mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1370 @@
1
+ // Copyright © 2023 Apple Inc.
2
+
3
+ #include "mlx/backend/common/unary.h"
4
+ #include "mlx/backend/cpu/copy.h"
5
+ #include "mlx/backend/cpu/encoder.h"
6
+ #include "mlx/backend/cpu/simd/simd.h"
7
+ #include "mlx/backend/cpu/unary.h"
8
+ #include "mlx/backend/cpu/unary_ops.h"
9
+ #include "mlx/fast_primitives.h"
10
+ #include "mlx/primitives.h"
11
+ #include "mlx/utils.h"
12
+
13
+ namespace mlx::core {
14
+
15
+ namespace {
16
+
17
+ array ensure_row_contiguous(
18
+ const array& arr,
19
+ cpu::CommandEncoder& encoder,
20
+ Stream s) {
21
+ if (arr.flags().row_contiguous) {
22
+ return arr;
23
+ } else {
24
+ auto arr_cpy = contiguous_copy_cpu(arr, s);
25
+ encoder.add_temporary(arr_cpy);
26
+ return arr_cpy;
27
+ }
28
+ };
29
+
30
+ const static float FP4_LUT[16] = {
31
+ +0.0f,
32
+ +0.5f,
33
+ +1.0f,
34
+ +1.5f,
35
+ +2.0f,
36
+ +3.0f,
37
+ +4.0f,
38
+ +6.0f,
39
+ -0.0f,
40
+ -0.5f,
41
+ -1.0f,
42
+ -1.5f,
43
+ -2.0f,
44
+ -3.0f,
45
+ -4.0f,
46
+ -6.0f};
47
+
48
+ template <typename T, int group_size>
49
+ static inline T dequantize_scale(uint8_t s) {
50
+ if constexpr (group_size == 16) {
51
+ return static_cast<T>(detail::FromFP8{}(s));
52
+ } else {
53
+ using FOrI = union {
54
+ bfloat16_t f;
55
+ uint16_t i;
56
+ };
57
+ FOrI out;
58
+ out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
59
+ return static_cast<T>(out.f);
60
+ }
61
+ }
62
+
63
+ inline constexpr short get_pack_factor(int bits, int wsize = 8) {
64
+ return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
65
+ }
66
+
67
+ inline constexpr short get_bytes_per_pack(int bits, int wsize = 8) {
68
+ auto power_of_2_bits = (bits & (bits - 1)) == 0;
69
+ return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
70
+ }
71
+
72
+ template <typename T, int bits>
73
+ void extract_bits(const uint8_t* w_in, T* w_out) {
74
+ static_assert(bits == 3 || bits == 5 || bits == 6);
75
+ if (bits == 3) {
76
+ w_out[0] = static_cast<T>(w_in[0] & 0x7);
77
+ w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
78
+ w_out[2] = static_cast<T>(((w_in[0] & 0xc0) >> 6) + ((w_in[1] & 0x1) << 2));
79
+ w_out[3] = static_cast<T>((w_in[1] & 0xe) >> 1);
80
+ w_out[4] = static_cast<T>((w_in[1] & 0x70) >> 4);
81
+ w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
82
+ w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
83
+ w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
84
+ } else if (bits == 5) {
85
+ w_out[0] = static_cast<T>(w_in[0] & 0x1f);
86
+ w_out[1] = static_cast<T>(((w_in[0] & 0xe0) >> 5) + ((w_in[1] & 0x3) << 3));
87
+ w_out[2] = static_cast<T>((w_in[1] & 0x7c) >> 2);
88
+ w_out[3] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0xf) << 1));
89
+ w_out[4] = static_cast<T>(((w_in[2] & 0xf0) >> 4) + ((w_in[3] & 0x1) << 4));
90
+ w_out[5] = static_cast<T>((w_in[3] & 0x3e) >> 1);
91
+ w_out[6] = static_cast<T>(((w_in[3] & 0xc0) >> 6) + ((w_in[4] & 0x7) << 2));
92
+ w_out[7] = static_cast<T>((w_in[4] & 0xf8) >> 3);
93
+
94
+ } else if (bits == 6) {
95
+ w_out[0] = static_cast<T>(w_in[0] & 0x3f);
96
+ w_out[1] =
97
+ static_cast<T>(((w_in[0] >> 6) & 0x03) + ((w_in[1] & 0x0f) << 2));
98
+ w_out[2] =
99
+ static_cast<T>(((w_in[1] >> 4) & 0x0f) + ((w_in[2] & 0x03) << 4));
100
+ w_out[3] = static_cast<T>((w_in[2] >> 2) & 0x3f);
101
+ }
102
+ }
103
+
104
+ template <typename T, int bits, int group_size>
105
+ void _qmm(
106
+ T* result,
107
+ const T* x,
108
+ const uint32_t* w,
109
+ const T* scales,
110
+ const T* biases,
111
+ int M,
112
+ int N,
113
+ int K) {
114
+ constexpr int bitmask = (1 << bits) - 1;
115
+ constexpr int pack_factor = get_pack_factor(bits, 8);
116
+ constexpr int bytes_per_pack = get_bytes_per_pack(bits);
117
+ constexpr int packs_in_group = group_size / pack_factor;
118
+
119
+ for (int m = 0; m < M; m++) {
120
+ const uint8_t* w_local = (const uint8_t*)w;
121
+ const T* scales_local = scales;
122
+ const T* biases_local = biases;
123
+
124
+ std::fill(result, result + N, 0);
125
+
126
+ for (int k = 0; k < K; k++) {
127
+ T* result_local = result;
128
+ T xi = *x++;
129
+
130
+ for (int n = 0; n < N; n += group_size) {
131
+ T scale = *scales_local++;
132
+ T bias = *biases_local++;
133
+ for (int ng = 0; ng < packs_in_group; ng++) {
134
+ if constexpr (bits == 3 || bits == 5 || bits == 6) {
135
+ T wl[pack_factor];
136
+ extract_bits<T, bits>(w_local, wl);
137
+ #pragma clang loop unroll(full)
138
+ for (int p = 0; p < pack_factor; p++) {
139
+ (*result_local++) += xi * (scale * wl[p] + bias);
140
+ }
141
+ w_local += bytes_per_pack;
142
+
143
+ } else {
144
+ uint8_t wi = *w_local++;
145
+ #pragma clang loop unroll(full)
146
+ for (int p = 0; p < pack_factor; p++) {
147
+ (*result_local++) +=
148
+ xi * (scale * static_cast<T>(wi & bitmask) + bias);
149
+ if (bits != 8) {
150
+ wi >>= bits;
151
+ }
152
+ }
153
+ }
154
+ }
155
+ }
156
+ }
157
+
158
+ result += N;
159
+ }
160
+ }
161
+
162
+ template <typename T, int bits, int group_size>
163
+ void _qmm_t(
164
+ T* result,
165
+ const T* x,
166
+ const uint32_t* w,
167
+ const T* scales,
168
+ const T* biases,
169
+ int M,
170
+ int N,
171
+ int K) {
172
