mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1076 @@
1
+ // Copyright © 2025 Apple Inc.
2
+
3
+ #include <algorithm>
4
+ #include <cassert>
5
+ #include <cstdint>
6
+
7
+ #include "mlx/backend/cuda/device.h"
8
+ #include "mlx/backend/cuda/device/fp16_math.cuh"
9
+ #include "mlx/backend/cuda/kernel_utils.cuh"
10
+ #include "mlx/backend/gpu/copy.h"
11
+ #include "mlx/dtype_utils.h"
12
+ #include "mlx/primitives.h"
13
+
14
+ #include <nvtx3/nvtx3.hpp>
15
+ #include <cuda/std/limits>
16
+ #include <cuda/std/type_traits>
17
+
18
+ namespace mlx::core {
19
+
20
+ constexpr int N_PER_THREAD = 8;
21
+
22
+ namespace cu {
23
+
24
+ template <typename T>
25
+ __device__ __forceinline__ T nan_value();
26
+
27
+ template <>
28
+ __device__ __forceinline__ float nan_value<float>() {
29
+ return cuda::std::numeric_limits<float>::quiet_NaN();
30
+ }
31
+
32
+ template <>
33
+ __device__ __forceinline__ double nan_value<double>() {
34
+ return cuda::std::numeric_limits<double>::quiet_NaN();
35
+ }
36
+
37
+ template <>
38
+ __device__ __forceinline__ __half nan_value<__half>() {
39
+ return __float2half(cuda::std::numeric_limits<float>::quiet_NaN());
40
+ }
41
+
42
+ template <>
43
+ __device__ __forceinline__ __nv_bfloat16 nan_value<__nv_bfloat16>() {
44
+ return __float2bfloat16(cuda::std::numeric_limits<float>::quiet_NaN());
45
+ }
46
+
47
+ template <typename T, typename = void>
48
+ struct InitValue {
49
+ __device__ __forceinline__ static T value() {
50
+ return Limits<T>::max();
51
+ }
52
+ };
53
+
54
+ template <typename T>
55
+ struct InitValue<T, cuda::std::enable_if_t<std::is_floating_point_v<T>>> {
56
+ __device__ __forceinline__ static T value() {
57
+ return nan_value<T>();
58
+ }
59
+ };
60
+
61
+ template <typename T>
62
+ __device__ __forceinline__ void thread_swap(T& a, T& b) {
63
+ T w = a;
64
+ a = b;
65
+ b = w;
66
+ }
67
+
68
+ template <typename T>
69
+ struct LessThan {
70
+ __device__ __forceinline__ static T init() {
71
+ return InitValue<T>::value();
72
+ }
73
+
74
+ __device__ __forceinline__ bool operator()(T a, T b) const {
75
+ if constexpr (std::is_floating_point_v<T>) {
76
+ bool an = cuda::std::isnan(a);
77
+ bool bn = cuda::std::isnan(b);
78
+ if (an | bn) {
79
+ return (!an) & bn;
80
+ }
81
+ }
82
+ return a < b;
83
+ }
84
+ };
85
+
86
+ template <
87
+ typename ValT,
88
+ typename IdxT,
89
+ bool ARG_SORT,
90
+ int N_PER_THREAD,
91
+ typename CompareOp>
92
+ struct ThreadSort {
93
+ __device__ __forceinline__ static void sort(
94
+ ValT (&vals)[N_PER_THREAD],
95
+ IdxT (&idxs)[N_PER_THREAD]) {
96
+ CompareOp op;
97
+ #pragma unroll
98
+ for (int i = 0; i < N_PER_THREAD; ++i) {
99
+ #pragma unroll
100
+ for (int j = i & 1; j < N_PER_THREAD - 1; j += 2) {
101
+ if (op(vals[j + 1], vals[j])) {
102
+ thread_swap(vals[j + 1], vals[j]);
103
+ if constexpr (ARG_SORT) {
104
+ thread_swap(idxs[j + 1], idxs[j]);
105
+ }
106
+ }
107
+ }
108
+ }
109
+ }
110
+ };
111
+
112
+ template <
113
+ typename ValT,
114
+ typename IdxT,
115
+ bool ARG_SORT,
116
+ int BLOCK_THREADS,
117
+ int N_PER_THREAD,
118
+ typename CompareOp>
119
+ struct BlockMergeSort {
120
+ using thread_sort_t =
121
+ ThreadSort<ValT, IdxT, ARG_SORT, N_PER_THREAD, CompareOp>;
122
+
123
+ __device__ __forceinline__ static int merge_partition(
124
+ const ValT* As,
125
+ const ValT* Bs,
126
+ int A_sz,
127
+ int B_sz,
128
+ int sort_md) {
129
+ CompareOp op;
130
+
131
+ int A_st = max(0, sort_md - B_sz);
132
+ int A_ed = min(sort_md, A_sz);
133
+
134
+ while (A_st < A_ed) {
135
+ int md = A_st + (A_ed - A_st) / 2;
136
+ auto a = As[md];
137
+ auto b = Bs[sort_md - 1 - md];
138
+
139
+ if (op(b, a)) {
140
+ A_ed = md;
141
+ } else {
142
+ A_st = md + 1;
143
+ }
144
+ }
145
+
146
+ return A_ed;
147
+ }
148
+
149
+ __device__ __forceinline__ static void merge_step(
150
+ const ValT* As,
151
+ const ValT* Bs,
152
