mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,1076 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <algorithm>
|
|
4
|
+
#include <cassert>
|
|
5
|
+
#include <cstdint>
|
|
6
|
+
|
|
7
|
+
#include "mlx/backend/cuda/device.h"
|
|
8
|
+
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
|
9
|
+
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
10
|
+
#include "mlx/backend/gpu/copy.h"
|
|
11
|
+
#include "mlx/dtype_utils.h"
|
|
12
|
+
#include "mlx/primitives.h"
|
|
13
|
+
|
|
14
|
+
#include <nvtx3/nvtx3.hpp>
|
|
15
|
+
#include <cuda/std/limits>
|
|
16
|
+
#include <cuda/std/type_traits>
|
|
17
|
+
|
|
18
|
+
namespace mlx::core {
|
|
19
|
+
|
|
20
|
+
constexpr int N_PER_THREAD = 8;
|
|
21
|
+
|
|
22
|
+
namespace cu {
|
|
23
|
+
|
|
24
|
+
template <typename T>
|
|
25
|
+
__device__ __forceinline__ T nan_value();
|
|
26
|
+
|
|
27
|
+
template <>
|
|
28
|
+
__device__ __forceinline__ float nan_value<float>() {
|
|
29
|
+
return cuda::std::numeric_limits<float>::quiet_NaN();
|
|
30
|
+
}
|
|
31
|
+
|
|
32
|
+
template <>
|
|
33
|
+
__device__ __forceinline__ double nan_value<double>() {
|
|
34
|
+
return cuda::std::numeric_limits<double>::quiet_NaN();
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
template <>
|
|
38
|
+
__device__ __forceinline__ __half nan_value<__half>() {
|
|
39
|
+
return __float2half(cuda::std::numeric_limits<float>::quiet_NaN());
|
|
40
|
+
}
|
|
41
|
+
|
|
42
|
+
template <>
|
|
43
|
+
__device__ __forceinline__ __nv_bfloat16 nan_value<__nv_bfloat16>() {
|
|
44
|
+
return __float2bfloat16(cuda::std::numeric_limits<float>::quiet_NaN());
|
|
45
|
+
}
|
|
46
|
+
|
|
47
|
+
template <typename T, typename = void>
|
|
48
|
+
struct InitValue {
|
|
49
|
+
__device__ __forceinline__ static T value() {
|
|
50
|
+
return Limits<T>::max();
|
|
51
|
+
}
|
|
52
|
+
};
|
|
53
|
+
|
|
54
|
+
template <typename T>
|
|
55
|
+
struct InitValue<T, cuda::std::enable_if_t<std::is_floating_point_v<T>>> {
|
|
56
|
+
__device__ __forceinline__ static T value() {
|
|
57
|
+
return nan_value<T>();
|
|
58
|
+
}
|
|
59
|
+
};
|
|
60
|
+
|
|
61
|
+
template <typename T>
|
|
62
|
+
__device__ __forceinline__ void thread_swap(T& a, T& b) {
|
|
63
|
+
T w = a;
|
|
64
|
+
a = b;
|
|
65
|
+
b = w;
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
template <typename T>
|
|
69
|
+
struct LessThan {
|
|
70
|
+
__device__ __forceinline__ static T init() {
|
|
71
|
+
return InitValue<T>::value();
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
__device__ __forceinline__ bool operator()(T a, T b) const {
|
|
75
|
+
if constexpr (std::is_floating_point_v<T>) {
|
|
76
|
+
bool an = cuda::std::isnan(a);
|
|
77
|
+
bool bn = cuda::std::isnan(b);
|
|
78
|
+
if (an | bn) {
|
|
79
|
+
return (!an) & bn;
|
|
80
|
+
}
|
|
81
|
+
}
|
|
82
|
+
return a < b;
|
|
83
|
+
}
|
|
84
|
+
};
|
|
85
|
+
|
|
86
|
+
template <
|
|
87
|
+
typename ValT,
|
|
88
|
+
typename IdxT,
|
|
89
|
+
bool ARG_SORT,
|
|
90
|
+
int N_PER_THREAD,
|
|
91
|
+
typename CompareOp>
|
|
92
|
+
struct ThreadSort {
|
|
93
|
+
__device__ __forceinline__ static void sort(
|
|
94
|
+
ValT (&vals)[N_PER_THREAD],
|
|
95
|
+
IdxT (&idxs)[N_PER_THREAD]) {
|
|
96
|
+
CompareOp op;
|
|
97
|
+
#pragma unroll
|
|
98
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
99
|
+
#pragma unroll
|
|
100
|
+
for (int j = i & 1; j < N_PER_THREAD - 1; j += 2) {
|
|
101
|
+
if (op(vals[j + 1], vals[j])) {
|
|
102
|
+
thread_swap(vals[j + 1], vals[j]);
|
|
103
|
+
if constexpr (ARG_SORT) {
|
|
104
|
+
thread_swap(idxs[j + 1], idxs[j]);
|
|
105
|
+
}
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
};
|
|
111
|
+
|
|
112
|
+
template <
|
|
113
|
+
typename ValT,
|
|
114
|
+
typename IdxT,
|
|
115
|
+
bool ARG_SORT,
|
|
116
|
+
int BLOCK_THREADS,
|
|
117
|
+
int N_PER_THREAD,
|
|
118
|
+
typename CompareOp>
|
|
119
|
+
struct BlockMergeSort {
|
|
120
|
+
using thread_sort_t =
|
|
121
|
+
