1});
135
+ }
136
+ } else {
137
+ cache_it->second++;
138
+ for (auto& s : in.siblings()) {
139
+ cache[s.id()]++;
140
+ }
141
+ }
142
+ continue;
143
+ }
144
+ if ((a.status() != array::Status::unscheduled) && !a.is_tracer() &&
145
+ a.has_primitive()) {
146
+ // If the array is evaluated and is no longer a tracer, detach it
147
+ a.detach();
148
+ }
149
+ dfs.pop();
150
+ }
151
+
152
+ // Build the tape in BFS order with a width limit
153
+ int max_width = env::bfs_max_width();
154
+ dfs = std::stack<std::pair<std::reference_wrapper<array>, int>>();
155
+ tape.push_back(synchronizer);
156
+ for (int i = 0; !cache.empty() && (i < tape.size() || !dfs.empty());) {
157
+ auto& a = (i >= tape.size()) ? dfs.top().first.get() : tape[i];
158
+ int j = 0;
159
+ if (i >= tape.size()) {
160
+ j = dfs.top().second;
161
+ dfs.pop();
162
+ } else {
163
+ i++;
164
+ }
165
+ for (; j < a.inputs().size(); ++j) {
166
+ auto& in = a.inputs()[j];
167
+ if (in.status() != array::Status::unscheduled) {
168
+ continue;
169
+ }
170
+
171
+ // If the width limit is exceeded, push the array on the stack
172
+ // and go down a level
173
+ if ((tape.size() - i) >= max_width) {
174
+ dfs.emplace(a, j);
175
+ break;
176
+ }
177
+
178
+ auto it = cache.find(in.id());
179
+ it->second -= 1;
180
+
181
+ if (it->second != 0) {
182
+ for (auto& s : in.siblings()) {
183
+ cache[s.id()] -= 1;
184
+ }
185
+ continue;
186
+ }
187
+
188
+ // Remove input and siblings from cache
189
+ cache.erase(it);
190
+ for (auto& s : in.siblings()) {
191
+ cache.erase(s.id());
192
+ }
193
+
194
+ tape.push_back(in);
195
+ }
196
+ }
197
+ }
198
+
199
+ std::unordered_set<int> open_streams;
200
+ while (!tape.empty()) {
201
+ auto arr = std::move(tape.back());
202
+ tape.pop_back();
203
+
204
+ auto stream = arr.primitive().stream();
205
+ open_streams.insert(stream.index);
206
+
207
+ if (async) {
208
+ // Lookup corresponding event
209
+ auto e = events.find(stream.index);
210
+ if (e == events.end()) {
211
+ e = events.emplace(stream.index, Event{stream}).first;
212
+ }
213
+ e->second.set_value(1);
214
+ arr.attach_event(e->second);
215
+ for (auto& s : arr.siblings()) {
216
+ s.attach_event(e->second);
217
+ }
218
+ }
219
+
220
+ for (auto& in : arr.inputs()) {
221
+ if (auto it = needs_fence.find(in.id()); it != needs_fence.end()) {
222
+ // Use fence to wait within a single eval
223
+ // Get the input array's stream fence and wait on the
224
+ // output arrays stream
225
+ fences[it->second.first].wait(stream, in);
226
+ } else if (in.event().valid()) {
227
+ if (in.event().is_signaled()) {
228
+ in.detach_event();
229
+ } else if (in.event().stream() != stream) {
230
+ // Use event to wait across async eval
231
+ in.event().wait(stream);
232
+ }
233
+ }
234
+ }
235
+
236
+ if (arr.primitive().device() == Device::gpu) {
237
+ gpu::eval(arr);
238
+ } else {
239
+ cpu::eval(arr);
240
+ }
241
+
242
+ if (scheduler::n_active_tasks() > MAX_ACTIVE_TASKS ||
243
+ (get_active_memory() > get_memory_limit() &&
244
+ scheduler::n_active_tasks() > 0)) {
245
+ // Commit any open streams
246
+ for (auto i : open_streams) {
247
+ auto s = get_stream(i);
248
+ if (s.device == Device::gpu) {
249
+ gpu::finalize(s);
250
+ }
251
+ }
252
+ scheduler::wait_for_one();
253
+ while (get_active_memory() > get_memory_limit() &&
254
+ scheduler::n_active_tasks() > 0) {
255
+ scheduler::wait_for_one();
256
+ }
257
+ }
258
+
259
+ auto maybe_update_fence = [&fences, &needs_fence, stream](const array& a) {
260
+ if (auto nf = needs_fence.find(a.id()); nf != needs_fence.end()) {
261
+ auto it = fences.find(stream.index);
262
+ if (it == fences.end()) {
263
+ it = fences.emplace(stream.index, Fence{stream}).first;
264
+ }
265
+ it->second.update(stream, a, nf->second.second);
266
+ }
267
+ };
268
+
269
+ arr.set_status(array::Status::evaluated);
270
+ // TODO Maybe always want the fence coherent kernel in the same cbuf
271
+ // as the other kernels?