+ const IdxT* As_idx,
153
+ const IdxT* Bs_idx,
154
+ int A_sz,
155
+ int B_sz,
156
+ ValT (&vals)[N_PER_THREAD],
157
+ IdxT (&idxs)[N_PER_THREAD]) {
158
+ CompareOp op;
159
+ int a_idx = 0;
160
+ int b_idx = 0;
161
+
162
+ #pragma unroll
163
+ for (int i = 0; i < N_PER_THREAD; ++i) {
164
+ auto a = (a_idx < A_sz) ? As[a_idx] : ValT(CompareOp::init());
165
+ auto b = (b_idx < B_sz) ? Bs[b_idx] : ValT(CompareOp::init());
166
+ bool pred = (b_idx < B_sz) && (a_idx >= A_sz || op(b, a));
167
+
168
+ vals[i] = pred ? b : a;
169
+ if constexpr (ARG_SORT) {
170
+ if (pred) {
171
+ idxs[i] = Bs_idx[b_idx];
172
+ } else {
173
+ idxs[i] = (a_idx < A_sz) ? As_idx[a_idx] : IdxT(0);
174
+ }
175
+ }
176
+
177
+ b_idx += int(pred);
178
+ a_idx += int(!pred);
179
+ }
180
+ }
181
+
182
+ __device__ __forceinline__ static void
183
+ sort(ValT* tgp_vals, IdxT* tgp_idxs, int size_sorted_axis) {
184
+ int idx = threadIdx.x * N_PER_THREAD;
185
+
186
+ ValT thread_vals[N_PER_THREAD];
187
+ IdxT thread_idxs[N_PER_THREAD];
188
+ #pragma unroll
189
+ for (int i = 0; i < N_PER_THREAD; ++i) {
190
+ thread_vals[i] = tgp_vals[idx + i];
191
+ if constexpr (ARG_SORT) {
192
+ thread_idxs[i] = tgp_idxs[idx + i];
193
+ }
194
+ }
195
+
196
+ if (idx < size_sorted_axis) {
197
+ thread_sort_t::sort(thread_vals, thread_idxs);
198
+ }
199
+
200
+ for (int merge_threads = 2; merge_threads <= BLOCK_THREADS;
201
+ merge_threads *= 2) {
202
+ __syncthreads();
203
+ #pragma unroll
204
+ for (int i = 0; i < N_PER_THREAD; ++i) {
205
+ tgp_vals[idx + i] = thread_vals[i];
206
+ if constexpr (ARG_SORT) {
207
+ tgp_idxs[idx + i] = thread_idxs[i];
208
+ }
209
+ }
210
+ __syncthreads();
211
+
212
+ int merge_group = threadIdx.x / merge_threads;
213
+ int merge_lane = threadIdx.x % merge_threads;
214
+
215
+ int sort_sz = N_PER_THREAD * merge_threads;
216
+ int sort_st = N_PER_THREAD * merge_threads * merge_group;
217
+
218
+ int A_st = sort_st;
219
+ int A_ed = sort_st + sort_sz / 2;
220
+ int B_st = sort_st + sort_sz / 2;
221
+ int B_ed = sort_st + sort_sz;
222
+
223
+ const ValT* As = tgp_vals + A_st;
224
+ const ValT* Bs = tgp_vals + B_st;
225
+ int A_sz = A_ed - A_st;
226
+ int B_sz = B_ed - B_st;
227
+
228
+ int sort_md = N_PER_THREAD * merge_lane;
229
+ int partition = merge_partition(As, Bs, A_sz, B_sz, sort_md);
230
+
231
+ As += partition;
232
+ Bs += sort_md - partition;
233
+
234
+ A_sz -= partition;
235
+ B_sz -= sort_md - partition;
236
+
237
+ const IdxT* As_idx = ARG_SORT ? tgp_idxs + A_st + partition : nullptr;
238
+ const IdxT* Bs_idx =
239
+ ARG_SORT ? tgp_idxs + B_st + sort_md - partition : nullptr;
240
+
241
+ merge_step(As, Bs, As_idx, Bs_idx, A_sz, B_sz, thread_vals, thread_idxs);
242
+ }
243
+
244
+ __syncthreads();
245
+ #pragma unroll
246
+ for (int i = 0; i < N_PER_THREAD; ++i) {
247
+ tgp_vals[idx + i] = thread_vals[i];
248
+ if constexpr (ARG_SORT) {
249
+ tgp_idxs[idx + i] = thread_idxs[i];
250
+ }
251
+ }
252
+ }
253
+ };
254
+
255
+ template <
256
+ typename T,
257
+ typename U,
258
+ bool ARG_SORT,
259
+ int BLOCK_THREADS,
260
+ int N_PER_THREAD,
261
+ typename CompareOp = LessThan<T>>
262
+ struct KernelMergeSort {
263
+ using ValT = T;
264
+ using IdxT = uint32_t;
265
+ using block_merge_sort_t = BlockMergeSort<
266
+ ValT,
267
+ IdxT,
268
+ ARG_SORT,
269
+ BLOCK_THREADS,
270
+ N_PER_THREAD,
271
+ CompareOp>;
272
+
273
+ static constexpr int N_PER_BLOCK = BLOCK_THREADS * N_PER_THREAD;
274
+
275
+ __device__ __forceinline__ static void block_sort(
276
+ const T* inp,
277
+ U* out,
278
+ int size_sorted_axis,
279
+ int64_t in_stride_sorted_axis,
280
+ int64_t out_stride_sorted_axis,
281
+ int64_t in_stride_segment_axis,
282
+ int64_t out_stride_segment_axis,
283
+ ValT* tgp_vals,
284
+ IdxT* tgp_idxs) {
285
+ inp += blockIdx.y * in_stride_segment_axis;
286
+ out += blockIdx.y * out_stride_segment_axis;
287
+
288