ThreadSort<ValT, IdxT, ARG_SORT, N_PER_THREAD, CompareOp>;
|
|
122
|
+
|
|
123
|
+
__device__ __forceinline__ static int merge_partition(
|
|
124
|
+
const ValT* As,
|
|
125
|
+
const ValT* Bs,
|
|
126
|
+
int A_sz,
|
|
127
|
+
int B_sz,
|
|
128
|
+
int sort_md) {
|
|
129
|
+
CompareOp op;
|
|
130
|
+
|
|
131
|
+
int A_st = max(0, sort_md - B_sz);
|
|
132
|
+
int A_ed = min(sort_md, A_sz);
|
|
133
|
+
|
|
134
|
+
while (A_st < A_ed) {
|
|
135
|
+
int md = A_st + (A_ed - A_st) / 2;
|
|
136
|
+
auto a = As[md];
|
|
137
|
+
auto b = Bs[sort_md - 1 - md];
|
|
138
|
+
|
|
139
|
+
if (op(b, a)) {
|
|
140
|
+
A_ed = md;
|
|
141
|
+
} else {
|
|
142
|
+
A_st = md + 1;
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
return A_ed;
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
__device__ __forceinline__ static void merge_step(
|
|
150
|
+
const ValT* As,
|
|
151
|
+
const ValT* Bs,
|
|
152
|
+
const IdxT* As_idx,
|
|
153
|
+
const IdxT* Bs_idx,
|
|
154
|
+
int A_sz,
|
|
155
|
+
int B_sz,
|
|
156
|
+
ValT (&vals)[N_PER_THREAD],
|
|
157
|
+
IdxT (&idxs)[N_PER_THREAD]) {
|
|
158
|
+
CompareOp op;
|
|
159
|
+
int a_idx = 0;
|
|
160
|
+
int b_idx = 0;
|
|
161
|
+
|
|
162
|
+
#pragma unroll
|
|
163
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
164
|
+
auto a = (a_idx < A_sz) ? As[a_idx] : ValT(CompareOp::init());
|
|
165
|
+
auto b = (b_idx < B_sz) ? Bs[b_idx] : ValT(CompareOp::init());
|
|
166
|
+
bool pred = (b_idx < B_sz) && (a_idx >= A_sz || op(b, a));
|
|
167
|
+
|
|
168
|
+
vals[i] = pred ? b : a;
|
|
169
|
+
if constexpr (ARG_SORT) {
|
|
170
|
+
if (pred) {
|
|
171
|
+
idxs[i] = Bs_idx[b_idx];
|
|
172
|
+
} else {
|
|
173
|
+
idxs[i] = (a_idx < A_sz) ? As_idx[a_idx] : IdxT(0);
|
|
174
|
+
}
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
b_idx += int(pred);
|
|
178
|
+
a_idx += int(!pred);
|
|
179
|
+
}
|
|
180
|
+
}
|
|
181
|
+
|
|
182
|
+
__device__ __forceinline__ static void
|
|
183
|
+
sort(ValT* tgp_vals, IdxT* tgp_idxs, int size_sorted_axis) {
|
|
184
|
+
int idx = threadIdx.x * N_PER_THREAD;
|
|
185
|
+
|
|
186
|
+
ValT thread_vals[N_PER_THREAD];
|
|
187
|
+
IdxT thread_idxs[N_PER_THREAD];
|
|
188
|
+
#pragma unroll
|
|
189
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
190
|
+
thread_vals[i] = tgp_vals[idx + i];
|
|
191
|
+
if constexpr (ARG_SORT) {
|
|
192
|
+
thread_idxs[i] = tgp_idxs[idx + i];
|
|
193
|
+
}
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
if (idx < size_sorted_axis) {
|
|
197
|
+
thread_sort_t::sort(thread_vals, thread_idxs);
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
for (int merge_threads = 2; merge_threads <= BLOCK_THREADS;
|
|
201
|
+
merge_threads *= 2) {
|
|
202
|
+
__syncthreads();
|
|
203
|
+
#pragma unroll
|
|
204
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
205
|
+
tgp_vals[idx + i] = thread_vals[i];
|
|
206
|
+
if constexpr (ARG_SORT) {
|
|
207
|
+
tgp_idxs[idx + i] = thread_idxs[i];
|
|
208
|
+
}
|
|
209
|
+
}
|
|
210
|
+
__syncthreads();
|
|
211
|
+
|
|
212
|
+
int merge_group = threadIdx.x / merge_threads;
|
|
213
|
+
int merge_lane = threadIdx.x % merge_threads;
|
|
214
|
+
|
|
215
|
+
int sort_sz = N_PER_THREAD * merge_threads;
|
|
216
|
+
int sort_st = N_PER_THREAD * merge_threads * merge_group;
|
|
217
|
+
|
|
218
|
+
int A_st = sort_st;
|
|
219
|
+
int A_ed = sort_st + sort_sz / 2;
|
|
220
|
+
int B_st = sort_st + sort_sz / 2;
|
|
221
|
+
int B_ed = sort_st + sort_sz;
|
|
222
|
+
|
|
223
|
+
const ValT* As = tgp_vals + A_st;
|
|
224
|
+
const ValT* Bs = tgp_vals + B_st;
|
|
225
|
+
int A_sz = A_ed - A_st;
|
|
226
|
+
int B_sz = B_ed - B_st;
|
|
227
|
+
|
|
228
|
+
int sort_md = N_PER_THREAD * merge_lane;
|
|
229
|
+
int partition = merge_partition(As, Bs, A_sz, B_sz, sort_md);
|
|
230
|
+
|
|
231
|
+
As += partition;
|
|
232
|
+
Bs += sort_md - partition;
|
|
233
|
+
|
|
234
|
+
A_sz -= partition;
|
|
235
|
+
B_sz -= sort_md - partition;
|
|
236
|
+
|
|
237
|
+