+ constexpr int bitmask = (1 << bits) - 1;
173
+
174
+ constexpr int pack_factor = get_pack_factor(bits, 8);
175
+ constexpr int bytes_per_pack = get_bytes_per_pack(bits);
176
+ constexpr int packs_in_group = group_size / pack_factor;
177
+
178
+ for (int m = 0; m < M; m++) {
179
+ const uint8_t* w_local = (const uint8_t*)w;
180
+ const T* scales_local = scales;
181
+ const T* biases_local = biases;
182
+
183
+ for (int n = 0; n < N; n++) {
184
+ const T* x_local = x;
185
+ T sum = 0;
186
+ for (int k = 0; k < K; k += group_size) {
187
+ T scale = *scales_local++;
188
+ T bias = *biases_local++;
189
+
190
+ for (int kw = 0; kw < packs_in_group; kw++) {
191
+ if constexpr (bits == 3 || bits == 5 || bits == 6) {
192
+ T wl[pack_factor];
193
+ extract_bits<T, bits>(w_local, wl);
194
+ #pragma clang loop unroll(full)
195
+ for (int p = 0; p < pack_factor; p++) {
196
+ sum += x_local[p] * (scale * wl[p] + bias);
197
+ }
198
+ w_local += bytes_per_pack;
199
+ x_local += pack_factor;
200
+
201
+ } else {
202
+ uint8_t wi = *w_local++;
203
+ #pragma clang loop unroll(full)
204
+ for (int p = 0; p < pack_factor; p++) {
205
+ sum +=
206
+ (*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
207
+ if (bits != 8) {
208
+ wi >>= bits;
209
+ }
210
+ }
211
+ }
212
+ }
213
+ }
214
+ *result = sum;
215
+ result++;
216
+ }
217
+
218
+ x += K;
219
+ }
220
+ }
221
+
222
+ template <int bits, int S>
223
+ simd::Simd<uint32_t, S> extract_bits_simd(const uint32_t* w) {
224
+ constexpr int bitmask = (1 << bits) - 1;
225
+ simd::Simd<uint32_t, S> wi;
226
+ if constexpr (bits == 4 && S == 8) {
227
+ constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
228
+ auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
229
+ wi = simd::Simd<uint32_t, S>(*w);
230
+ wi = wi >> shifts;
231
+ wi = wi & bitmask;
232
+ } else if constexpr (bits == 8 && S == 8) {
233
+ constexpr std::array<uint32_t, 8> shifts_ = {{0, 8, 16, 24, 0, 8, 16, 24}};
234
+ auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
235
+ auto l = simd::Simd<uint32_t, S / 2>(*w++);
236
+ auto r = simd::Simd<uint32_t, S / 2>(*w);
237
+ wi = simd::Simd<uint32_t, S>(l, r);
238
+ wi = wi >> shifts;
239
+ wi = wi & bitmask;
240
+ } else {
241
+ // Appease compiler.. but should never get here
242
+ throw std::runtime_error("Unsupported combination for simd qmm.");
243
+ }
244
+ return wi;
245
+ }
246
+
247
+ template <typename T, int bits, int group_size>
248
+ void _qmm_t_simd(
249
+ T* result,
250
+ const T* x,
251
+ const uint32_t* w,
252
+ const T* scales,
253
+ const T* biases,
254
+ int M,
255
+ int N,
256
+ int K) {
257
+ constexpr int pack_factor = 32 / bits;
258
+ constexpr int packs_in_group = group_size / pack_factor;
259
+ constexpr int S = simd::max_size<T>;
260
+ static_assert(
261
+ S % pack_factor == 0, "SIMD size must be divisible by pack factor");
262
+ constexpr int packs_per_simd = S / pack_factor;
263
+
264
+ for (int m = 0; m < M; m++) {
265
+ const uint32_t* w_local = w;
266
+ const T* scales_local = scales;
267
+ const T* biases_local = biases;
268
+
269
+ for (int n = 0; n < N; n++) {
270
+ simd::Simd<float, S> acc(0);
271
+ auto x_local = x;
272
+ for (int k = 0; k < K; k += group_size) {
273
+ T scale = *scales_local++;
274
+ T bias = *biases_local++;
275
+
276
+ for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
277
+ auto wf = simd::Simd<float, S>(extract_bits_simd<bits, S>(w_local));
278
+ w_local += packs_per_simd;
279
+ wf = wf * scale;
280
+ wf = wf + bias;
281
+ simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
282
+ acc = acc + x_simd * wf;
283
+ x_local += S;
284
+ }
285
+ }
286
+
287
+ *result = T(simd::sum(acc));
288
+ result++;
289
+ }
290
+ x += K;
291
+ }
292
+ }
293
+
294
+ template <typename T, int bits, int group_size>
295
+ void _qmm_dispatch_transpose(
296
+ T* result,
297
+ const T* x,
298
+ const uint32_t* w,
299
+ const T* scales,
300
+ const T* biases,
301
+ int M,
302
+ int N,
303
+ int K,
304
+ bool transposed_w) {
305
+ if (transposed_w) {
306
+ // the simd size must be a multiple of the number of elements per word
307
+ if constexpr (32 % bits == 0 && simd::max_size<T> % (32 / bits) == 0) {
308
+ _qmm_t_simd<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
309
+ } else {
310
+ _qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
311
+ }
312
+ } else {
313
+ _qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
314
+ }
315
+ }
316
+
317
+ template <typename T, int bits>
318
+ void _qmm_dispatch_group(
319
+ T* result,
320
+ const T* x,
321
+ const uint32_t* w,
322
+ const T* scales,
323
+ const T* biases,
324
+ int M,
325
+ int N,
326
+ int K,
327
+ int group_size,
328
+ bool transposed_w) {
329
+ switch (group_size) {
330
+ case 32:
331
+ _qmm_dispatch_transpose<T, bits, 32>(
332
+ result, x, w, scales, biases, M, N, K, transposed_w);
333
+ break;
334
+ case 64:
335
+ _qmm_dispatch_transpose<T, bits, 64>(
336
+ result, x, w, scales, biases, M, N, K, transposed_w);
337
+ break;
338
+ case 128:
339
+ _qmm_dispatch_transpose<T, bits, 128>(
340
+ result, x, w, scales, biases, M, N, K, transposed_w);
341
+ break;
342
+ default:
343
+ throw std::invalid_argument(
344
+ "Quantization group size must be 32, 64 or 128.");