+ for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
289
+ tgp_vals[i] = i < size_sorted_axis ? inp[i * in_stride_sorted_axis]
290
+ : ValT(CompareOp::init());
291
+ if constexpr (ARG_SORT) {
292
+ tgp_idxs[i] = i;
293
+ }
294
+ }
295
+
296
+ __syncthreads();
297
+ block_merge_sort_t::sort(tgp_vals, tgp_idxs, size_sorted_axis);
298
+ __syncthreads();
299
+
300
+ for (int i = threadIdx.x; i < size_sorted_axis; i += BLOCK_THREADS) {
301
+ if constexpr (ARG_SORT) {
302
+ out[i * out_stride_sorted_axis] = tgp_idxs[i];
303
+ } else {
304
+ out[i * out_stride_sorted_axis] = tgp_vals[i];
305
+ }
306
+ }
307
+ }
308
+ };
309
+
310
+ template <
311
+ typename T,
312
+ typename U,
313
+ bool ARG_SORT,
314
+ int BLOCK_THREADS,
315
+ int N_PER_THREAD>
316
+ __global__ void block_sort_kernel(
317
+ const T* inp,
318
+ U* out,
319
+ int size_sorted_axis,
320
+ int64_t in_stride_sorted_axis,
321
+ int64_t out_stride_sorted_axis,
322
+ int64_t in_stride_segment_axis,
323
+ int64_t out_stride_segment_axis) {
324
+ using sort_kernel =
325
+ KernelMergeSort<T, U, ARG_SORT, BLOCK_THREADS, N_PER_THREAD>;
326
+ using ValT = typename sort_kernel::ValT;
327
+ using IdxT = typename sort_kernel::IdxT;
328
+
329
+ if constexpr (ARG_SORT) {
330
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
331
+ __shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
332
+ sort_kernel::block_sort(
333
+ inp,
334
+ out,
335
+ size_sorted_axis,
336
+ in_stride_sorted_axis,
337
+ out_stride_sorted_axis,
338
+ in_stride_segment_axis,
339
+ out_stride_segment_axis,
340
+ tgp_vals,
341
+ tgp_idxs);
342
+ } else {
343
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
344
+ sort_kernel::block_sort(
345
+ inp,
346
+ out,
347
+ size_sorted_axis,
348
+ in_stride_sorted_axis,
349
+ out_stride_sorted_axis,
350
+ in_stride_segment_axis,
351
+ out_stride_segment_axis,
352
+ tgp_vals,
353
+ nullptr);
354
+ }
355
+ }
356
+
357
+ template <
358
+ typename T,
359
+ typename U,
360
+ bool ARG_SORT,
361
+ int BLOCK_THREADS,
362
+ int N_PER_THREAD>
363
+ __global__ void block_sort_nc_kernel(
364
+ const T* inp,
365
+ U* out,
366
+ int size_sorted_axis,
367
+ int64_t in_stride_sorted_axis,
368
+ int64_t out_stride_sorted_axis,
369
+ const __grid_constant__ Shape nc_shape,
370
+ const __grid_constant__ Strides in_nc_strides,
371
+ const __grid_constant__ Strides out_nc_strides,
372
+ int nc_dim) {
373
+ using sort_kernel =
374
+ KernelMergeSort<T, U, ARG_SORT, BLOCK_THREADS, N_PER_THREAD>;
375
+ using ValT = typename sort_kernel::ValT;
376
+ using IdxT = typename sort_kernel::IdxT;
377
+
378
+ int64_t in_block_idx = elem_to_loc(
379
+ int64_t(blockIdx.y), nc_shape.data(), in_nc_strides.data(), nc_dim);
380
+ int64_t out_block_idx = elem_to_loc(
381
+ int64_t(blockIdx.y), nc_shape.data(), out_nc_strides.data(), nc_dim);
382
+
383
+ inp += in_block_idx;
384
+ out += out_block_idx;
385
+
386
+ if constexpr (ARG_SORT) {
387
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
388
+ __shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
389
+ sort_kernel::block_sort(
390
+ inp,
391
+ out,
392
+ size_sorted_axis,
393
+ in_stride_sorted_axis,
394
+ out_stride_sorted_axis,
395
+ 0,
396
+ 0,
397
+ tgp_vals,
398
+ tgp_idxs);
399
+ } else {
400
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
401
+ sort_kernel::block_sort(
402
+ inp,
403
+ out,
404
+ size_sorted_axis,
405
+ in_stride_sorted_axis,
406
+ out_stride_sorted_axis,
407
+ 0,
408
+ 0,
409
+ tgp_vals,
410
+ nullptr);
411
+ }
412
+ }
413
+
414
+ template <
415
+ typename ValT,
416
+ typename IdxT,
417
+ bool ARG_SORT,
418
+ int BLOCK_THREADS,
419
+ int N_PER_THREAD,
420
+ typename CompareOp = LessThan<ValT>>
421
+ struct KernelMultiBlockMergeSort {
422
+ using block_merge_sort_t = BlockMergeSort<
423
+ ValT,
424
+ IdxT,
425
+ ARG_SORT,
426
+ BLOCK_THREADS,
427
+ N_PER_THREAD,
428