const IdxT* As_idx = ARG_SORT ? tgp_idxs + A_st + partition : nullptr;
|
|
238
|
+
const IdxT* Bs_idx =
|
|
239
|
+
ARG_SORT ? tgp_idxs + B_st + sort_md - partition : nullptr;
|
|
240
|
+
|
|
241
|
+
merge_step(As, Bs, As_idx, Bs_idx, A_sz, B_sz, thread_vals, thread_idxs);
|
|
242
|
+
}
|
|
243
|
+
|
|
244
|
+
__syncthreads();
|
|
245
|
+
#pragma unroll
|
|
246
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
247
|
+
tgp_vals[idx + i] = thread_vals[i];
|
|
248
|
+
if constexpr (ARG_SORT) {
|
|
249
|
+
tgp_idxs[idx + i] = thread_idxs[i];
|
|
250
|
+
}
|
|
251
|
+
}
|
|
252
|
+
}
|
|
253
|
+
};
|
|
254
|
+
|
|
255
|
+
template <
|
|
256
|
+
typename T,
|
|
257
|
+
typename U,
|
|
258
|
+
bool ARG_SORT,
|
|
259
|
+
int BLOCK_THREADS,
|
|
260
|
+
int N_PER_THREAD,
|
|
261
|
+
typename CompareOp = LessThan<T>>
|
|
262
|
+
struct KernelMergeSort {
|
|
263
|
+
using ValT = T;
|
|
264
|
+
using IdxT = uint32_t;
|
|
265
|
+
using block_merge_sort_t = BlockMergeSort<
|
|
266
|
+
ValT,
|
|
267
|
+
IdxT,
|
|
268
|
+
ARG_SORT,
|
|
269
|
+
BLOCK_THREADS,
|
|
270
|
+
N_PER_THREAD,
|
|
271
|
+
CompareOp>;
|
|
272
|
+
|
|
273
|
+
static constexpr int N_PER_BLOCK = BLOCK_THREADS * N_PER_THREAD;
|
|
274
|
+
|
|
275
|
+
__device__ __forceinline__ static void block_sort(
|
|
276
|
+
const T* inp,
|
|
277
|
+
U* out,
|
|
278
|
+
int size_sorted_axis,
|
|
279
|
+
int64_t in_stride_sorted_axis,
|
|
280
|
+
int64_t out_stride_sorted_axis,
|
|
281
|
+
int64_t in_stride_segment_axis,
|
|
282
|
+
int64_t out_stride_segment_axis,
|
|
283
|
+
ValT* tgp_vals,
|
|
284
|
+
IdxT* tgp_idxs) {
|
|
285
|
+
inp += blockIdx.y * in_stride_segment_axis;
|
|
286
|
+
out += blockIdx.y * out_stride_segment_axis;
|
|
287
|
+
|
|
288
|
+
for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
|
|
289
|
+
tgp_vals[i] = i < size_sorted_axis ? inp[i * in_stride_sorted_axis]
|
|
290
|
+
: ValT(CompareOp::init());
|
|
291
|
+
if constexpr (ARG_SORT) {
|
|
292
|
+
tgp_idxs[i] = i;
|
|
293
|
+
}
|
|
294
|
+
}
|
|
295
|
+
|
|
296
|
+
__syncthreads();
|
|
297
|
+
block_merge_sort_t::sort(tgp_vals, tgp_idxs, size_sorted_axis);
|
|
298
|
+
__syncthreads();
|
|
299
|
+
|
|
300
|
+
for (int i = threadIdx.x; i < size_sorted_axis; i += BLOCK_THREADS) {
|
|
301
|
+
if constexpr (ARG_SORT) {
|
|
302
|
+
out[i * out_stride_sorted_axis] = tgp_idxs[i];
|
|
303
|
+
} else {
|
|
304
|
+
out[i * out_stride_sorted_axis] = tgp_vals[i];
|
|
305
|
+
}
|
|
306
|
+
}
|
|
307
|
+
}
|
|
308
|
+
};
|
|
309
|
+
|
|
310
|
+
template <
|
|
311
|
+
typename T,
|
|
312
|
+
typename U,
|
|
313
|
+
bool ARG_SORT,
|
|
314
|
+
int BLOCK_THREADS,
|
|
315
|
+
int N_PER_THREAD>
|
|
316
|
+
__global__ void block_sort_kernel(
|
|
317
|
+
const T* inp,
|
|
318
|
+
U* out,
|
|
319
|
+
int size_sorted_axis,
|
|
320
|
+
int64_t in_stride_sorted_axis,
|
|
321
|
+
int64_t out_stride_sorted_axis,
|
|
322
|
+
int64_t in_stride_segment_axis,
|
|
323
|
+
int64_t out_stride_segment_axis) {
|
|
324
|
+
using sort_kernel =
|
|
325
|
+
KernelMergeSort<T, U, ARG_SORT, BLOCK_THREADS, N_PER_THREAD>;
|
|
326
|
+
using ValT = typename sort_kernel::ValT;
|
|
327
|
+
using IdxT = typename sort_kernel::IdxT;
|
|
328
|
+
|
|
329
|
+
if constexpr (ARG_SORT) {
|
|
330
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
331
|
+
__shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
|
|
332
|
+
sort_kernel::block_sort(
|
|
333
|
+
inp,
|
|
334
|
+
out,
|
|
335
|
+
size_sorted_axis,
|
|
336
|
+
in_stride_sorted_axis,
|
|
337
|
+
out_stride_sorted_axis,
|
|
338
|
+
in_stride_segment_axis,
|
|
339
|
+
out_stride_segment_axis,
|
|
340
|
+
tgp_vals,
|
|
341
|
+
tgp_idxs);
|
|
342
|
+
} else {
|
|
343
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
344
|
+
sort_kernel::block_sort(
|
|
345
|
+
inp,
|
|
346
|
+
out,
|
|
347
|
+
size_sorted_axis,
|
|
348
|
+
in_stride_sorted_axis,
|
|
349
|
+
out_stride_sorted_axis,
|
|
350
|
+
in_stride_segment_axis,
|
|
351
|
+
out_stride_segment_axis,
|
|
352
|
+
tgp_vals,