272
+ maybe_update_fence(arr);
273
+ for (auto& sib : arr.siblings()) {
274
+ sib.set_status(array::Status::evaluated);
275
+ maybe_update_fence(sib);
276
+ }
277
+ if (!arr.is_tracer()) {
278
+ arr.detach();
279
+ }
280
+ }
281
+
282
+ // Signal the event in its stream
283
+ for (auto i : open_streams) {
284
+ auto s = get_stream(i);
285
+ if (auto e = events.find(i); e != events.end()) {
286
+ e->second.signal(s);
287
+ }
288
+ if (s.device == Device::gpu) {
289
+ gpu::finalize(s);
290
+ }
291
+ }
292
+
293
+ return synchronizer;
294
+ }
295
+
296
+ void async_eval(std::vector<array> outputs) {
297
+ if (outputs.empty()) {
298
+ return;
299
+ }
300
+
301
+ if (std::none_of(outputs.begin(), outputs.end(), [](array& x) {
302
+ return x.status() == array::Status::unscheduled;
303
+ })) {
304
+ return;
305
+ }
306
+
307
+ eval_impl(std::move(outputs), true);
308
+ }
309
+
310
+ void eval(std::vector<array> outputs) {
311
+ if (outputs.empty()) {
312
+ return;
313
+ }
314
+
315
+ if (std::none_of(outputs.begin(), outputs.end(), [](array& x) {
316
+ return x.status() == array::Status::unscheduled;
317
+ })) {
318
+ for (auto& x : outputs) {
319
+ x.wait();
320
+ }
321
+ return;
322
+ }
323
+
324
+ eval_impl(std::move(outputs), false).wait();
325
+ }
326
+
327
+ std::pair<std::vector<array>, std::vector<array>> vjp(
328
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
329
+ const std::vector<array>& primals,
330
+ const std::vector<array>& cotans,
331
+ const std::vector<int>& argnums) {
332
+ // Set the global tracing flag.
333
+ detail::InTracing in_tracing{false, true};
334
+
335
+ // Make tracers from given primals
336
+ std::vector<array> primals_;
337
+ for (auto& p : primals) {
338
+ auto s = p.has_primitive() ? p.primitive().stream()
339
+ : default_stream(default_device());
340
+ primals_.push_back(copy(p, s)); // Does not do a deep copy
341
+ primals_.back().set_tracer(true);
342
+ }
343
+
344
+ // Pass tracer primals through the function
345
+ // Any variables that depend on the primals are marked as tracers
346
+ auto outputs = fun(primals_);
347
+
348
+ // Map outputs to passed cotans while ignoring the outputs
349
+ // that have stop_gradient called on them
350
+ int cotan_index = 0;
351
+ std::vector<std::pair<int, int>> output_cotan_pairs;
352
+ for (int i = 0; i < outputs.size(); ++i) {
353
+ auto& out = outputs[i];
354
+ if (out.has_primitive()) {
355
+ if (auto& p = out.primitive(); typeid(p) == typeid(StopGradient)) {
356
+ continue;
357
+ }
358
+ }
359
+ if (cotan_index >= cotans.size()) {
360
+ std::ostringstream msg;
361
+ msg << "[vjp] Number of outputs to compute gradients for ("
362
+ << outputs.size() << ") does not match number of cotangents ("
363
+ << cotans.size() << ").";
364
+ throw std::invalid_argument(msg.str());
365
+ }
366
+ if (out.shape() != cotans[cotan_index].shape()) {
367
+ std::ostringstream msg;
368
+ msg << "[vjp] Output shape " << out.shape()
369
+ << " does not match cotangent shape " << cotans[cotan_index].shape()
370
+ << ".";
371
+ if (outputs.size() == 1 && out.size() == 1) {
372
+ msg << " If you are using grad your function must return a scalar.";
373
+ }
374
+ throw std::invalid_argument(msg.str());
375
+ }
376
+ output_cotan_pairs.emplace_back(i, cotan_index++);
377
+ }
378
+
379
+ // Topologically sort the compute graph, add graph nodes
380
+ // to the tape which need a gradient.