+ CompareOp>;
429
+
430
+ static constexpr int N_PER_BLOCK = BLOCK_THREADS * N_PER_THREAD;
431
+
432
+ __device__ __forceinline__ static void block_sort(
433
+ const ValT* inp,
434
+ ValT* out_vals,
435
+ IdxT* out_idxs,
436
+ int size_sorted_axis,
437
+ int64_t stride_sorted_axis,
438
+ ValT* tgp_vals,
439
+ IdxT* tgp_idxs) {
440
+ int base_idx = blockIdx.x * N_PER_BLOCK;
441
+
442
+ for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
443
+ int idx = base_idx + i;
444
+ tgp_vals[i] = idx < size_sorted_axis ? inp[idx * stride_sorted_axis]
445
+ : ValT(CompareOp::init());
446
+ tgp_idxs[i] = idx;
447
+ }
448
+
449
+ __syncthreads();
450
+ block_merge_sort_t::sort(tgp_vals, tgp_idxs, size_sorted_axis);
451
+ __syncthreads();
452
+
453
+ for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
454
+ int idx = base_idx + i;
455
+ if (idx < size_sorted_axis) {
456
+ out_vals[idx] = tgp_vals[i];
457
+ out_idxs[idx] = tgp_idxs[i];
458
+ }
459
+ }
460
+ }
461
+
462
+ __device__ __forceinline__ static int merge_partition(
463
+ const ValT* As,
464
+ const ValT* Bs,
465
+ int A_sz,
466
+ int B_sz,
467
+ int sort_md) {
468
+ CompareOp op;
469
+
470
+ int A_st = max(0, sort_md - B_sz);
471
+ int A_ed = min(sort_md, A_sz);
472
+
473
+ while (A_st < A_ed) {
474
+ int md = A_st + (A_ed - A_st) / 2;
475
+ auto a = As[md];
476
+ auto b = Bs[sort_md - 1 - md];
477
+
478
+ if (op(b, a)) {
479
+ A_ed = md;
480
+ } else {
481
+ A_st = md + 1;
482
+ }
483
+ }
484
+
485
+ return A_ed;
486
+ }
487
+ };
488
+
489
+ template <
490
+ typename ValT,
491
+ typename IdxT,
492
+ bool ARG_SORT,
493
+ int BLOCK_THREADS,
494
+ int N_PER_THREAD>
495
+ __global__ void mb_block_sort_kernel(
496
+ const ValT* inp,
497
+ ValT* out_vals,
498
+ IdxT* out_idxs,
499
+ int size_sorted_axis,
500
+ int64_t stride_sorted_axis,
501
+ const __grid_constant__ Shape nc_shape,
502
+ const __grid_constant__ Strides nc_strides,
503
+ int nc_dim) {
504
+ using sort_kernel = KernelMultiBlockMergeSort<
505
+ ValT,
506
+ IdxT,
507
+ ARG_SORT,
508
+ BLOCK_THREADS,
509
+ N_PER_THREAD>;
510
+
511
+ int64_t block_idx = elem_to_loc(
512
+ int64_t(blockIdx.y), nc_shape.data(), nc_strides.data(), nc_dim);
513
+
514
+ inp += block_idx;
515
+ out_vals += blockIdx.y * size_sorted_axis;
516
+ out_idxs += blockIdx.y * size_sorted_axis;
517
+
518
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
519
+ __shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
520
+
521
+ sort_kernel::block_sort(
522
+ inp,
523
+ out_vals,
524
+ out_idxs,
525
+ size_sorted_axis,
526
+ stride_sorted_axis,
527
+ tgp_vals,
528
+ tgp_idxs);
529
+ }
530
+
531
+ template <
532
+ typename ValT,
533
+ typename IdxT,
534
+ bool ARG_SORT,
535
+ int BLOCK_THREADS,
536
+ int N_PER_THREAD>
537
+ __global__ void mb_block_partition_kernel(
538
+ IdxT* block_partitions,
539
+ const ValT* dev_vals,
540
+ const IdxT* dev_idxs,
541
+ int size_sorted_axis,
542
+ int merge_tiles,
543
+ int n_blocks) {
544
+ using sort_kernel = KernelMultiBlockMergeSort<
545
+ ValT,
546
+ IdxT,
547
+ ARG_SORT,
548
+ BLOCK_THREADS,
549
+ N_PER_THREAD>;
550
+
551
+ (void)dev_idxs;
552
+
553
+ block_partitions += blockIdx.y * blockDim.x;
554
+ dev_vals += blockIdx.y * size_sorted_axis;
555
+ dev_idxs += blockIdx.y * size_sorted_axis;
556
+
557
+ for (int i = threadIdx.x; i <= n_blocks; i += blockDim.x) {
558
+ int merge_group = i / merge_tiles;
559
+ int merge_lane = i % merge_tiles;
560
+
561
+ int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
562
+ int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
563
+
564
+ int A_st = min(size_sorted_axis, sort_st);
565
+ int A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
566
+ int B_st = A_ed;
567
+ int B_ed = min(size_sorted_axis, B_st + sort_sz / 2);
568
+
569
+ int partition_at = min(B_ed - A_st, sort_kernel::N_PER_BLOCK * merge_lane);
570