|
|
353
|
+
nullptr);
|
|
354
|
+
}
|
|
355
|
+
}
|
|
356
|
+
|
|
357
|
+
template <
|
|
358
|
+
typename T,
|
|
359
|
+
typename U,
|
|
360
|
+
bool ARG_SORT,
|
|
361
|
+
int BLOCK_THREADS,
|
|
362
|
+
int N_PER_THREAD>
|
|
363
|
+
__global__ void block_sort_nc_kernel(
|
|
364
|
+
const T* inp,
|
|
365
|
+
U* out,
|
|
366
|
+
int size_sorted_axis,
|
|
367
|
+
int64_t in_stride_sorted_axis,
|
|
368
|
+
int64_t out_stride_sorted_axis,
|
|
369
|
+
const __grid_constant__ Shape nc_shape,
|
|
370
|
+
const __grid_constant__ Strides in_nc_strides,
|
|
371
|
+
const __grid_constant__ Strides out_nc_strides,
|
|
372
|
+
int nc_dim) {
|
|
373
|
+
using sort_kernel =
|
|
374
|
+
KernelMergeSort<T, U, ARG_SORT, BLOCK_THREADS, N_PER_THREAD>;
|
|
375
|
+
using ValT = typename sort_kernel::ValT;
|
|
376
|
+
using IdxT = typename sort_kernel::IdxT;
|
|
377
|
+
|
|
378
|
+
int64_t in_block_idx = elem_to_loc(
|
|
379
|
+
int64_t(blockIdx.y), nc_shape.data(), in_nc_strides.data(), nc_dim);
|
|
380
|
+
int64_t out_block_idx = elem_to_loc(
|
|
381
|
+
int64_t(blockIdx.y), nc_shape.data(), out_nc_strides.data(), nc_dim);
|
|
382
|
+
|
|
383
|
+
inp += in_block_idx;
|
|
384
|
+
out += out_block_idx;
|
|
385
|
+
|
|
386
|
+
if constexpr (ARG_SORT) {
|
|
387
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
388
|
+
__shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
|
|
389
|
+
sort_kernel::block_sort(
|
|
390
|
+
inp,
|
|
391
|
+
out,
|
|
392
|
+
size_sorted_axis,
|
|
393
|
+
in_stride_sorted_axis,
|
|
394
|
+
out_stride_sorted_axis,
|
|
395
|
+
0,
|
|
396
|
+
0,
|
|
397
|
+
tgp_vals,
|
|
398
|
+
tgp_idxs);
|
|
399
|
+
} else {
|
|
400
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
401
|
+
sort_kernel::block_sort(
|
|
402
|
+
inp,
|
|
403
|
+
out,
|
|
404
|
+
size_sorted_axis,
|
|
405
|
+
in_stride_sorted_axis,
|
|
406
|
+
out_stride_sorted_axis,
|
|
407
|
+
0,
|
|
408
|
+
0,
|
|
409
|
+
tgp_vals,
|
|
410
|
+
nullptr);
|
|
411
|
+
}
|
|
412
|
+
}
|
|
413
|
+
|
|
414
|
+
template <
|
|
415
|
+
typename ValT,
|
|
416
|
+
typename IdxT,
|
|
417
|
+
bool ARG_SORT,
|
|
418
|
+
int BLOCK_THREADS,
|
|
419
|
+
int N_PER_THREAD,
|
|
420
|
+
typename CompareOp = LessThan<ValT>>
|
|
421
|
+
struct KernelMultiBlockMergeSort {
|
|
422
|
+
using block_merge_sort_t = BlockMergeSort<
|
|
423
|
+
ValT,
|
|
424
|
+
IdxT,
|
|
425
|
+
ARG_SORT,
|
|
426
|
+
BLOCK_THREADS,
|
|
427
|
+
N_PER_THREAD,
|
|
428
|
+
CompareOp>;
|
|
429
|
+
|
|
430
|
+
static constexpr int N_PER_BLOCK = BLOCK_THREADS * N_PER_THREAD;
|
|
431
|
+
|
|
432
|
+
__device__ __forceinline__ static void block_sort(
|
|
433
|
+
const ValT* inp,
|
|
434
|
+
ValT* out_vals,
|
|
435
|
+
IdxT* out_idxs,
|
|
436
|
+
int size_sorted_axis,
|
|
437
|
+
int64_t stride_sorted_axis,
|
|
438
|
+
ValT* tgp_vals,
|
|
439
|
+
IdxT* tgp_idxs) {
|
|
440
|
+
int base_idx = blockIdx.x * N_PER_BLOCK;
|
|
441
|
+
|
|
442
|
+
for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
|
|
443
|
+
int idx = base_idx + i;
|
|
444
|
+
tgp_vals[i] = idx < size_sorted_axis ? inp[idx * stride_sorted_axis]
|
|
445
|
+
: ValT(CompareOp::init());
|
|
446
|
+
tgp_idxs[i] = idx;
|
|
447
|
+
}
|
|
448
|
+
|
|
449
|
+
__syncthreads();
|
|
450
|
+
block_merge_sort_t::sort(tgp_vals, tgp_idxs, size_sorted_axis);
|
|
451
|
+
__syncthreads();
|
|
452
|
+
|
|
453
|
+
for (int i = threadIdx.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
|
|
454
|
+
int idx = base_idx + i;
|
|
455
|
+
if (idx < size_sorted_axis) {
|
|
456
|
+
out_vals[idx] = tgp_vals[i];
|
|
457
|
+
out_idxs[idx] = tgp_idxs[i];
|
|
458
|
+
}
|
|
459
|
+
}
|
|
460
|
+
}
|
|
461
|
+
|
|
462
|
+
__device__ __forceinline__ static int merge_partition(
|
|
463
|
+
const ValT* As,
|
|
464
|
+
const ValT* Bs,
|
|
465
|
+
int A_sz,
|
|
466
|
+
int B_sz,
|
|
467
|
+
int sort_md) {
|
|
468
|
+
CompareOp op;
|
|
469
|
+
|
|
470
|
+
int A_st = max(0, sort_md - B_sz);
|
|
471
|
+
int A_ed = min(sort_md, A_sz);
|
|