381
+ std::unordered_set<std::uintptr_t> cache;
382
+ std::unordered_set<std::uintptr_t> calc_grad;
383
+ for (int i = 0, j = 0; i < primals_.size(); ++i) {
384
+ auto& primal = primals_[i];
385
+ primal.set_tracer(false);
386
+ cache.insert(primal.id());
387
+ if (j < argnums.size() && argnums[j] == i) {
388
+ j++;
389
+ calc_grad.insert(primal.id());
390
+ }
391
+ }
392
+
393
+ std::vector<array> tape;
394
+
395
+ std::function<void(array&)> recurse;
396
+ recurse = [&](auto& a) {
397
+ // Check if visited and add to cache if not
398
+ if (auto inserted = cache.insert(a.id()); !inserted.second) {
399
+ return;
400
+ }
401
+ a.set_tracer(false);
402
+ for (auto& s : a.siblings()) {
403
+ s.set_tracer(false);
404
+ cache.insert(s.id());
405
+ }
406
+
407
+ for (auto& input : a.inputs()) {
408
+ recurse(input);
409
+ }
410
+
411
+ // Stop grad
412
+ if (a.has_primitive()) {
413
+ if (auto& p = a.primitive(); typeid(p) == typeid(StopGradient)) {
414
+ return;
415
+ }
416
+ }
417
+
418
+ // Calculate gradient if any inputs require gradient
419
+ for (auto& input : a.inputs()) {
420
+ if (calc_grad.find(input.id()) != calc_grad.end()) {
421
+ tape.push_back(a);
422
+ calc_grad.insert(a.id());
423
+ for (auto& s : a.siblings()) {
424
+ calc_grad.insert(s.id());
425
+ }
426
+ break;
427
+ }
428
+ }
429
+ };
430
+
431
+ for (auto out : outputs) {
432
+ recurse(out);
433
+ }
434
+
435
+ // Run the tape backwards, computing vector-jacobian
436
+ // products for each primitive
437
+ std::unordered_map<std::uintptr_t, array> cotan_map;
438
+ for (auto [out_idx, cotan_idx] : output_cotan_pairs) {
439
+ auto& o = outputs[out_idx];
440
+ auto s = o.has_primitive() ? o.primitive().stream()
441
+ : default_stream(default_device());
442
+ cotan_map.insert({o.id(), astype(cotans[cotan_idx], o.dtype(), s)});
443
+ }
444
+ for (auto it = tape.rbegin(); it != tape.rend(); ++it) {
445
+ auto& a = *it;
446
+
447
+ // Get the arguments whose gradients are needed
448
+ std::vector<int> argnums;
449
+ for (int i = 0; i < a.inputs().size(); ++i) {
450
+ if (calc_grad.find(a.inputs()[i].id()) != calc_grad.end()) {
451
+ argnums.push_back(i);
452
+ }
453
+ }
454
+
455
+ // Check if any of the array or its siblings have cotangents,
456
+ // if not, we can skip this primitive
457
+ auto outputs = a.outputs();
458
+ bool has_cotans =
459
+ std::any_of(outputs.cbegin(), outputs.cend(), [&cotan_map](auto& s) {
460
+ return cotan_map.find(s.id()) != cotan_map.end();
461
+ });
462
+ if (!has_cotans) {
463
+ continue;
464
+ }
465
+
466
+ auto s = a.primitive().stream();
467
+ std::vector<array> cotangents{};
468
+ for (auto& o : outputs) {
469
+ if (auto cotan_it = cotan_map.find(o.id()); cotan_it != cotan_map.end()) {
470
+ cotangents.push_back(cotan_map.extract(cotan_it).mapped());
471
+ } else {
472
+ cotangents.push_back(zeros_like(o, s));
473
+ }
474
+ }
475
+
476
+ std::vector<array> vjps;
477
+ {
478
+ detail::RetainGraph retain;
479
+ vjps = a.primitive().vjp(a.inputs(), cotangents, argnums, outputs);
480
+ }
481
+ // Accumulate the vector-jacobian products for each input
482
+ for (int i = 0; i < argnums.size(); ++i) {
483
+ auto in_id = a.inputs()[argnums[i]].id();
484
+ if (auto cotan_it = cotan_map.find(in_id); cotan_it != cotan_map.end()) {
485
+ cotan_it->second = add(cotan_it->second, vjps[i], s);
486
+ } else {
487
+ cotan_map.insert({in_id, vjps[i]});
488
+ }
489
+ }
490
+ }
491
+ std::vector<array> vjps;
492
+ for (auto arg : argnums) {
493
+ auto& primal = primals_[arg];
494
+ if (auto cotan_it = cotan_map.find(primal.id());
495
+ cotan_it != cotan_map.end()) {
496
+ vjps.push_back(cotan_it->second);
497
+ } else {
498
+ auto s = primal.has_primitive() ? primal.primitive().stream()
499
+ : default_stream(default_device());
500
+ vjps.push_back(zeros_like(primal, s));
501
+ }
502
+ }
503
+ return {outputs, vjps};
504
+ }
505
+
506
+ std::pair<std::vector<array>, std::vector<array>> vjp(
507
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
508
+ const std::vector<array>& primals,
509
+ const std::vector<array>& cotans) {
510
+ std::vector<int> argnums(primals.size());
511
+ std::iota(argnums.begin(), argnums.end(), 0);
512
+ return vjp(fun, primals, cotans, argnums);
513
+ }
514
+
515
+ std::pair<array, array> vjp(
516
+ const std::function<array(const array&)>& fun,
517
+ const array& primal,
518
+ const array& cotan) {
519
+ auto vec_fun = [fun](const std::vector<array>& inputs) {
520
+ return std::vector<array>{fun(inputs[0])};
521
+ };
522
+ auto [outputs, vjps] = vjp(vec_fun, {primal}, {cotan});
523
+ return {outputs[0], vjps[0]};
524
+ }
525
+
526
+ std::pair<std::vector<array>, std::vector<array>> jvp(
527
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
528
+ const std::vector<array>& primals,
529
+ const std::vector<array>& tangents) {
530
+ // Set the global tracing flag.