+ int partition = sort_kernel::merge_partition(
571
+ dev_vals + A_st,
572
+ dev_vals + B_st,
573
+ A_ed - A_st,
574
+ B_ed - B_st,
575
+ partition_at);
576
+
577
+ block_partitions[i] = A_st + partition;
578
+ }
579
+ }
580
+
581
+ template <
582
+ typename ValT,
583
+ typename IdxT,
584
+ bool ARG_SORT,
585
+ int BLOCK_THREADS,
586
+ int N_PER_THREAD,
587
+ typename CompareOp = LessThan<ValT>>
588
+ __global__ void mb_block_merge_kernel(
589
+ const IdxT* block_partitions,
590
+ const ValT* dev_vals_in,
591
+ const IdxT* dev_idxs_in,
592
+ ValT* dev_vals_out,
593
+ IdxT* dev_idxs_out,
594
+ int size_sorted_axis,
595
+ int merge_tiles,
596
+ int num_tiles) {
597
+ using sort_kernel = KernelMultiBlockMergeSort<
598
+ ValT,
599
+ IdxT,
600
+ ARG_SORT,
601
+ BLOCK_THREADS,
602
+ N_PER_THREAD,
603
+ CompareOp>;
604
+
605
+ using block_sort_t = typename sort_kernel::block_merge_sort_t;
606
+
607
+ block_partitions += blockIdx.y * (num_tiles + 1);
608
+ dev_vals_in += blockIdx.y * size_sorted_axis;
609
+ dev_idxs_in += blockIdx.y * size_sorted_axis;
610
+ dev_vals_out += blockIdx.y * size_sorted_axis;
611
+ dev_idxs_out += blockIdx.y * size_sorted_axis;
612
+
613
+ int block_idx = blockIdx.x;
614
+ int merge_group = block_idx / merge_tiles;
615
+ int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
616
+ int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
617
+ int sort_md = sort_kernel::N_PER_BLOCK * block_idx - sort_st;
618
+
619
+ int A_st = block_partitions[block_idx + 0];
620
+ int A_ed = block_partitions[block_idx + 1];
621
+ int B_st = min(size_sorted_axis, 2 * sort_st + sort_sz / 2 + sort_md - A_st);
622
+ int B_ed = min(
623
+ size_sorted_axis,
624
+ 2 * sort_st + sort_sz / 2 + sort_md + sort_kernel::N_PER_BLOCK - A_ed);
625
+
626
+ if ((block_idx % merge_tiles) == merge_tiles - 1) {
627
+ A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
628
+ B_ed = min(size_sorted_axis, sort_st + sort_sz);
629
+ }
630
+
631
+ int A_sz = A_ed - A_st;
632
+ int B_sz = B_ed - B_st;
633
+
634
+ ValT thread_vals[N_PER_THREAD];
635
+ IdxT thread_idxs[N_PER_THREAD];
636
+ #pragma unroll
637
+ for (int i = 0; i < N_PER_THREAD; i++) {
638
+ int idx = BLOCK_THREADS * i + threadIdx.x;
639
+ if (idx < (A_sz + B_sz)) {
640
+ thread_vals[i] = (idx < A_sz) ? dev_vals_in[A_st + idx]
641
+ : dev_vals_in[B_st + idx - A_sz];
642
+ thread_idxs[i] = (idx < A_sz) ? dev_idxs_in[A_st + idx]
643
+ : dev_idxs_in[B_st + idx - A_sz];
644
+ } else {
645
+ thread_vals[i] = CompareOp::init();
646
+ thread_idxs[i] = 0;
647
+ }
648
+ }
649
+
650
+ __shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
651
+ __shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
652
+ __syncthreads();
653
+ #pragma unroll
654
+ for (int i = 0; i < N_PER_THREAD; i++) {
655
+ int idx = BLOCK_THREADS * i + threadIdx.x;
656
+ tgp_vals[idx] = thread_vals[i];
657
+ tgp_idxs[idx] = thread_idxs[i];
658
+ }
659
+ __syncthreads();
660
+
661
+ int sort_md_local = min(A_sz + B_sz, N_PER_THREAD * int(threadIdx.x));
662
+
663
+ int A_st_local = block_sort_t::merge_partition(
664
+ tgp_vals, tgp_vals + A_sz, A_sz, B_sz, sort_md_local);
665
+ int A_ed_local = A_sz;
666
+
667
+ int B_st_local = sort_md_local - A_st_local;
668
+ int B_ed_local = B_sz;
669
+
670
+ int A_sz_local = A_ed_local - A_st_local;
671
+ int B_sz_local = B_ed_local - B_st_local;
672
+
673
+ block_sort_t::merge_step(
674
+ tgp_vals + A_st_local,
675
+ tgp_vals + A_ed_local + B_st_local,
676
+ tgp_idxs + A_st_local,
677
+ tgp_idxs + A_ed_local + B_st_local,
678
+ A_sz_local,
679
+ B_sz_local,
680
+ thread_vals,
681
+ thread_idxs);
682
+
683
+ __syncthreads();
684
+ #pragma unroll
685
+ for (int i = 0; i < N_PER_THREAD; ++i) {
686
+ int idx = threadIdx.x * N_PER_THREAD;
687
+ tgp_vals[idx + i] = thread_vals[i];
688
+ tgp_idxs[idx + i] = thread_idxs[i];
689
+ }
690
+
691
+ __syncthreads();