472
|
+
|
|
473
|
+
while (A_st < A_ed) {
|
|
474
|
+
int md = A_st + (A_ed - A_st) / 2;
|
|
475
|
+
auto a = As[md];
|
|
476
|
+
auto b = Bs[sort_md - 1 - md];
|
|
477
|
+
|
|
478
|
+
if (op(b, a)) {
|
|
479
|
+
A_ed = md;
|
|
480
|
+
} else {
|
|
481
|
+
A_st = md + 1;
|
|
482
|
+
}
|
|
483
|
+
}
|
|
484
|
+
|
|
485
|
+
return A_ed;
|
|
486
|
+
}
|
|
487
|
+
};
|
|
488
|
+
|
|
489
|
+
template <
|
|
490
|
+
typename ValT,
|
|
491
|
+
typename IdxT,
|
|
492
|
+
bool ARG_SORT,
|
|
493
|
+
int BLOCK_THREADS,
|
|
494
|
+
int N_PER_THREAD>
|
|
495
|
+
__global__ void mb_block_sort_kernel(
|
|
496
|
+
const ValT* inp,
|
|
497
|
+
ValT* out_vals,
|
|
498
|
+
IdxT* out_idxs,
|
|
499
|
+
int size_sorted_axis,
|
|
500
|
+
int64_t stride_sorted_axis,
|
|
501
|
+
const __grid_constant__ Shape nc_shape,
|
|
502
|
+
const __grid_constant__ Strides nc_strides,
|
|
503
|
+
int nc_dim) {
|
|
504
|
+
using sort_kernel = KernelMultiBlockMergeSort<
|
|
505
|
+
ValT,
|
|
506
|
+
IdxT,
|
|
507
|
+
ARG_SORT,
|
|
508
|
+
BLOCK_THREADS,
|
|
509
|
+
N_PER_THREAD>;
|
|
510
|
+
|
|
511
|
+
int64_t block_idx = elem_to_loc(
|
|
512
|
+
int64_t(blockIdx.y), nc_shape.data(), nc_strides.data(), nc_dim);
|
|
513
|
+
|
|
514
|
+
inp += block_idx;
|
|
515
|
+
out_vals += blockIdx.y * size_sorted_axis;
|
|
516
|
+
out_idxs += blockIdx.y * size_sorted_axis;
|
|
517
|
+
|
|
518
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
519
|
+
__shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
|
|
520
|
+
|
|
521
|
+
sort_kernel::block_sort(
|
|
522
|
+
inp,
|
|
523
|
+
out_vals,
|
|
524
|
+
out_idxs,
|
|
525
|
+
size_sorted_axis,
|
|
526
|
+
stride_sorted_axis,
|
|
527
|
+
tgp_vals,
|
|
528
|
+
tgp_idxs);
|
|
529
|
+
}
|
|
530
|
+
|
|
531
|
+
template <
|
|
532
|
+
typename ValT,
|
|
533
|
+
typename IdxT,
|
|
534
|
+
bool ARG_SORT,
|
|
535
|
+
int BLOCK_THREADS,
|
|
536
|
+
int N_PER_THREAD>
|
|
537
|
+
__global__ void mb_block_partition_kernel(
|
|
538
|
+
IdxT* block_partitions,
|
|
539
|
+
const ValT* dev_vals,
|
|
540
|
+
const IdxT* dev_idxs,
|
|
541
|
+
int size_sorted_axis,
|
|
542
|
+
int merge_tiles,
|
|
543
|
+
int n_blocks) {
|
|
544
|
+
using sort_kernel = KernelMultiBlockMergeSort<
|
|
545
|
+
ValT,
|
|
546
|
+
IdxT,
|
|
547
|
+
ARG_SORT,
|
|
548
|
+
BLOCK_THREADS,
|
|
549
|
+
N_PER_THREAD>;
|
|
550
|
+
|
|
551
|
+
(void)dev_idxs;
|
|
552
|
+
|
|
553
|
+
block_partitions += blockIdx.y * blockDim.x;
|
|
554
|
+
dev_vals += blockIdx.y * size_sorted_axis;
|
|
555
|
+
dev_idxs += blockIdx.y * size_sorted_axis;
|
|
556
|
+
|
|
557
|
+
for (int i = threadIdx.x; i <= n_blocks; i += blockDim.x) {
|
|
558
|
+
int merge_group = i / merge_tiles;
|
|
559
|
+
int merge_lane = i % merge_tiles;
|
|
560
|
+
|
|
561
|
+
int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
|
|
562
|
+
int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
|
|
563
|
+
|
|
564
|
+
int A_st = min(size_sorted_axis, sort_st);
|
|
565
|
+
int A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
|
|
566
|
+
int B_st = A_ed;
|
|
567
|
+
int B_ed = min(size_sorted_axis, B_st + sort_sz / 2);
|
|
568
|
+
|
|
569
|
+
int partition_at = min(B_ed - A_st, sort_kernel::N_PER_BLOCK * merge_lane);
|
|
570
|
+
int partition = sort_kernel::merge_partition(
|
|
571
|
+
dev_vals + A_st,
|
|
572
|
+
dev_vals + B_st,
|
|
573
|
+
A_ed - A_st,
|
|
574
|
+
B_ed - B_st,
|
|
575
|
+
partition_at);
|
|
576
|
+
|
|
577
|
+
block_partitions[i] = A_st + partition;
|
|
578
|
+
}
|
|
579
|
+
}
|
|
580
|
+
|
|
581
|
+
template <
|
|
582
|
+
typename ValT,
|
|
583
|
+
typename IdxT,
|
|
584
|
+
bool ARG_SORT,
|
|
585
|
+
int BLOCK_THREADS,
|
|
586
|
+
int N_PER_THREAD,
|
|
587
|
+
typename CompareOp = LessThan<ValT>>
|
|
588
|
+
__global__ void mb_block_merge_kernel(
|
|
589
|
+
const IdxT* block_partitions,
|
|
590
|
+
const ValT* dev_vals_in,
|
|
591
|
+
const IdxT* dev_idxs_in,
|
|
592
|
+
ValT* dev_vals_out,
|
|
593
|
+
IdxT* dev_idxs_out,
|
|
594