531
+ detail::InTracing in_tracing{false, true};
532
+
533
+ if (primals.size() != tangents.size()) {
534
+ throw std::invalid_argument(
535
+ "[jvp] Number of inputs does not match number of tangents.");
536
+ }
537
+ for (int i = 0; i < primals.size(); ++i) {
538
+ if (primals[i].shape() != tangents[i].shape()) {
539
+ throw std::invalid_argument(
540
+ "[jvp] Input shape does not match shape of tangent.");
541
+ }
542
+ }
543
+
544
+ std::vector<array> primals_;
545
+ for (auto& p : primals) {
546
+ auto s = p.has_primitive() ? p.primitive().stream()
547
+ : default_stream(default_device());
548
+ primals_.push_back(copy(p, s)); // Does not do a deep copy
549
+ primals_.back().set_tracer(true);
550
+ }
551
+ auto outputs = fun(primals_);
552
+
553
+ // Topologically sort the compute graph, record outputs
554
+ // in the tape if a gradient is needed.
555
+ std::unordered_set<std::uintptr_t> cache;
556
+ std::unordered_set<std::uintptr_t> calc_grad;
557
+ for (auto& primal : primals_) {
558
+ primal.set_tracer(false);
559
+ calc_grad.insert(primal.id());
560
+ cache.insert(primal.id());
561
+ }
562
+
563
+ std::vector<array> tape;
564
+
565
+ std::function<void(array&)> recurse;
566
+ recurse = [&](auto& a) {
567
+ // Check if visited and add to cache if not
568
+ if (auto inserted = cache.insert(a.id()); !inserted.second) {
569
+ return;
570
+ }
571
+ a.set_tracer(false);
572
+ for (auto& s : a.siblings()) {
573
+ s.set_tracer(false);
574
+ cache.insert(s.id());
575
+ }
576
+
577
+ for (auto input : a.inputs()) {
578
+ recurse(input);
579
+ }
580
+
581
+ // Stop grad
582
+ if (a.has_primitive()) {
583
+ if (auto& p = a.primitive(); typeid(p) == typeid(StopGradient)) {
584
+ return;
585
+ }
586
+ }
587
+
588
+ // Calculate gradient if any inputs require gradient
589
+ for (auto& input : a.inputs()) {
590
+ if (calc_grad.find(input.id()) != calc_grad.end()) {
591
+ tape.push_back(a);
592
+ calc_grad.insert(a.id());
593
+ for (auto& s : a.siblings()) {
594
+ calc_grad.insert(s.id());
595
+ }
596
+ break;
597
+ }
598
+ }
599
+ };
600
+
601
+ for (auto out : outputs) {
602
+ recurse(out);
603
+ }
604
+
605
+ std::unordered_map<std::uintptr_t, array> tan_map;
606
+ for (int i = 0; i < primals_.size(); ++i) {
607
+ tan_map.insert({primals_[i].id(), tangents[i]});
608
+ }
609
+
610
+ for (auto& a : tape) {
611
+ // Get the arguments used in the jvp
612
+ std::vector<int> argnums;
613
+ std::vector<array> tangents;
614
+ for (int i = 0; i < a.inputs().size(); ++i) {
615
+ if (auto it = tan_map.find(a.inputs()[i].id()); it != tan_map.end()) {
616
+ argnums.push_back(i);
617
+ tangents.push_back(it->second);
618
+ }
619
+ }
620
+
621
+ auto jvps = a.primitive().jvp(a.inputs(), tangents, argnums);
622
+ auto outputs = a.outputs();
623
+ for (int i = 0; i < jvps.size(); ++i) {
624
+ tan_map.insert({outputs[i].id(), jvps[i]});
625
+ }
626
+ }
627
+
628
+ std::vector<array> jvps;
629
+ for (auto& out : outputs) {
630
+ if (auto it = tan_map.find(out.id()); it != tan_map.end()) {
631
+ jvps.push_back(it->second);
632
+ } else {
633
+ auto s = out.has_primitive() ? out.primitive().stream()
634
+ : default_stream(default_device());
635
+ jvps.push_back(zeros_like(out, s));
636
+ }
637
+ }
638
+ return {outputs, jvps};
639
+ }
640
+
641
+ std::pair<array, array> jvp(
642
+ const std::function<array(const array&)>& fun,
643
+ const array& primal,
644
+ const array& tangent) {
645
+ auto vec_fun = [fun](const std::vector<array>& inputs) {
646
+ return std::vector<array>{fun(inputs[0])};
647
+ };
648
+ auto [outputs, jvps] = jvp(vec_fun, {primal}, {tangent});
649
+ return {outputs[0], jvps[0]};
650
+ }
651
+
652
+ ValueAndGradFn value_and_grad(