345
+ }
346
+ }
347
+
348
+ template <typename T>
349
+ void _qmm_dispatch_typed(
350
+ T* result,
351
+ const T* x,
352
+ const uint32_t* w,
353
+ const T* scales,
354
+ const T* biases,
355
+ int M,
356
+ int N,
357
+ int K,
358
+ int group_size,
359
+ int bits,
360
+ bool transposed_w) {
361
+ switch (bits) {
362
+ case 2:
363
+ _qmm_dispatch_group<T, 2>(
364
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
365
+ break;
366
+ case 3:
367
+ _qmm_dispatch_group<T, 3>(
368
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
369
+ break;
370
+ case 4:
371
+ _qmm_dispatch_group<T, 4>(
372
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
373
+ break;
374
+ case 5:
375
+ _qmm_dispatch_group<T, 5>(
376
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
377
+ break;
378
+ case 6:
379
+ _qmm_dispatch_group<T, 6>(
380
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
381
+ break;
382
+ case 8:
383
+ _qmm_dispatch_group<T, 8>(
384
+ result, x, w, scales, biases, M, N, K, group_size, transposed_w);
385
+ break;
386
+ default:
387
+ throw std::invalid_argument("Quantization bits must be 2, 3, 4, 6 or 8.");
388
+ }
389
+ }
390
+
391
+ template <typename T>
392
+ void _qmm_dispatch_typed(
393
+ array& out,
394
+ const array& x,
395
+ const array& w,
396
+ const array& scales,
397
+ const array& biases,
398
+ int bits,
399
+ int group_size,
400
+ bool transposed_w) {
401
+ int K = x.shape(-1);
402
+ int M = x.ndim() > 1 ? x.shape(-2) : 1;
403
+ int N = out.shape(-1);
404
+ int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
405
+ int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
406
+ int batch_size = x.size() / (K * M);
407
+
408
+ auto out_ptr = out.data<T>();
409
+ auto x_ptr = x.data<T>();
410
+ auto w_ptr = w.data<uint32_t>();
411
+ auto scales_ptr = scales.data<T>();
412
+ auto biases_ptr = biases.data<T>();
413
+ for (int i = 0; i < batch_size; i++) {
414
+ _qmm_dispatch_typed<T>(
415
+ out_ptr + i * M * N,
416
+ x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
417
+ w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
418
+ scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
419
+ biases_ptr + elem_to_loc(i * g_els, biases.shape(), biases.strides()),
420
+ M,
421
+ N,
422
+ K,
423
+ bits,
424
+ group_size,
425
+ transposed_w);
426
+ }
427
+ }
428
+
429
+ void _qmm_dispatch(
430
+ array& out,
431
+ const array& x,
432
+ const array& w,
433
+ const array& scales,
434
+ const array& biases,
435
+ int bits,
436
+ int group_size,
437
+ bool transposed_w) {
438
+ switch (x.dtype()) {
439
+ case float32:
440
+ _qmm_dispatch_typed<float>(
441
+ out, x, w, scales, biases, bits, group_size, transposed_w);
442
+ break;
443
+ case float16:
444
+ _qmm_dispatch_typed<float16_t>(
445
+ out, x, w, scales, biases, bits, group_size, transposed_w);
446
+ break;
447
+ case bfloat16:
448
+ _qmm_dispatch_typed<bfloat16_t>(
449
+ out, x, w, scales, biases, bits, group_size, transposed_w);
450
+ break;
451
+ default:
452
+ throw std::invalid_argument(
453
+ "[quantized_matmul] only floating types are supported");
454
+ }
455
+ }
456
+
457
+ template <typename T, int group_size, int bits>
458
+ void fp_qmm(
459
+ T* result,
460
+ const T* x,
461
+ const uint32_t* w,
462
+ const uint8_t* scales,
463
+ int M,
464
+ int N,
465
+ int K) {
466
+ constexpr int pack_factor = get_pack_factor(bits, 8);
467
+ constexpr int packs_in_group = group_size / pack_factor;
468
+
469
+ for (int m = 0; m < M; m++) {
470
+ const uint8_t* w_local = (const uint8_t*)w;
471
+ const uint8_t* scales_local = scales;
472
+
473
+ std::fill(result, result + N, 0);
474
+
475
+ for (int k = 0; k < K; k++) {
476
+ T* result_local = result;
477
+ T xi = *x++;
478
+
479
+ for (int n = 0; n < N; n += group_size) {
480
+ T scale = dequantize_scale<T, group_size>(*scales_local++);
481
+ for (int ng = 0; ng < packs_in_group; ng++) {
482
+ if constexpr (bits == 4) {
483
+ (*result_local++) +=
484
+ xi * scale * static_cast<T>(FP4_LUT[w_local[0] & 0xf]);
485
+ (*result_local++) +=
486
+ xi * scale * static_cast<T>(FP4_LUT[(w_local[0] >> 4) & 0xf]);
487
+ } else {
488
+ (*result_local++) +=
489
+ xi * scale * static_cast<T>(detail::FromFP8{}(w_local[0]));
490
+ }
491
+ w_local++;
492
+ }
493
+ }
494
+ }
495
+ result += N;
496
+ }
497
+ }
498
+
499
+ template <typename T, int group_size, int bits>
500
+ void fp_qmm_t(
501
+ T* result,
502
+ const T* x,
503
+ const uint32_t* w,
504
+ const uint8_t* scales,
505
+ int M,
506
+ int N,
507
+ int K) {
508
+ constexpr int pack_factor = get_pack_factor(bits, 8);
509
+ constexpr int packs_in_group = group_size / pack_factor;
510
+
511
+ for (int m = 0; m < M; m++) {
512
+ const uint8_t* w_local = (const uint8_t*)w;
513
+ const uint8_t* scales_local = scales;
514
+
515
+ for (int n = 0; n < N; n++) {
516
+ const T* x_local = x;
517
+ T sum = 0;
518
+ for (int k = 0; k < K; k += group_size) {
519
+ T scale = dequantize_scale<T, group_size>(*scales_local++);
520
+
521
+ T gsum = 0;
522
+ for (int kw = 0; kw < packs_in_group; kw++) {
523
+ if constexpr (bits == 4) {
524
+ gsum += (*x_local++) * static_cast<T>(FP4_LUT[w_local[0] & 0xf]);
525
+ gsum +=
526