|
+
int size_sorted_axis,
|
|
595
|
+
int merge_tiles,
|
|
596
|
+
int num_tiles) {
|
|
597
|
+
using sort_kernel = KernelMultiBlockMergeSort<
|
|
598
|
+
ValT,
|
|
599
|
+
IdxT,
|
|
600
|
+
ARG_SORT,
|
|
601
|
+
BLOCK_THREADS,
|
|
602
|
+
N_PER_THREAD,
|
|
603
|
+
CompareOp>;
|
|
604
|
+
|
|
605
|
+
using block_sort_t = typename sort_kernel::block_merge_sort_t;
|
|
606
|
+
|
|
607
|
+
block_partitions += blockIdx.y * (num_tiles + 1);
|
|
608
|
+
dev_vals_in += blockIdx.y * size_sorted_axis;
|
|
609
|
+
dev_idxs_in += blockIdx.y * size_sorted_axis;
|
|
610
|
+
dev_vals_out += blockIdx.y * size_sorted_axis;
|
|
611
|
+
dev_idxs_out += blockIdx.y * size_sorted_axis;
|
|
612
|
+
|
|
613
|
+
int block_idx = blockIdx.x;
|
|
614
|
+
int merge_group = block_idx / merge_tiles;
|
|
615
|
+
int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
|
|
616
|
+
int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
|
|
617
|
+
int sort_md = sort_kernel::N_PER_BLOCK * block_idx - sort_st;
|
|
618
|
+
|
|
619
|
+
int A_st = block_partitions[block_idx + 0];
|
|
620
|
+
int A_ed = block_partitions[block_idx + 1];
|
|
621
|
+
int B_st = min(size_sorted_axis, 2 * sort_st + sort_sz / 2 + sort_md - A_st);
|
|
622
|
+
int B_ed = min(
|
|
623
|
+
size_sorted_axis,
|
|
624
|
+
2 * sort_st + sort_sz / 2 + sort_md + sort_kernel::N_PER_BLOCK - A_ed);
|
|
625
|
+
|
|
626
|
+
if ((block_idx % merge_tiles) == merge_tiles - 1) {
|
|
627
|
+
A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
|
|
628
|
+
B_ed = min(size_sorted_axis, sort_st + sort_sz);
|
|
629
|
+
}
|
|
630
|
+
|
|
631
|
+
int A_sz = A_ed - A_st;
|
|
632
|
+
int B_sz = B_ed - B_st;
|
|
633
|
+
|
|
634
|
+
ValT thread_vals[N_PER_THREAD];
|
|
635
|
+
IdxT thread_idxs[N_PER_THREAD];
|
|
636
|
+
#pragma unroll
|
|
637
|
+
for (int i = 0; i < N_PER_THREAD; i++) {
|
|
638
|
+
int idx = BLOCK_THREADS * i + threadIdx.x;
|
|
639
|
+
if (idx < (A_sz + B_sz)) {
|
|
640
|
+
thread_vals[i] = (idx < A_sz) ? dev_vals_in[A_st + idx]
|
|
641
|
+
: dev_vals_in[B_st + idx - A_sz];
|
|
642
|
+
thread_idxs[i] = (idx < A_sz) ? dev_idxs_in[A_st + idx]
|
|
643
|
+
: dev_idxs_in[B_st + idx - A_sz];
|
|
644
|
+
} else {
|
|
645
|
+
thread_vals[i] = CompareOp::init();
|
|
646
|
+
thread_idxs[i] = 0;
|
|
647
|
+
}
|
|
648
|
+
}
|
|
649
|
+
|
|
650
|
+
__shared__ ValT tgp_vals[sort_kernel::N_PER_BLOCK];
|
|
651
|
+
__shared__ IdxT tgp_idxs[sort_kernel::N_PER_BLOCK];
|
|
652
|
+
__syncthreads();
|
|
653
|
+
#pragma unroll
|
|
654
|
+
for (int i = 0; i < N_PER_THREAD; i++) {
|
|
655
|
+
int idx = BLOCK_THREADS * i + threadIdx.x;
|
|
656
|
+
tgp_vals[idx] = thread_vals[i];
|
|
657
|
+
tgp_idxs[idx] = thread_idxs[i];
|
|
658
|
+
}
|
|
659
|
+
__syncthreads();
|
|
660
|
+
|
|
661
|
+
int sort_md_local = min(A_sz + B_sz, N_PER_THREAD * int(threadIdx.x));
|
|
662
|
+
|
|
663
|
+
int A_st_local = block_sort_t::merge_partition(
|
|
664
|
+
tgp_vals, tgp_vals + A_sz, A_sz, B_sz, sort_md_local);
|
|
665
|
+
int A_ed_local = A_sz;
|
|
666
|
+
|
|
667
|
+
int B_st_local = sort_md_local - A_st_local;
|
|
668
|
+
int B_ed_local = B_sz;
|
|
669
|
+
|
|
670
|
+
int A_sz_local = A_ed_local - A_st_local;
|
|
671
|
+
int B_sz_local = B_ed_local - B_st_local;
|
|
672
|
+
|
|
673
|
+
block_sort_t::merge_step(
|
|
674
|
+
tgp_vals + A_st_local,
|
|
675
|
+
tgp_vals + A_ed_local + B_st_local,
|
|
676
|
+
tgp_idxs + A_st_local,
|
|
677
|
+
tgp_idxs + A_ed_local + B_st_local,
|
|
678
|
+
A_sz_local,
|
|
679
|
+
B_sz_local,
|
|
680
|
+
thread_vals,
|
|
681
|
+
thread_idxs);
|
|
682
|
+
|
|
683
|
+
__syncthreads();
|
|
684
|
+
#pragma unroll
|
|
685
|
+
for (int i = 0; i < N_PER_THREAD; ++i) {
|
|
686
|
+
int idx = threadIdx.x * N_PER_THREAD;
|
|
687
|
+
tgp_vals[idx + i] = thread_vals[i];
|
|
688
|
+
tgp_idxs[idx + i] = thread_idxs[i];
|
|
689
|
+
}
|
|
690
|
+
|
|
691
|
+
__syncthreads();
|
|
692
|
+
int base_idx = blockIdx.x * sort_kernel::N_PER_BLOCK;
|
|
693
|
+