653
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
654
+ const std::vector<int>& argnums) {
655
+ if (argnums.empty()) {
656
+ throw std::invalid_argument("[grad] Must specify at least one argument.");
657
+ }
658
+ return [fun, argnums](const std::vector<array>& inputs) {
659
+ std::set<int> args;
660
+ for (auto& arg : argnums) {
661
+ args.insert(arg < 0 ? arg + inputs.size() : arg);
662
+ }
663
+ if (args.size() != argnums.size()) {
664
+ throw std::invalid_argument(
665
+ "[grad] Repeat argument number not allowed in grad.");
666
+ }
667
+ if (*args.begin() < 0 || *args.rbegin() >= inputs.size()) {
668
+ std::ostringstream msg;
669
+ msg << "[grad] Invalid argument number for function with "
670
+ << inputs.size() << " inputs.";
671
+ throw std::invalid_argument(msg.str());
672
+ }
673
+ std::vector<int> sorted_argnums(args.begin(), args.end());
674
+
675
+ auto gfun = [&fun](const std::vector<array>& inputs) {
676
+ auto outputs = fun(inputs);
677
+ for (int i = 1; i < outputs.size(); i++) {
678
+ auto& out = outputs[i];
679
+ auto s = out.has_primitive() ? out.primitive().stream()
680
+ : default_stream(default_device());
681
+ outputs[i] = stop_gradient(out, s);
682
+ }
683
+ return outputs;
684
+ };
685
+
686
+ // Set the incoming gradient to float32, vjp will cast it to the output type
687
+ auto [outputs, grads] = vjp(gfun, inputs, {array(1.0f)}, sorted_argnums);
688
+ return std::make_pair(outputs, grads);
689
+ };
690
+ }
691
+
692
+ namespace detail {
693
+
694
+ std::pair<std::vector<array>, std::vector<array>> vmap_trace(
695
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
696
+ const std::vector<array>& inputs,
697
+ const std::vector<int>& in_axes) {
698
+ // Set the global tracing flag.
699
+ detail::InTracing in_tracing;
700
+
701
+ if (in_axes.size() != inputs.size()) {
702
+ std::stringstream ss;
703
+ ss << "[vmap] The number of in axes (" << in_axes.size()
704
+ << ") must match the number of inputs (" << inputs.size() << ").";
705
+ throw std::invalid_argument(ss.str());
706
+ }
707
+
708
+ // Some error checking and get the vmap axis size
709
+ size_t vmap_ax_size;
710
+ for (int i = 0; i < inputs.size(); ++i) {
711
+ if (in_axes[i] != -1) {
712
+ if (inputs[i].ndim() == 0) {
713
+ throw std::invalid_argument(
714
+ "[vmap] Cannot vmap an input with zero dimensions.");
715
+ }
716
+ if (in_axes[i] > inputs[i].ndim()) {
717
+ std::ostringstream msg;
718
+ msg << "[vmap] Axis " << in_axes[i] << " invalid for input with "
719
+ << inputs[i].ndim() << " dimensions.";
720
+ throw std::invalid_argument(msg.str());
721
+ }
722
+ vmap_ax_size = inputs[i].shape(in_axes[i]);
723
+ }
724
+ }
725
+ // Check that all vmapped axes have the same size
726
+ for (int i = 0; i < inputs.size(); ++i) {
727
+ if (in_axes[i] != -1) {
728
+ if (size_t in_ax = inputs[i].shape(in_axes[i]); vmap_ax_size != in_ax) {
729
+ std::ostringstream msg;
730
+ msg << "[vmap] Inconsistent axis sizes: " << in_ax << " and "
731
+ << vmap_ax_size << ".";
732
+ throw std::invalid_argument(msg.str());
733
+ }
734
+ }
735
+ }
736
+
737
+ // Run the function on placeholder inputs
738
+ // to get the original graph
739
+ std::vector<array> s_inputs;
740
+ for (int i = 0; i < inputs.size(); ++i) {
741
+ if (in_axes[i] != -1) {
742
+ auto shape = inputs[i].shape();
743
+ shape.erase(shape.begin() + in_axes[i]);
744
+ array in(shape, inputs[i].dtype(), nullptr, {});
745
+ s_inputs.push_back(in);
746
+ s_inputs.back().set_tracer(true);
747
+ } else {
748
+ s_inputs.push_back(inputs[i]);
749
+ }
750
+ }
751
+ return {s_inputs, fun(s_inputs)};
752
+ }
753
+
754
+ std::vector<array> vmap_replace(
755
+ const std::vector<array>& inputs,