+ (*x_local++) * static_cast<T>(FP4_LUT[(w_local[0] >> 4) & 0xf]);
527
+ } else {
528
+ gsum +=
529
+ (*x_local++) * static_cast<T>(detail::FromFP8{}(w_local[0]));
530
+ }
531
+ w_local++;
532
+ }
533
+ sum += scale * gsum;
534
+ }
535
+ *result = sum;
536
+ result++;
537
+ }
538
+
539
+ x += K;
540
+ }
541
+ }
542
+
543
+ template <int S, int bits>
544
+ simd::Simd<float, S> fp_extract_bits_simd(const uint32_t* w) {
545
+ if constexpr (S == 8 && bits == 4) {
546
+ constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
547
+ auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
548
+ auto wi = simd::Simd<uint32_t, S>(*w);
549
+ wi = wi >> shifts;
550
+ wi = wi & 0xf;
551
+ simd::Simd<float, S> w_out;
552
+ for (int i = 0; i < S; ++i) {
553
+ w_out[i] = FP4_LUT[wi[i]];
554
+ }
555
+ return w_out;
556
+ } else if constexpr (S == 8 && bits == 8) {
557
+ auto w_out = simd::load<uint8_t, S>(reinterpret_cast<const uint8_t*>(w));
558
+ return detail::FromFP8{}(w_out);
559
+ } else {
560
+ // Appease compiler.. but should never get here
561
+ throw std::runtime_error("Unsupported combination for simd qmm.");
562
+ }
563
+ }
564
+
565
+ template <typename T, int group_size, int bits>
566
+ void fp_qmm_t_simd(
567
+ T* result,
568
+ const T* x,
569
+ const uint32_t* w,
570
+ const uint8_t* scales,
571
+ int M,
572
+ int N,
573
+ int K) {
574
+ constexpr int pack_factor = get_pack_factor(bits, 32);
575
+ constexpr int packs_in_group = group_size / pack_factor;
576
+ constexpr int S = simd::max_size<T>;
577
+ static_assert(
578
+ S % pack_factor == 0, "SIMD size must be divisible by pack factor");
579
+ constexpr int packs_per_simd = S / pack_factor;
580
+
581
+ for (int m = 0; m < M; m++) {
582
+ const uint32_t* w_local = w;
583
+ const uint8_t* scales_local = scales;
584
+
585
+ for (int n = 0; n < N; n++) {
586
+ simd::Simd<float, S> acc(0);
587
+ auto x_local = x;
588
+ for (int k = 0; k < K; k += group_size) {
589
+ T scale = dequantize_scale<T, group_size>(*scales_local++);
590
+
591
+ simd::Simd<float, S> g_acc(0);
592
+ for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
593
+ // Extract bits
594
+ auto wf = fp_extract_bits_simd<S, bits>(w_local);
595
+ w_local += packs_per_simd;
596
+ simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
597
+ g_acc = g_acc + x_simd * wf;
598
+ x_local += S;
599
+ }
600
+ acc = acc + scale * g_acc;
601
+ }
602
+
603
+ *result = T(simd::sum(acc));
604
+ result++;
605
+ }
606
+ x += K;
607
+ }
608
+ }
609
+
610
+ template <typename T, int group_size, int bits>
611
+ void fp_qmm_dispatch_transpose(
612
+ T* result,
613
+ const T* x,
614
+ const uint32_t* w,
615
+ const uint8_t* scales,
616
+ int M,
617
+ int N,
618
+ int K,
619
+ bool transposed_w) {
620
+ if (transposed_w) {
621
+ // the simd size must be a multiple of the number of elements per word
622
+ if constexpr (simd::max_size<T> % 8 == 0) {
623
+ fp_qmm_t_simd<T, group_size, bits>(result, x, w, scales, M, N, K);
624
+ } else {
625
+ fp_qmm_t<T, group_size, bits>(result, x, w, scales, M, N, K);
626
+ }
627
+ } else {
628
+ fp_qmm<T, group_size, bits>(result, x, w, scales, M, N, K);
629
+ }
630
+ }
631
+
632
+ template <typename T, int group_size, int bits>
633
+ void fp_qmm_dispatch_mode(
634
+ array& out,
635
+ const array& x,
636
+ const array& w,
637
+ const array& scales,
638
+ bool transposed_w) {
639
+ int K = x.shape(-1);
640
+ int M = x.ndim() > 1 ? x.shape(-2) : 1;
641
+ int N = out.shape(-1);
642
+ int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
643
+ int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
644
+ int batch_size = x.size() / (K * M);
645
+
646
+ auto out_ptr = out.data<T>();
647
+ auto x_ptr = x.data<T>();
648
+ auto w_ptr = w.data<uint32_t>();
649
+ auto scales_ptr = scales.data<uint8_t>();
650
+ for (int i = 0; i < batch_size; i++) {
651
+ fp_qmm_dispatch_transpose<T, group_size, bits>(
652
+ out_ptr + i * M * N,
653
+ x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
654
+ w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
655
+ scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
656
+ M,
657
+ N,
658
+ K,
659
+ transposed_w);
660
+ }
661
+ }
662
+
663
+ template <typename T>
664
+ void fp_qmm_dispatch_typed(
665
+ array& out,
666
+ const array& x,
667
+ const array& w,
668
+ const array& scales,
669
+ int group_size,
670
+ int bits,
671
+ bool transposed_w) {
672
+ if (bits == 8) {
673
+ fp_qmm_dispatch_mode<T, 32, 8>(out, x, w, scales, transposed_w);
674
+ } else if (group_size == 32) {
675
+ fp_qmm_dispatch_mode<T, 32, 4>(out, x, w, scales, transposed_w);
676
+ } else {
677
+ fp_qmm_dispatch_mode<T, 16, 4>(out, x, w, scales, transposed_w);
678
+ }
679
+ }
680
+
681
+ void fp_qmm_dispatch(
682
+ array& out,
683
+ const array& x,
684
+ const array& w,
685
+ const array& scales,
686
+ int group_size,
687
+ int bits,
688
+ bool transposed_w) {
689
+ switch (x.dtype()) {
690
+ case bfloat16:
691
+ fp_qmm_dispatch_typed<bfloat16_t>(
692
+ out, x, w, scales, group_size, bits, transposed_w);
693
+ break;
694
+ case float16:
695
+ fp_qmm_dispatch_typed<float16_t>(
696
+ out, x, w, scales, group_size, bits, transposed_w);
697
+ break;
698