for (int i = threadIdx.x; i < sort_kernel::N_PER_BLOCK; i += BLOCK_THREADS) {
|
|
694
|
+
int idx = base_idx + i;
|
|
695
|
+
if (idx < size_sorted_axis) {
|
|
696
|
+
dev_vals_out[idx] = tgp_vals[i];
|
|
697
|
+
dev_idxs_out[idx] = tgp_idxs[i];
|
|
698
|
+
}
|
|
699
|
+
}
|
|
700
|
+
}
|
|
701
|
+
|
|
702
|
+
} // namespace cu
|
|
703
|
+
|
|
704
|
+
namespace {
|
|
705
|
+
|
|
706
|
+
void single_block_sort(
|
|
707
|
+
const Stream& s,
|
|
708
|
+
const array& in,
|
|
709
|
+
array& out,
|
|
710
|
+
int axis,
|
|
711
|
+
int bn,
|
|
712
|
+
bool argsort) {
|
|
713
|
+
int n_rows = in.size() / in.shape(axis);
|
|
714
|
+
|
|
715
|
+
auto in_nc_str = in.strides();
|
|
716
|
+
in_nc_str.erase(in_nc_str.begin() + axis);
|
|
717
|
+
|
|
718
|
+
auto out_nc_str = out.strides();
|
|
719
|
+
out_nc_str.erase(out_nc_str.begin() + axis);
|
|
720
|
+
|
|
721
|
+
auto nc_shape = in.shape();
|
|
722
|
+
nc_shape.erase(nc_shape.begin() + axis);
|
|
723
|
+
|
|
724
|
+
int nc_dim = nc_shape.size();
|
|
725
|
+
|
|
726
|
+
int size_sorted_axis = in.shape(axis);
|
|
727
|
+
int64_t in_stride_sorted_axis = in.strides()[axis];
|
|
728
|
+
int64_t out_stride_sorted_axis = out.strides()[axis];
|
|
729
|
+
|
|
730
|
+
bool contiguous = in.flags().contiguous;
|
|
731
|
+
auto check_strides = [](const array& x, int64_t sort_stride) {
|
|
732
|
+
int64_t min_stride =
|
|
733
|
+
*std::min_element(x.strides().begin(), x.strides().end());
|
|
734
|
+
int64_t max_stride =
|
|
735
|
+
*std::max_element(x.strides().begin(), x.strides().end());
|
|
736
|
+
return sort_stride == min_stride || sort_stride == max_stride;
|
|
737
|
+
};
|
|
738
|
+
contiguous &= check_strides(in, in_stride_sorted_axis);
|
|
739
|
+
contiguous &= check_strides(out, out_stride_sorted_axis);
|
|
740
|
+
|
|
741
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
742
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
743
|
+
encoder.set_input_array(in);
|
|
744
|
+
encoder.set_output_array(out);
|
|
745
|
+
|
|
746
|
+
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
747
|
+
using CTYPE = MLX_GET_TYPE(type_tag);
|
|
748
|
+
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
|
749
|
+
using ValT = cuda_type_t<CTYPE>;
|
|
750
|
+
dispatch_block_dim(bn, [&](auto block_dim) {
|
|
751
|
+
constexpr int BLOCK_THREADS = block_dim();
|
|
752
|
+
if constexpr (BLOCK_THREADS < 1024) {
|
|
753
|
+
dim3 grid(1, n_rows, 1);
|
|
754
|
+
dim3 block(BLOCK_THREADS, 1, 1);
|
|
755
|
+
|
|
756
|
+
dispatch_bool(argsort, [&](auto arg_tag) {
|
|
757
|
+
constexpr bool ARG_SORT = decltype(arg_tag)::value;
|
|
758
|
+
using OutT = std::conditional_t<ARG_SORT, uint32_t, ValT>;
|
|
759
|
+
|
|
760
|
+
if (contiguous) {
|
|
761
|
+
auto kernel = cu::block_sort_kernel<
|
|
762
|
+
ValT,
|
|
763
|
+
OutT,
|
|
764
|
+
ARG_SORT,
|
|
765
|
+
BLOCK_THREADS,
|
|
766
|
+
N_PER_THREAD>;
|
|
767
|
+
int64_t in_stride_segment_axis = INT64_MAX;
|
|
768
|
+
int64_t out_stride_segment_axis = INT64_MAX;
|
|
769
|
+
for (int i = 0; i < nc_shape.size(); i++) {
|
|
770
|
+
if (nc_shape[i] == 1) {
|
|
771
|
+
continue;
|
|
772
|
+
}
|
|
773
|
+
if (in_nc_str[i] > INT32_MAX || out_nc_str[i] > INT32_MAX) {
|
|
774
|
+
throw std::runtime_error(
|
|
775
|
+
"[Sort::eval_gpu] Stride too large.");
|
|
776
|
+
}
|
|
777
|
+
in_stride_segment_axis =
|
|
778
|
+
std::min(in_stride_segment_axis, in_nc_str[i]);
|
|
779
|
+
out_stride_segment_axis =
|
|
780
|
+
std::min(out_stride_segment_axis, out_nc_str[i]);
|
|
781
|
+
}
|
|
782
|
+
encoder.add_kernel_node(
|
|
783
|
+
kernel,
|
|
784
|
+
grid,
|
|
785
|
+
block,
|
|
786
|
+
0,
|
|
787
|
+
gpu_ptr<ValT>(in),
|
|
788
|
+
gpu_ptr<OutT>(out),
|
|
789
|
+
size_sorted_axis,
|
|
790
|
+
in_stride_sorted_axis,
|
|
791
|
+
out_stride_sorted_axis,
|
|
792
|
+
in_stride_segment_axis,
|
|
793
|
+
out_stride_segment_axis);
|
|
794
|
+
} else {
|
|
795
|
+
auto kernel = cu::block_sort_nc_kernel<
|
|
796
|
+
ValT,
|
|
797
|
+
OutT,
|
|
798