692
+ int base_idx = blockIdx.x * sort_kernel::N_PER_BLOCK;
693
+ for (int i = threadIdx.x; i < sort_kernel::N_PER_BLOCK; i += BLOCK_THREADS) {
694
+ int idx = base_idx + i;
695
+ if (idx < size_sorted_axis) {
696
+ dev_vals_out[idx] = tgp_vals[i];
697
+ dev_idxs_out[idx] = tgp_idxs[i];
698
+ }
699
+ }
700
+ }
701
+
702
+ } // namespace cu
703
+
704
+ namespace {
705
+
706
+ void single_block_sort(
707
+ const Stream& s,
708
+ const array& in,
709
+ array& out,
710
+ int axis,
711
+ int bn,
712
+ bool argsort) {
713
+ int n_rows = in.size() / in.shape(axis);
714
+
715
+ auto in_nc_str = in.strides();
716
+ in_nc_str.erase(in_nc_str.begin() + axis);
717
+
718
+ auto out_nc_str = out.strides();
719
+ out_nc_str.erase(out_nc_str.begin() + axis);
720
+
721
+ auto nc_shape = in.shape();
722
+ nc_shape.erase(nc_shape.begin() + axis);
723
+
724
+ int nc_dim = nc_shape.size();
725
+
726
+ int size_sorted_axis = in.shape(axis);
727
+ int64_t in_stride_sorted_axis = in.strides()[axis];
728
+ int64_t out_stride_sorted_axis = out.strides()[axis];
729
+
730
+ bool contiguous = in.flags().contiguous;
731
+ auto check_strides = [](const array& x, int64_t sort_stride) {
732
+ int64_t min_stride =
733
+ *std::min_element(x.strides().begin(), x.strides().end());
734
+ int64_t max_stride =
735
+ *std::max_element(x.strides().begin(), x.strides().end());
736
+ return sort_stride == min_stride || sort_stride == max_stride;
737
+ };
738
+ contiguous &= check_strides(in, in_stride_sorted_axis);
739
+ contiguous &= check_strides(out, out_stride_sorted_axis);
740
+
741
+ auto& encoder = cu::get_command_encoder(s);
742
+ out.set_data(cu::malloc_async(out.nbytes(), encoder));
743
+ encoder.set_input_array(in);
744
+ encoder.set_output_array(out);
745
+
746
+ dispatch_all_types(in.dtype(), [&](auto type_tag) {
747
+ using CTYPE = MLX_GET_TYPE(type_tag);
748
+ if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
749
+ using ValT = cuda_type_t<CTYPE>;
750
+ dispatch_block_dim(bn, [&](auto block_dim) {
751
+ constexpr int BLOCK_THREADS = block_dim();
752
+ if constexpr (BLOCK_THREADS < 1024) {
753
+ dim3 grid(1, n_rows, 1);
754
+ dim3 block(BLOCK_THREADS, 1, 1);
755
+
756
+ dispatch_bool(argsort, [&](auto arg_tag) {
757
+ constexpr bool ARG_SORT = decltype(arg_tag)::value;
758
+ using OutT = std::conditional_t<ARG_SORT, uint32_t, ValT>;
759
+
760
+ if (contiguous) {
761
+ auto kernel = cu::block_sort_kernel<
762
+ ValT,
763
+ OutT,
764
+ ARG_SORT,
765
+ BLOCK_THREADS,
766
+ N_PER_THREAD>;
767
+ int64_t in_stride_segment_axis = INT64_MAX;
768
+ int64_t out_stride_segment_axis = INT64_MAX;
769
+ for (int i = 0; i < nc_shape.size(); i++) {
770
+ if (nc_shape[i] == 1) {
771
+ continue;
772
+ }
773
+ if (in_nc_str[i] > INT32_MAX || out_nc_str[i] > INT32_MAX) {
774
+ throw std::runtime_error(
775
+ "[Sort::eval_gpu] Stride too large.");
776
+ }
777
+ in_stride_segment_axis =
778
+ std::min(in_stride_segment_axis, in_nc_str[i]);
779
+ out_stride_segment_axis =
780
+ std::min(out_stride_segment_axis, out_nc_str[i]);
781
+ }
782
+ encoder.add_kernel_node(
783
+ kernel,
784
+ grid,
785
+ block,
786
+ 0,
787
+ gpu_ptr<ValT>(in),
788
+ gpu_ptr<OutT>(out),
789
+ size_sorted_axis,
790
+ in_stride_sorted_axis,
791
+ out_stride_sorted_axis,
792
+ in_stride_segment_axis,
793
+ out_stride_segment_axis);
794
+ } else {
795
+ auto kernel = cu::block_sort_nc_kernel<
796
+ ValT,
797
+ OutT,
798
+ ARG_SORT,
799
+ BLOCK_THREADS,
800
+ N_PER_THREAD>;
801
+ auto nc_shape_param = const_param(nc_shape);
802
+ auto in_nc_strides_param = const_param(in_nc_str);
803
+ auto out_nc_strides_param = const_param(out_nc_str);
804
+ encoder.add_kernel_node(
805
+ kernel,
806
+ grid,
807
+ block,
808
+ 0,
809
+ gpu_ptr<ValT>(in),
810
+ gpu_ptr<OutT>(out),
811
+ size_sorted_axis,
812
+ in_stride_sorted_axis,
813
+ out_stride_sorted_axis,
814
+ nc_shape_param,