756
+ const std::vector<array>& s_inputs,
757
+ const std::vector<array>& s_outputs,
758
+ const std::vector<int>& in_axes,
759
+ const std::vector<int>& out_axes) {
760
+ if (out_axes.size() != s_outputs.size()) {
761
+ std::stringstream msg;
762
+ msg << "[vmap] The number of out axes (" << out_axes.size()
763
+ << ") must match the number of outputs (" << s_outputs.size() << ").";
764
+ throw std::invalid_argument(msg.str());
765
+ }
766
+
767
+ int vmap_size = -1;
768
+ for (int i = 0; i < inputs.size(); ++i) {
769
+ if (in_axes[i] >= 0) {
770
+ vmap_size = inputs[i].shape(in_axes[i]);
771
+ break;
772
+ }
773
+ }
774
+ if (vmap_size == -1) {
775
+ throw std::invalid_argument("At least one of in_axes must be non-None.");
776
+ }
777
+
778
+ std::unordered_map<std::uintptr_t, std::pair<array, int>> tmap;
779
+ std::unordered_set<std::uintptr_t> needs_vmap;
780
+ std::unordered_set<std::uintptr_t> cache;
781
+ for (int i = 0; i < s_inputs.size(); ++i) {
782
+ auto in = s_inputs[i];
783
+ if (in_axes[i] != -1) {
784
+ tmap.insert({in.id(), {inputs[i], in_axes[i]}});
785
+ needs_vmap.insert(in.id());
786
+ in.set_tracer(false);
787
+ }
788
+ cache.insert(in.id());
789
+ }
790
+
791
+ // Topologically sort the graph
792
+ std::vector<array> tape;
793
+
794
+ std::function<void(const array&)> recurse;
795
+
796
+ recurse = [&](const array& a) {
797
+ auto id = a.id();
798
+ if (cache.find(id) != cache.end()) {
799
+ return;
800
+ }
801
+ cache.insert(id);
802
+ for (auto& s : a.siblings()) {
803
+ cache.insert(s.id());
804
+ }
805
+
806
+ // Recurse on inputs
807
+ for (auto& input : a.inputs()) {
808
+ recurse(input);
809
+ }
810
+ // If any input needs a vmap, then the outputs also need
811
+ // a vmap
812
+ for (auto& input : a.inputs()) {
813
+ if (needs_vmap.find(input.id()) != needs_vmap.end()) {
814
+ tape.push_back(a);
815
+ tape.back().set_tracer(false);
816
+ needs_vmap.insert(a.id());
817
+ for (auto s : a.siblings()) {
818
+ needs_vmap.insert(s.id());
819
+ s.set_tracer(false);
820
+ }
821
+ break;
822
+ }
823
+ }
824
+ };
825
+
826
+ for (auto& out : s_outputs) {
827
+ if (out.has_primitive()) {
828
+ recurse(out);
829
+ }
830
+ }
831
+
832
+ // Transform each primitive in the graph with
833
+ // its vmap implementation
834
+ for (auto& a : tape) {
835
+ std::vector<array> v_inputs;
836
+ std::vector<int> v_axes;
837
+ for (auto& in : a.inputs()) {
838
+ auto map_it = tmap.find(in.id());
839
+ if (map_it != tmap.end()) {
840
+ v_inputs.push_back(map_it->second.first);
841
+ v_axes.push_back(map_it->second.second);
842
+ } else {
843
+ v_inputs.push_back(in);
844
+ v_axes.push_back(-1);
845
+ }
846
+ }
847
+
848
+ auto [v_outputs, v_out_axes] = a.primitive().vmap(v_inputs, v_axes);
849
+
850
+ // For each primitive's outputs add its id, the vout id and the vax
851
+ auto outputs = a.outputs();
852
+ for (int i = 0; i < v_outputs.size(); ++i) {
853
+ tmap.insert({outputs[i].id(), {v_outputs[i], v_out_axes[i]}});
854
+ }
855
+ }
856
+
857
+ // Populate the outputs and make sure all the output axes are
858
+ // in the right place
859
+ std::vector<array> outputs;
860
+ for (int i = 0; i < s_outputs.size(); ++i) {
861
+ if (auto map_it = tmap.find(s_outputs[i].id()); map_it != tmap.end()) {
862
+ auto& [out, vdim] = map_it->second;
863
+ if (vdim != out_axes[i]) {
864
+ if (out_axes[i] >= out.ndim()) {
865
+ std::ostringstream msg;
866
+ msg << "[vmap] Axis " << out_axes[i] << " invalid for output with "
867
+ << out.ndim() << " dimensions.";
868
+ throw std::invalid_argument(msg.str());
869
+ }
870
+ out = moveaxis(out, vdim, out_axes[i]);
871
+ }
872
+ outputs.push_back(out);
873
+ } else {
874