+ case float32:
699
+ fp_qmm_dispatch_typed<float>(
700
+ out, x, w, scales, group_size, bits, transposed_w);
701
+ break;
702
+ default:
703
+ throw std::invalid_argument(
704
+ "[quantized_matmul] only floating types are supported");
705
+ }
706
+ }
707
+
708
+ template <typename T>
709
+ void _bs_qmm_dispatch_typed(
710
+ array& out,
711
+ const array& x,
712
+ const array& w,
713
+ const array& scales,
714
+ const array& biases,
715
+ const array& lhs_indices,
716
+ const array& rhs_indices,
717
+ int bits,
718
+ int group_size,
719
+ bool transposed_w) {
720
+ int K = x.shape(-1);
721
+ int M = x.shape(-2);
722
+ int N = out.shape(-1);
723
+
724
+ int w_els = w.shape(-1) * w.shape(-2);
725
+ int g_els = scales.shape(-1) * scales.shape(-2);
726
+
727
+ auto out_ptr = out.data<T>();
728
+ auto x_ptr = x.data<T>();
729
+ auto w_ptr = w.data<uint32_t>();
730
+ auto scales_ptr = scales.data<T>();
731
+ auto biases_ptr = biases.data<T>();
732
+ auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
733
+ auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
734
+
735
+ for (int i = 0; i < lhs_indices.size(); i++) {
736
+ int x_idx = lhs_indices_ptr[elem_to_loc(
737
+ i, lhs_indices.shape(), lhs_indices.strides())];
738
+ int w_idx = rhs_indices_ptr[elem_to_loc(
739
+ i, rhs_indices.shape(), rhs_indices.strides())];
740
+ _qmm_dispatch_typed<T>(
741
+ out_ptr + i * M * N,
742
+ x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
743
+ w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
744
+ scales_ptr +
745
+ elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
746
+ biases_ptr +
747
+ elem_to_loc(w_idx * g_els, biases.shape(), biases.strides()),
748
+ M,
749
+ N,
750
+ K,
751
+ bits,
752
+ group_size,
753
+ transposed_w);
754
+ }
755
+ }
756
+
757
+ void _bs_qmm_dispatch(
758
+ array& out,
759
+ const array& x,
760
+ const array& w,
761
+ const array& scales,
762
+ const array& biases,
763
+ const array& lhs_indices,
764
+ const array& rhs_indices,
765
+ int bits,
766
+ int group_size,
767
+ bool transposed_w) {
768
+ switch (x.dtype()) {
769
+ case float32:
770
+ _bs_qmm_dispatch_typed<float>(
771
+ out,
772
+ x,
773
+ w,
774
+ scales,
775
+ biases,
776
+ lhs_indices,
777
+ rhs_indices,
778
+ bits,
779
+ group_size,
780
+ transposed_w);
781
+ break;
782
+ case float16:
783
+ _bs_qmm_dispatch_typed<float16_t>(
784
+ out,
785
+ x,
786
+ w,
787
+ scales,
788
+ biases,
789
+ lhs_indices,
790
+ rhs_indices,
791
+ bits,
792
+ group_size,
793
+ transposed_w);
794
+ break;
795
+ case bfloat16:
796
+ _bs_qmm_dispatch_typed<bfloat16_t>(
797
+ out,
798
+ x,
799
+ w,
800
+ scales,
801
+ biases,
802
+ lhs_indices,
803
+ rhs_indices,
804
+ bits,
805
+ group_size,
806
+ transposed_w);
807
+ break;
808
+ default:
809
+ throw std::invalid_argument(
810
+ "[quantized_matmul] only floating types are supported");
811
+ }
812
+ }
813
+ template <typename T, int group_size, int bits>
814
+ void fp_bs_qmm_dispatch_mode(
815
+ array& out,
816
+ const array& x,
817
+ const array& w,
818
+ const array& scales,
819
+ const array& lhs_indices,
820
+ const array& rhs_indices,
821
+ bool transposed_w) {
822
+ int K = x.shape(-1);
823
+ int M = x.shape(-2);
824
+ int N = out.shape(-1);
825
+
826
+ int w_els = w.shape(-1) * w.shape(-2);
827
+ int g_els = scales.shape(-1) * scales.shape(-2);
828
+
829
+ auto out_ptr = out.data<T>();
830
+ auto x_ptr = x.data<T>();
831
+ auto w_ptr = w.data<uint32_t>();
832
+ auto scales_ptr = scales.data<uint8_t>();
833
+ auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
834
+ auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
835
+
836
+ for (int i = 0; i < lhs_indices.size(); i++) {
837
+ int x_idx = lhs_indices_ptr[elem_to_loc(
838
+ i, lhs_indices.shape(), lhs_indices.strides())];
839
+ int w_idx = rhs_indices_ptr[elem_to_loc(
840
+ i, rhs_indices.shape(), rhs_indices.strides())];
841
+ fp_qmm_dispatch_transpose<T, group_size, bits>(
842
+ out_ptr + i * M * N,
843
+ x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
844
+ w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
845
+ scales_ptr +
846
+ elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
847
+ M,
848
+ N,
849
+ K,
850
+ transposed_w);
851
+ }
852
+ }
853
+
854
+ template <typename T>
855
+ void fp_bs_qmm_dispatch_typed(
856
+ array& out,
857
+ const array& x,
858
+ const array& w,
859
+ const array& scales,
860
+ const array& lhs_indices,
861
+ const array& rhs_indices,
862
+ int group_size,
863
+ int bits,
864
+ bool transposed_w) {
865
+ if (bits == 8) {
866
+ fp_bs_qmm_dispatch_mode<T, 32, 8>(
867
+ out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
868
+ } else if (group_size == 32) {
869
+ fp_bs_qmm_dispatch_mode<T, 32, 4>(
870
+ out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
871
+ } else {
872
+ fp_bs_qmm_dispatch_mode<T, 16, 4>(
873
+ out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
874
+ }
875
+ }
876
+
877
+ void fp_bs_qmm_dispatch(
878
+ array& out,
879
+ const array& x,
880
+ const array& w,
881
+ const array& scales,
882
+ const array& lhs_indices,
883
+ const array& rhs_indices,
884
+ int group_size,
885
+ int bits,
886
+ bool transposed_w) {
887