815
+ in_nc_strides_param,
816
+ out_nc_strides_param,
817
+ nc_dim);
818
+ }
819
+ });
820
+ }
821
+ });
822
+ } else {
823
+ throw std::runtime_error(
824
+ "CUDA backend does not support sorting complex numbers");
825
+ }
826
+ });
827
+ }
828
+
829
+ void multi_block_sort(
830
+ const Stream& s,
831
+ const array& in,
832
+ array& out,
833
+ int axis,
834
+ int n_blocks,
835
+ bool argsort) {
836
+ int n_rows = in.size() / in.shape(axis);
837
+
838
+ auto nc_str = in.strides();
839
+ nc_str.erase(nc_str.begin() + axis);
840
+
841
+ auto nc_shape = in.shape();
842
+ nc_shape.erase(nc_shape.begin() + axis);
843
+
844
+ int nc_dim = nc_shape.size();
845
+
846
+ if (nc_dim == 0) {
847
+ nc_shape = {0};
848
+ nc_str = {1};
849
+ }
850
+
851
+ int size_sorted_axis = in.shape(axis);
852
+ int64_t stride_sorted_axis = in.strides()[axis];
853
+
854
+ array dev_vals_in({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
855
+ array dev_vals_out({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
856
+
857
+ array dev_idxs_in({n_rows, size_sorted_axis}, uint32, nullptr, {});
858
+ array dev_idxs_out({n_rows, size_sorted_axis}, uint32, nullptr, {});
859
+
860
+ array block_partitions({n_rows, n_blocks + 1}, uint32, nullptr, {});
861
+
862
+ auto& encoder = cu::get_command_encoder(s);
863
+
864
+ dev_vals_in.set_data(cu::malloc_async(dev_vals_in.nbytes(), encoder));
865
+ dev_vals_out.set_data(cu::malloc_async(dev_vals_out.nbytes(), encoder));
866
+ dev_idxs_in.set_data(cu::malloc_async(dev_idxs_in.nbytes(), encoder));
867
+ dev_idxs_out.set_data(cu::malloc_async(dev_idxs_out.nbytes(), encoder));
868
+ block_partitions.set_data(
869
+ cu::malloc_async(block_partitions.nbytes(), encoder));
870
+
871
+ encoder.add_temporary(block_partitions);
872
+
873
+ dispatch_all_types(in.dtype(), [&](auto type_tag) {
874
+ using CTYPE = MLX_GET_TYPE(type_tag);
875
+ if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
876
+ using ValT = cuda_type_t<CTYPE>;
877
+ using IdxT = uint32_t;
878
+ constexpr int BLOCK_THREADS = sizeof(ValT) == 8 ? 256 : 512;
879
+ dim3 grid(n_blocks, n_rows, 1);
880
+ dim3 block(BLOCK_THREADS, 1, 1);
881
+
882
+ dispatch_bool(argsort, [&](auto arg_tag) {
883
+ constexpr bool ARG_SORT = decltype(arg_tag)::value;
884
+ auto nc_shape_param = const_param(nc_shape);
885
+ auto nc_strides_param = const_param(nc_str);
886
+
887
+ auto block_sort_kernel = cu::mb_block_sort_kernel<
888
+ ValT,
889
+ IdxT,
890
+ ARG_SORT,
891
+ BLOCK_THREADS,
892
+ N_PER_THREAD>;
893
+ encoder.set_input_array(in);
894
+ encoder.set_output_array(dev_vals_in);
895
+ encoder.set_output_array(dev_idxs_in);
896
+ encoder.add_kernel_node(
897
+ block_sort_kernel,
898
+ grid,
899
+ block,
900
+ 0,
901
+ gpu_ptr<ValT>(in),
902
+ gpu_ptr<ValT>(dev_vals_in),
903
+ gpu_ptr<IdxT>(dev_idxs_in),
904
+ size_sorted_axis,
905
+ stride_sorted_axis,
906
+ nc_shape_param,
907
+ nc_strides_param,
908
+ nc_dim);
909
+
910
+ int n_thr_per_group = (n_blocks + 1) < 1024 ? (n_blocks + 1) : 1024;
911
+
912
+ for (int merge_tiles = 2; (merge_tiles / 2) < n_blocks;
913
+ merge_tiles *= 2) {
914
+ auto partition_kernel = cu::mb_block_partition_kernel<
915
+ ValT,
916
+ IdxT,
917
+ ARG_SORT,
918
+ BLOCK_THREADS,
919
+ N_PER_THREAD>;
920
+
921
+ encoder.set_input_array(dev_vals_in);
922
+ encoder.set_input_array(dev_idxs_in);
923
+ encoder.set_output_array(block_partitions);
924
+
925
+ encoder.add_kernel_node(
926
+ partition_kernel,
927
+ dim3(1, n_rows, 1),
928
+ dim3(n_thr_per_group, 1, 1),
929
+ 0,
930
+ gpu_ptr<IdxT>(block_partitions),
931
+ gpu_ptr<ValT>(dev_vals_in),
932
+ gpu_ptr<IdxT>(dev_idxs_in),
933
+ size_sorted_axis,
934
+ merge_tiles,
935
+ n_blocks);
936
+
937
+ auto merge_kernel = cu::mb_block_merge_kernel<
938
+ ValT,
939
+ IdxT,
940
+ ARG_SORT,
941
+ BLOCK_THREADS,
942
+ N_PER_THREAD>;
943
+
944