+ // When the output has no input dependencies
875
+ // use the size of the vmapped axis in the inputs to expand the output
876
+ array output = expand_dims(s_outputs[i], out_axes[i]);
877
+ output = repeat(output, vmap_size, out_axes[i]);
878
+ outputs.push_back(output);
879
+ }
880
+ }
881
+ return outputs;
882
+ }
883
+
884
+ } // namespace detail
885
+
886
+ std::function<std::vector<array>(const std::vector<array>&)> vmap(
887
+ const std::function<std::vector<array>(const std::vector<array>&)>& fun,
888
+ const std::vector<int>& in_axes /* = {} */,
889
+ const std::vector<int>& out_axes /* = {} */) {
890
+ auto infer_axes = [](auto axes) {
891
+ return !axes.empty() &&
892
+ std::all_of(axes.begin(), axes.end(), [](int ax) { return ax < 0; });
893
+ };
894
+ if (infer_axes(in_axes) != infer_axes(out_axes)) {
895
+ throw std::invalid_argument(
896
+ "[vmap] Input (or output) axes must be "
897
+ "specified if output (or input) axes are.");
898
+ }
899
+ auto vfun = [fun, in_axes = in_axes, out_axes = out_axes](
900
+ const std::vector<array>& inputs) mutable {
901
+ if (in_axes.size() == 0) {
902
+ in_axes.resize(inputs.size(), 0);
903
+ }
904
+
905
+ auto [trace_inputs, trace_outputs] =
906
+ detail::vmap_trace(fun, inputs, in_axes);
907
+
908
+ if (out_axes.size() == 0) {
909
+ out_axes.resize(trace_outputs.size(), 0);
910
+ }
911
+
912
+ return detail::vmap_replace(
913
+ inputs, trace_inputs, trace_outputs, in_axes, out_axes);
914
+ };
915
+
916
+ return vfun;
917
+ }
918
+
919
+ std::function<array(const array&, const array&)> vmap(
920
+ const std::function<array(const array&, const array&)>& fun,
921
+ int in_axis_a /* = 0 */,
922
+ int in_axis_b /* = 0 */,
923
+ int out_axis /* = 0 */) {
924
+ auto vfun = vmap(
925
+ [fun](const std::vector<array>& inputs) {
926
+ return std::vector<array>{fun(inputs[0], inputs[1])};
927
+ },
928
+ {in_axis_a, in_axis_b},
929
+ {out_axis});
930
+ return [vfun](const array& a, const array& b) { return vfun({a, b})[0]; };
931
+ }
932
+
933
+ std::function<array(const array&)> vmap(
934
+ const std::function<array(const array&)>& fun,
935
+ int in_axis /* = 0 */,
936
+ int out_axis /* = 0 */) {
937
+ auto vfun = vmap(
938
+ [fun](const std::vector<array>& inputs) {
939
+ return std::vector<array>{fun(inputs[0])};
940
+ },
941
+ {in_axis},
942
+ {out_axis});
943
+ return [vfun](const array& a) { return vfun({a})[0]; };
944
+ }
945
+
946
+ std::function<std::vector<array>(const std::vector<array>&)> custom_function(
947
+ std::function<std::vector<array>(const std::vector<array>&)> fun,
948
+ std::optional<std::function<std::vector<array>(
949
+ const std::vector<array>&,
950
+ const std::vector<array>&,
951
+ const std::vector<array>&)>> fun_vjp /* = std::nullopt */,
952
+ std::optional<std::function<std::vector<array>(
953
+ const std::vector<array>&,
954
+ const std::vector<array>&,
955
+ const std::vector<int>&)>> fun_jvp /* = std::nullopt */,
956
+ std::optional<std::function<std::pair<std::vector<array>, std::vector<int>>(
957
+ const std::vector<array>&,
958
+ const std::vector<int>&)>> fun_vmap /* = std::nullopt */) {
959
+ if (!fun_vjp.has_value() && !fun_jvp.has_value() && !fun_vmap.has_value()) {
960
+ return fun;
961
+ }
962
+
963
+ return [fun = std::move(fun),
964
+ fun_vjp = std::move(fun_vjp),
965
+ fun_jvp = std::move(fun_jvp),
966
+ fun_vmap = std::move(fun_vmap)](const std::vector<array>& args) {
967
+ // Compute the outputs
968
+ auto outputs = fun(args);
969
+ for (auto& out : outputs) {
970
+ out = stop_gradient(out);
971
+ }
972
+
973
+ // Prepare the inputs to the primitive
974
+ // We also add the outputs to the primitive so that it can "run" the forward
975
+ // pass.