+ switch (x.dtype()) {
888
+ case float32:
889
+ fp_bs_qmm_dispatch_typed<float>(
890
+ out,
891
+ x,
892
+ w,
893
+ scales,
894
+ lhs_indices,
895
+ rhs_indices,
896
+ group_size,
897
+ bits,
898
+ transposed_w);
899
+ break;
900
+ case float16:
901
+ fp_bs_qmm_dispatch_typed<float16_t>(
902
+ out,
903
+ x,
904
+ w,
905
+ scales,
906
+ lhs_indices,
907
+ rhs_indices,
908
+ group_size,
909
+ bits,
910
+ transposed_w);
911
+ break;
912
+ case bfloat16:
913
+ fp_bs_qmm_dispatch_typed<bfloat16_t>(
914
+ out,
915
+ x,
916
+ w,
917
+ scales,
918
+ lhs_indices,
919
+ rhs_indices,
920
+ group_size,
921
+ bits,
922
+ transposed_w);
923
+ break;
924
+ default:
925
+ throw std::invalid_argument(
926
+ "[quantized_matmul] only floating types are supported");
927
+ }
928
+ }
929
+
930
+ } // namespace
931
+
932
+ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
933
+ auto& x_pre = inputs[0];
934
+ auto& w_pre = inputs[1];
935
+ auto& scales_pre = inputs[2];
936
+
937
+ auto& encoder = cpu::get_command_encoder(stream());
938
+ auto x = ensure_row_contiguous(x_pre, encoder, stream());
939
+ auto w = ensure_row_contiguous(w_pre, encoder, stream());
940
+ auto scales = ensure_row_contiguous(scales_pre, encoder, stream());
941
+
942
+ out.set_data(allocator::malloc(out.nbytes()));
943
+
944
+ encoder.set_input_array(x);
945
+ encoder.set_input_array(w);
946
+ encoder.set_input_array(scales);
947
+ encoder.set_output_array(out);
948
+ if (mode_ == QuantizationMode::Affine) {
949
+ auto biases = ensure_row_contiguous(inputs[3], encoder, stream());
950
+ encoder.set_input_array(biases);
951
+ encoder.dispatch([out = array::unsafe_weak_copy(out),
952
+ x = array::unsafe_weak_copy(x),
953
+ w = array::unsafe_weak_copy(w),
954
+ scales = array::unsafe_weak_copy(scales),
955
+ biases = array::unsafe_weak_copy(biases),
956
+ group_size_ = group_size_,
957
+ bits_ = bits_,
958
+ transpose_ = transpose_]() mutable {
959
+ _qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
960
+ });
961
+ } else {
962
+ encoder.dispatch([out = array::unsafe_weak_copy(out),
963
+ x = array::unsafe_weak_copy(x),
964
+ w = array::unsafe_weak_copy(w),
965
+ scales = array::unsafe_weak_copy(scales),
966
+ group_size_ = group_size_,
967
+ bits_ = bits_,
968
+ transpose_ = transpose_]() mutable {
969
+ fp_qmm_dispatch(out, x, w, scales, group_size_, bits_, transpose_);
970
+ });
971
+ }
972
+ }
973
+
974
+ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
975
+ auto& x_pre = inputs[0];
976
+ auto& w_pre = inputs[1];
977
+ auto& scales_pre = inputs[2];
978
+ auto& lhs_indices = inputs[inputs.size() - 2];
979
+ auto& rhs_indices = inputs[inputs.size() - 1];
980
+
981
+ auto& encoder = cpu::get_command_encoder(stream());
982
+ auto ensure_row_contiguous_last_dims = [s = stream(),
983
+ &encoder](const array& arr) {
984
+ auto stride_0 = arr.strides()[arr.ndim() - 2];
985
+ auto stride_1 = arr.strides()[arr.ndim() - 1];
986
+ if (stride_0 == arr.shape(-1) && stride_1 == 1) {
987
+ return arr;
988
+ } else {
989
+ auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
990
+ copy_cpu(arr, arr_cpy, CopyType::General, s);
991
+ encoder.add_temporary(arr_cpy);
992
+ return arr_cpy;
993
+ }
994
+ };
995
+
996
+ auto x = ensure_row_contiguous_last_dims(x_pre);
997
+ auto w = ensure_row_contiguous_last_dims(w_pre);
998
+ auto scales = ensure_row_contiguous_last_dims(scales_pre);
999
+
1000
+ out.set_data(allocator::malloc(out.nbytes()));
1001
+
1002
+ encoder.set_input_array(x);
1003
+ encoder.set_input_array(w);
1004
+ encoder.set_input_array(scales);
1005
+ encoder.set_input_array(lhs_indices);
1006
+ encoder.set_input_array(rhs_indices);
1007
+ encoder.set_output_array(out);
1008
+ if (mode_ == QuantizationMode::Affine) {
1009
+ auto biases = ensure_row_contiguous_last_dims(inputs[3]);
1010
+ encoder.set_input_array(biases);
1011
+ encoder.dispatch([out = array::unsafe_weak_copy(out),
1012
+ x = array::unsafe_weak_copy(x),
1013
+ w = array::unsafe_weak_copy(w),
1014
+ scales = array::unsafe_weak_copy(scales),
1015
+ biases = array::unsafe_weak_copy(biases),
1016
+ lhs_indices = array::unsafe_weak_copy(lhs_indices),
1017
+ rhs_indices = array::unsafe_weak_copy(rhs_indices),
1018
+ group_size_ = group_size_,
1019
+ bits_ = bits_,
1020
+ transpose_ = transpose_]() mutable {
1021
+ _bs_qmm_dispatch(
1022
+ out,
1023
+ x,
1024
+ w,
1025
+ scales,
1026
+ biases,
1027
+ lhs_indices,
1028
+ rhs_indices,
1029
+ group_size_,
1030
+ bits_,
1031
+ transpose_);
1032
+ });
1033
+ } else {
1034
+ encoder.dispatch([out = array::unsafe_weak_copy(out),
1035
+ x = array::unsafe_weak_copy(x),
1036
+ w = array::unsafe_weak_copy(w),
1037
+ scales = array::unsafe_weak_copy(scales),
1038
+ lhs_indices = array::unsafe_weak_copy(lhs_indices),
1039
+ rhs_indices = array::unsafe_weak_copy(rhs_indices),
1040
+ group_size_ = group_size_,
1041
+ bits_ = bits_,
1042
+ transpose_ = transpose_]() mutable {
1043
+ fp_bs_qmm_dispatch(
1044
+ out,
1045
+ x,
1046
+ w,
1047
+ scales,
1048
+ lhs_indices,
1049
+ rhs_indices,
1050
+ group_size_,
1051
+ bits_,
1052
+ transpose_);
1053
+ });
1054
+ }
1055
+ }
1056
+
1057
+ uint8_t to_fp8_e8m0(float x) {
1058
+ if (!std::isfinite(x)) {