+ encoder.set_input_array(dev_vals_in);
945
+ encoder.set_input_array(dev_idxs_in);
946
+ encoder.set_input_array(block_partitions);
947
+ encoder.set_output_array(dev_vals_out);
948
+ encoder.set_output_array(dev_idxs_out);
949
+
950
+ encoder.add_kernel_node(
951
+ merge_kernel,
952
+ dim3(n_blocks, n_rows, 1),
953
+ dim3(BLOCK_THREADS, 1, 1),
954
+ 0,
955
+ gpu_ptr<IdxT>(block_partitions),
956
+ gpu_ptr<ValT>(dev_vals_in),
957
+ gpu_ptr<IdxT>(dev_idxs_in),
958
+ gpu_ptr<ValT>(dev_vals_out),
959
+ gpu_ptr<IdxT>(dev_idxs_out),
960
+ size_sorted_axis,
961
+ merge_tiles,
962
+ n_blocks);
963
+ std::swap(dev_vals_in, dev_vals_out);
964
+ std::swap(dev_idxs_in, dev_idxs_out);
965
+ }
966
+ });
967
+ } else {
968
+ throw std::runtime_error(
969
+ "CUDA backend does not support sorting complex numbers");
970
+ }
971
+ });
972
+
973
+ encoder.add_temporary(dev_vals_out);
974
+ encoder.add_temporary(dev_idxs_out);
975
+ encoder.add_temporary(argsort ? dev_vals_in : dev_idxs_in);
976
+ if (axis == in.ndim() - 1) {
977
+ // Copy buffer to out, no need for temporary
978
+ out.copy_shared_buffer(
979
+ argsort ? dev_idxs_in : dev_vals_in,
980
+ out.strides(),
981
+ out.flags(),
982
+ out.size());
983
+ } else {
984
+ encoder.add_temporary(argsort ? dev_idxs_in : dev_vals_in);
985
+ out.set_data(cu::malloc_async(out.nbytes(), encoder));
986
+ auto strides = out.strides();
987
+ for (int ax = axis + 1; ax < strides.size(); ax++) {
988
+ strides[ax] *= out.shape(axis);
989
+ }
990
+ strides[axis] = 1;
991
+ copy_gpu_inplace(
992
+ (argsort) ? dev_idxs_in : dev_vals_in,
993
+ out,
994
+ out.shape(),
995
+ strides,
996
+ out.strides(),
997
+ 0,
998
+ 0,
999
+ CopyType::General,
1000
+ s);
1001
+ }
1002
+ }
1003
+
1004
+ void gpu_merge_sort(
1005
+ const Stream& s,
1006
+ const array& in,
1007
+ array& out,
1008
+ int axis_,
1009
+ bool argsort) {
1010
+ int axis = axis_ < 0 ? axis_ + in.ndim() : axis_;
1011
+ int size_sorted_axis = in.shape(axis);
1012
+
1013
+ constexpr int tn = N_PER_THREAD;
1014
+ int potential_bn = (size_sorted_axis + tn - 1) / tn;
1015
+
1016
+ int bn;
1017
+ if (potential_bn > 256) {
1018
+ bn = 512;
1019
+ } else if (potential_bn > 128) {
1020
+ bn = 256;
1021
+ } else if (potential_bn > 64) {
1022
+ bn = 128;
1023
+ } else if (potential_bn > 32) {
1024
+ bn = 64;
1025
+ } else {
1026
+ bn = 32;
1027
+ }
1028
+
1029
+ if (bn == 512 && size_of(in.dtype()) > 4) {
1030
+ bn = 256;
1031
+ }
1032
+
1033
+ int n_per_block = bn * tn;
1034
+ int n_blocks = (size_sorted_axis + n_per_block - 1) / n_per_block;
1035
+
1036
+ if (n_blocks > 1) {
1037
+ return multi_block_sort(s, in, out, axis, n_blocks, argsort);
1038
+ }
1039
+ return single_block_sort(s, in, out, axis, bn, argsort);
1040
+ }
1041
+
1042
+ void gpu_sort(
1043
+ const Stream& s,
1044
+ const array& in,
1045
+ array& out,
1046
+ int axis,
1047
+ bool argsort) {
1048
+ auto& encoder = cu::get_command_encoder(s);
1049
+ gpu_merge_sort(s, in, out, axis, argsort);
1050
+ }
1051
+
1052
+ } // namespace
1053
+
1054
+ void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
1055
+ nvtx3::scoped_range r("ArgSort::eval_gpu");
1056
+ assert(inputs.size() == 1);
1057
+ gpu_sort(stream(), inputs[0], out, axis_, true);
1058
+ }
1059
+
1060
+ void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
1061
+ nvtx3::scoped_range r("Sort::eval_gpu");
1062
+ assert(inputs.size() == 1);
1063
+ gpu_sort(stream(), inputs[0], out, axis_, false);
1064
+ }
1065
+
1066
+ void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
1067
+ nvtx3::scoped_range r("ArgPartition::eval_gpu");
1068
+ gpu_sort(stream(), inputs[0], out, axis_, true);
1069
+ }
1070
+
1071
+ void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
1072
+ nvtx3::scoped_range r("Partition::eval_gpu");
1073
+ gpu_sort(stream(), inputs[0], out, axis_, false);
1074
+ }
1075
+
1076
+ } // namespace mlx::core