976
+ std::vector<array> inputs = args;
977
+ inputs.insert(inputs.end(), outputs.begin(), outputs.end());
978
+
979
+ // Compute the stream. Maybe do it in a smarter way at some point in the
980
+ // future.
981
+ Stream s = (outputs[0].has_primitive()) ? outputs[0].primitive().stream()
982
+ : default_stream(default_device());
983
+
984
+ // Make the output info
985
+ std::vector<Shape> shapes;
986
+ std::vector<Dtype> dtypes;
987
+ for (const auto& out : outputs) {
988
+ shapes.emplace_back(out.shape());
989
+ dtypes.emplace_back(out.dtype());
990
+ }
991
+
992
+ return array::make_arrays(
993
+ std::move(shapes),
994
+ dtypes,
995
+ std::make_shared<CustomTransforms>(
996
+ to_stream(s),
997
+ outputs.size(),
998
+
999
+ // We use the passed vjp function or compute it from the inputs and
1000
+ // passed cotangents. Note that this may be less efficient than
1001
+ // using `fun` directly because we may not be able to fully reuse
1002
+ // the outputs of the forward pass.
1003
+ fun_vjp.value_or(
1004
+ [fun](auto primals, auto cotangents, auto outputs) {
1005
+ auto [__, vjps] = vjp(fun, primals, cotangents);
1006
+ return vjps;
1007
+ }),
1008
+
1009
+ // We use the passed jvp function or compute it from the primals
1010
+ // and tangents. Similarly we can't take full advantage of the
1011
+ // argnums so it is best to use `fun` directly if we don't need a
1012
+ // custom transform.
1013
+ //
1014
+ // TODO: Use stop_gradient to make full use of argnums and not
1015
+ // waste computation.
1016
+ fun_jvp.value_or([fun](auto primals, auto tangents, auto argnums) {
1017
+ std::vector<array> all_tangents;
1018
+ for (int i = 0, j = 0; i < primals.size(); i++) {
1019
+ if (j < argnums.size() && i == argnums[j]) {
1020
+ all_tangents.emplace_back(tangents[j++]);
1021
+ } else {
1022
+ all_tangents.emplace_back(zeros_like(primals[i]));
1023
+ }
1024
+ }
1025
+ auto [__, jvps] = jvp(fun, primals, all_tangents);
1026
+ return jvps;
1027
+ }),
1028
+
1029
+ // Same as above, we use the passed vmap function or we compute it
1030
+ // from `fun`. The output axes is selected to be all 0s which again
1031
+ // may be suboptimal but the only thing we can do without any
1032
+ // information for `fun`.
1033
+ fun_vmap.value_or(
1034
+ [fun, out_size = outputs.size()](auto inputs, auto in_axes)
1035
+ -> std::pair<std::vector<array>, std::vector<int>> {
1036
+ std::vector<int> out_axes(out_size, 0);
1037
+ return {vmap(fun, in_axes, out_axes)(inputs), out_axes};
1038
+ })),
1039
+ inputs);
1040
+ };
1041
+ }
1042
+
1043
+ std::function<std::vector<array>(const std::vector<array>&)> custom_vjp(
1044
+ std::function<std::vector<array>(const std::vector<array>&)> fun,
1045
+ std::function<std::vector<array>(
1046
+ const std::vector<array>&,
1047
+ const std::vector<array>&,
1048
+ const std::vector<array>&)> fun_vjp) {
1049
+ return custom_function(fun, fun_vjp, std::nullopt, std::nullopt);
1050
+ }
1051
+
1052
+ std::function<std::vector<array>(const std::vector<array>&)> checkpoint(
1053
+ std::function<std::vector<array>(const std::vector<array>&)> fun) {
1054
+ auto vjp_fun = [fun](
1055
+ const std::vector<array>& primals,
1056
+ const std::vector<array>& cotangents,
1057
+ const std::vector<array>& outputs) -> std::vector<array> {
1058
+ auto [__, vjps] = vjp(fun, depends(primals, outputs), cotangents);
1059
+ return vjps;
1060
+ };
1061
+
1062
+ return custom_vjp(fun, vjp_fun);
1063
+ }
1064
+
1065
+ } // namespace mlx::core