1059
+ return 0xFF;
1060
+ }
1061
+ if (x < 0.0f) {
1062
+ return 0x00;
1063
+ }
1064
+ float le = std::log2(x);
1065
+ int n = int(std::round(le));
1066
+
1067
+ n = n < -127 ? -127 : n;
1068
+ n = n > 127 ? 127 : n;
1069
+ return static_cast<uint8_t>(n + 127);
1070
+ }
1071
+
1072
+ uint8_t to_fp4_e2m1(float x) {
1073
+ if (std::isnan(x)) {
1074
+ return 0x7;
1075
+ }
1076
+
1077
+ const uint8_t sign_bit = (std::signbit(x)) ? 0x8 : 0x0;
1078
+ x = std::abs(x);
1079
+
1080
+ uint8_t bits;
1081
+ if (x > 5.0f) {
1082
+ bits = 0x7;
1083
+ } else if (x >= 3.5f) {
1084
+ bits = 0x6;
1085
+ } else if (x > 2.5f) {
1086
+ bits = 0x5;
1087
+ } else if (x >= 1.75f) {
1088
+ bits = 0x4;
1089
+ } else if (x > 1.25f) {
1090
+ bits = 0x3;
1091
+ } else if (x >= 0.75f) {
1092
+ bits = 0x2;
1093
+ } else if (x > 0.25f) {
1094
+ bits = 0x1;
1095
+ } else {
1096
+ bits = 0x0;
1097
+ }
1098
+ return bits | sign_bit;
1099
+ }
1100
+
1101
+ template <typename T>
1102
+ void fp_quantize_dequantize(
1103
+ const array& w_arr,
1104
+ array& out_arr,
1105
+ int bits,
1106
+ int group_size,
1107
+ size_t w_size) {
1108
+ auto w = w_arr.data<T>();
1109
+ auto out = out_arr.data<T>();
1110
+
1111
+ size_t n_groups = w_size / group_size;
1112
+
1113
+ for (size_t i = 0; i < n_groups; ++i) {
1114
+ size_t idx = i * group_size;
1115
+ float scale = -std::numeric_limits<float>::infinity();
1116
+ for (int j = 0; j < group_size; ++j) {
1117
+ scale = std::max(scale, std::abs(w[idx + j]));
1118
+ }
1119
+ scale /= bits == 4 ? 6.0f : 448.0f;
1120
+ if (group_size == 16) {
1121
+ scale = dequantize_scale<float, 16>(detail::ToFP8()(scale));
1122
+ } else {
1123
+ scale = dequantize_scale<float, 32>(to_fp8_e8m0(scale));
1124
+ }
1125
+
1126
+ for (int j = 0; j < group_size; ++j) {
1127
+ float w_el = scale == 0 ? 0.0f : w[idx + j] / scale;
1128
+ float output;
1129
+ if (bits == 8) {
1130
+ output = detail::FromFP8()(detail::ToFP8()(w_el));
1131
+ } else {
1132
+ output = FP4_LUT[to_fp4_e2m1(w_el)];
1133
+ }
1134
+ out[idx + j] = static_cast<T>(scale * output);
1135
+ }
1136
+ }
1137
+ }
1138
+
1139
+ void dispatch_quantize_dequantize(
1140
+ const array& w,
1141
+ array& out,
1142
+ int bits,
1143
+ int group_size) {
1144
+ if (w.dtype() == float16) {
1145
+ fp_quantize_dequantize<float16_t>(w, out, bits, group_size, w.size());
1146
+ } else if (w.dtype() == bfloat16) {
1147
+ fp_quantize_dequantize<bfloat16_t>(w, out, bits, group_size, w.size());
1148
+ } else if (w.dtype() == float32) {
1149
+ fp_quantize_dequantize<float>(w, out, bits, group_size, w.size());
1150
+ } else {
1151
+ throw std::runtime_error(
1152
+ "[quantize_dequantize] Only supports floating point inputs");
1153
+ }
1154
+ }
1155
+
1156
+ template <typename T, typename U>
1157
+ void quantize(
1158
+ const T* w,
1159
+ U* out,
1160
+ T* scales,
1161
+ T* biases,
1162
+ int bits,
1163
+ int group_size,
1164
+ size_t w_size) {
1165
+ float n_bins = (1 << bits) - 1;
1166
+ float eps = 1e-7;
1167
+
1168
+ bool power_of_2_bits = is_power_of_2(bits);
1169
+ int el_per_int = get_pack_factor(bits, 32);
1170
+ int bytes_per_pack = get_bytes_per_pack(bits);
1171
+ int int_per_group = group_size * bytes_per_pack / el_per_int;
1172
+ size_t n_groups = w_size / group_size;
1173
+
1174
+ for (size_t i = 0; i < n_groups; ++i) {
1175
+ size_t w_idx = i * group_size;
1176
+ float w_min = std::numeric_limits<float>::infinity();
1177
+ float w_max = -w_min;
1178
+ for (int j = 0; j < group_size; ++j) {
1179
+ w_max = std::max(w_max, (float)w[w_idx + j]);
1180
+ w_min = std::min(w_min, (float)w[w_idx + j]);
1181
+ }
1182
+ bool mask = std::abs(w_min) > std::abs(w_max);
1183
+ float scale = std::max((w_max - w_min) / n_bins, eps);
1184
+ scale = mask ? scale : -scale;
1185
+
1186
+ float edge = mask ? w_min : w_max;
1187
+ float q0 = std::rint(edge / scale);
1188
+ float bias = 0;
1189
+ if (q0 != 0) {
1190
+ scale = edge / q0;
1191
+ bias = edge;
1192
+ }
1193
+ size_t out_idx = i * int_per_group;
1194
+ for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
1195
+ uint64_t out_el = 0;
1196
+ for (int k = 0; k < el_per_int; ++k) {
1197
+ float w_el = w[w_idx + j * el_per_int + k];
1198
+ w_el = std::rint((w_el - bias) / scale);
1199
+ w_el = std::min(std::max(w_el, 0.0f), n_bins);
1200
+ out_el |= static_cast<uint64_t>(w_el) << (k * bits);
1201
+ }
1202
+ if (power_of_2_bits) {
1203
+ out[out_idx + j] = out_el;
1204
+ } else if (bits == 5) {
1205
+ out[out_idx + bytes_per_pack * j] = out_el & 0xff;
1206
+ out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
1207
+ out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
1208
+ out[out_idx + bytes_per_pack * j + 3] = (out_el & 0xff000000) >> 24;
1209
+ out[out_idx + bytes_per_pack * j + 4] = (out_el & 0xff00000000) >> 32;
1210
+ } else {
1211
+ out[out_idx + bytes_per_pack * j] = out_el & 0xff;
1212
+ out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
1213
+ out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
1214
+ }
1215
+ }
1216
+ scales[i] = static_cast<T>(scale);
1217
+ biases[i] = static_cast<T>(bias);
1218
+ }
1219
+ }
1220
+
1221
+ template <typename T, typename U>
1222
+ void dispatch_quantize(
1223
+ const array& w,
1224
+ array& out,
1225
+ array& scales,
1226
+ array& biases,
1227
+ int bits,
1228
+ int group_size) {
1229
+ auto w_ptr = w.data<T>();
1230
+ auto out_ptr = out.data<U>();
1231
+ auto scales_ptr = scales.data<T>();
1232
+ auto biases_ptr = biases.data<T>();
1233
+ quantize<T, U>(
1234
+ w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
1235
+ }
1236
+
1237
+ void fast::Quantize::eval_cpu(
1238
+ const std::vector<array>& inputs,
1239
+ std::vector<array>& outputs) {
1240
+ auto& encoder = cpu::get_command_encoder(stream());
1241
+ auto w = ensure_row_contiguous(inputs[0], encoder, stream());
1242
+ auto& out = outputs[0];
1243
+ out.set_data(allocator::malloc(out.nbytes()));
1244
+
1245
+ auto& scales = outputs[1];
1246
+ auto& biases = outputs[2];
1247
+ scales.set_data(allocator::malloc(scales.nbytes()));
1248
+ biases.set_data(allocator::malloc(biases.nbytes()));
1249
+ encoder.set_input_array(w);
1250
+ encoder.set_input_array(scales);
1251
+ encoder.set_input_array(biases);
1252
+ encoder.set_output_array(out);
1253
+ encoder.dispatch([w = array::unsafe_weak_copy(w),
1254
+ out = array::unsafe_weak_copy(out),
1255
+ scales = array::unsafe_weak_copy(scales),
1256
+ biases = array::unsafe_weak_copy(biases),
1257
+ group_size_ = group_size_,
1258
+ bits_ = bits_]() mutable {
1259
+ if (w.dtype() == float16) {
1260
+ if (is_power_of_2(bits_)) {
1261
+ dispatch_quantize<float16_t, uint32_t>(
1262
+ w, out, scales, biases, bits_, group_size_);
1263
+ } else {
1264
+ dispatch_quantize<float16_t, uint8_t>(
1265
+ w, out, scales, biases, bits_, group_size_);
1266
+ }
1267
+ } else if (w.dtype() == bfloat16) {
1268
+ if (is_power_of_2(bits_)) {
1269
+ dispatch_quantize<bfloat16_t, uint32_t>(
1270
+ w, out, scales, biases, bits_, group_size_);
1271
+ } else {
1272
+ dispatch_quantize<bfloat16_t, uint8_t>(
1273
+ w, out, scales, biases, bits_, group_size_);
1274
+ }
1275
+ } else if (w.dtype() == float32) {
1276
+ if (is_power_of_2(bits_)) {
1277
+ dispatch_quantize<float, uint32_t>(
1278
+ w, out, scales, biases, bits_, group_size_);
1279
+ } else {
1280
+ dispatch_quantize<float, uint8_t>(
1281
+ w, out, scales, biases, bits_, group_size_);
1282
+ }
1283
+ } else {
1284
+ throw std::runtime_error(
1285
+ "[fast::Quantize::eval_cpu] Only supports floating point inputs");
1286
+ }
1287
+ });
1288
+ }
1289
+
1290
+ void fast::ConvertFP8::eval_cpu(
1291
+ const std::vector<array>& inputs,
1292
+ std::vector<array>& outputs) {
1293
+ auto& in = inputs[0];
1294
+ auto& out = outputs[0];
1295
+ set_unary_output_data(in, out);
1296
+ auto& encoder = cpu::get_command_encoder(stream());
1297
+ encoder.set_input_array(in);
1298
+ encoder.set_output_array(out);
1299
+ encoder.dispatch([in = array::unsafe_weak_copy(in),
1300
+ out = array::unsafe_weak_copy(out),
1301
+ to_fp8 = to_fp8_]() mutable {
1302
+ if (to_fp8) {
1303
+ switch (in.dtype()) {
1304
+ case float16:
1305
+ unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
1306
+ break;
1307
+ case bfloat16:
1308
+ unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
1309
+ break;
1310
+ default:
1311
+ unary_op<float, uint8_t>(in, out, detail::ToFP8());
1312
+ break;
1313
+ }
1314
+ } else {
1315
+ switch (out.dtype()) {
1316
+ case float16:
1317
+ unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
1318
+ break;
1319
+ case bfloat16:
1320
+ unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
1321
+ break;
1322
+ default:
1323
+ unary_op<uint8_t, float>(in, out, detail::FromFP8());
1324
+ break;
1325
+ }
1326
+ }
1327
+ });
1328
+ }
1329
+
1330
+ void QQMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
1331
+ auto& encoder = cpu::get_command_encoder(stream());
1332
+
1333
+ bool w_quantized = (inputs[1].dtype() == uint32);
1334
+ if (w_quantized && inputs[0].shape(-2) == 1) {
1335
+ bool donate_x = inputs[0].is_donatable();
1336
+ auto x = ensure_row_contiguous(inputs[0], encoder, stream());
1337
+ auto w = ensure_row_contiguous(inputs[1], encoder, stream());
1338
+ auto scales = ensure_row_contiguous(inputs[2], encoder, stream());
1339
+
1340
+ out.set_data(allocator::malloc(out.nbytes()));
1341
+
1342
+ // If x is a copy it should be donatable
1343
+ donate_x |= x.is_donatable();
1344
+ auto xhat = donate_x
1345
+ ? x
1346
+ : array(allocator::malloc(x.nbytes()), x.shape(), x.dtype());
1347
+ if (!donate_x) {
1348
+ encoder.add_temporary(xhat);
1349
+ }
1350
+ encoder.set_input_array(x);
1351
+ encoder.set_input_array(w);
1352
+ encoder.set_input_array(scales);
1353
+ encoder.set_output_array(out);
1354
+ encoder.dispatch([out = array::unsafe_weak_copy(out),
1355
+ x = array::unsafe_weak_copy(x),
1356
+ xhat = array::unsafe_weak_copy(xhat),
1357
+ w = array::unsafe_weak_copy(w),
1358
+ scales = array::unsafe_weak_copy(scales),
1359
+ group_size_ = group_size_,
1360
+ bits_ = bits_]() mutable {
1361
+ dispatch_quantize_dequantize(x, xhat, bits_, group_size_);
1362
+ fp_qmm_dispatch(out, xhat, w, scales, group_size_, bits_, true);
1363
+ });
1364
+ return;
1365
+ } else {
1366
+ throw std::runtime_error("[QQMatmul] NYI for the general case");
1367
+ }
1368
+ }
1369
+
1370
+ } // namespace mlx::core