|
+
ARG_SORT,
|
|
799
|
+
BLOCK_THREADS,
|
|
800
|
+
N_PER_THREAD>;
|
|
801
|
+
auto nc_shape_param = const_param(nc_shape);
|
|
802
|
+
auto in_nc_strides_param = const_param(in_nc_str);
|
|
803
|
+
auto out_nc_strides_param = const_param(out_nc_str);
|
|
804
|
+
encoder.add_kernel_node(
|
|
805
|
+
kernel,
|
|
806
|
+
grid,
|
|
807
|
+
block,
|
|
808
|
+
0,
|
|
809
|
+
gpu_ptr<ValT>(in),
|
|
810
|
+
gpu_ptr<OutT>(out),
|
|
811
|
+
size_sorted_axis,
|
|
812
|
+
in_stride_sorted_axis,
|
|
813
|
+
out_stride_sorted_axis,
|
|
814
|
+
nc_shape_param,
|
|
815
|
+
in_nc_strides_param,
|
|
816
|
+
out_nc_strides_param,
|
|
817
|
+
nc_dim);
|
|
818
|
+
}
|
|
819
|
+
});
|
|
820
|
+
}
|
|
821
|
+
});
|
|
822
|
+
} else {
|
|
823
|
+
throw std::runtime_error(
|
|
824
|
+
"CUDA backend does not support sorting complex numbers");
|
|
825
|
+
}
|
|
826
|
+
});
|
|
827
|
+
}
|
|
828
|
+
|
|
829
|
+
void multi_block_sort(
|
|
830
|
+
const Stream& s,
|
|
831
|
+
const array& in,
|
|
832
|
+
array& out,
|
|
833
|
+
int axis,
|
|
834
|
+
int n_blocks,
|
|
835
|
+
bool argsort) {
|
|
836
|
+
int n_rows = in.size() / in.shape(axis);
|
|
837
|
+
|
|
838
|
+
auto nc_str = in.strides();
|
|
839
|
+
nc_str.erase(nc_str.begin() + axis);
|
|
840
|
+
|
|
841
|
+
auto nc_shape = in.shape();
|
|
842
|
+
nc_shape.erase(nc_shape.begin() + axis);
|
|
843
|
+
|
|
844
|
+
int nc_dim = nc_shape.size();
|
|
845
|
+
|
|
846
|
+
if (nc_dim == 0) {
|
|
847
|
+
nc_shape = {0};
|
|
848
|
+
nc_str = {1};
|
|
849
|
+
}
|
|
850
|
+
|
|
851
|
+
int size_sorted_axis = in.shape(axis);
|
|
852
|
+
int64_t stride_sorted_axis = in.strides()[axis];
|
|
853
|
+
|
|
854
|
+
array dev_vals_in({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
|
|
855
|
+
array dev_vals_out({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
|
|
856
|
+
|
|
857
|
+
array dev_idxs_in({n_rows, size_sorted_axis}, uint32, nullptr, {});
|
|
858
|
+
array dev_idxs_out({n_rows, size_sorted_axis}, uint32, nullptr, {});
|
|
859
|
+
|
|
860
|
+
array block_partitions({n_rows, n_blocks + 1}, uint32, nullptr, {});
|
|
861
|
+
|
|
862
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
863
|
+
|
|
864
|
+
dev_vals_in.set_data(cu::malloc_async(dev_vals_in.nbytes(), encoder));
|
|
865
|
+
dev_vals_out.set_data(cu::malloc_async(dev_vals_out.nbytes(), encoder));
|
|
866
|
+
dev_idxs_in.set_data(cu::malloc_async(dev_idxs_in.nbytes(), encoder));
|
|
867
|
+
dev_idxs_out.set_data(cu::malloc_async(dev_idxs_out.nbytes(), encoder));
|
|
868
|
+
block_partitions.set_data(
|
|
869
|
+
cu::malloc_async(block_partitions.nbytes(), encoder));
|
|
870
|
+
|
|
871
|
+
encoder.add_temporary(block_partitions);
|
|
872
|
+
|
|
873
|
+
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
874
|
+
using CTYPE = MLX_GET_TYPE(type_tag);
|
|
875
|
+
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
|
876
|
+
using ValT = cuda_type_t<CTYPE>;
|
|
877
|
+
using IdxT = uint32_t;
|
|
878
|
+
constexpr int BLOCK_THREADS = sizeof(ValT) == 8 ? 256 : 512;
|
|
879
|
+
dim3 grid(n_blocks, n_rows, 1);
|
|
880
|
+
dim3 block(BLOCK_THREADS, 1, 1);
|
|
881
|
+
|
|
882
|
+
dispatch_bool(argsort, [&](auto arg_tag) {
|
|
883
|
+
constexpr bool ARG_SORT = decltype(arg_tag)::value;
|
|
884
|
+
auto nc_shape_param = const_param(nc_shape);
|
|
885
|
+
auto nc_strides_param = const_param(nc_str);
|
|
886
|
+
|
|
887
|
+
auto block_sort_kernel = cu::mb_block_sort_kernel<
|
|
888
|
+
ValT,
|
|
889
|
+
IdxT,
|
|
890
|
+
ARG_SORT,
|
|
891
|
+
BLOCK_THREADS,
|
|
892
|
+
N_PER_THREAD>;
|
|
893
|
+
encoder.set_input_array(in);
|
|
894
|
+
encoder.set_output_array(dev_vals_in);
|
|
895
|
+
encoder.set_output_array(dev_idxs_in);
|
|
896
|
+
encoder.add_kernel_node(
|
|
897
|
+
block_sort_kernel,
|
|
898
|
+
grid,
|
|
899
|
+
block,
|
|
900
|
+
0,
|
|
901
|
+
gpu_ptr<ValT>(in),
|
|
902
|
+
gpu_ptr<ValT>(dev_vals_in),
|
|
903
|
+
gpu_ptr<IdxT>(dev_idxs_in),
|
|
904
|
+
size_sorted_axis,
|
|
905
|
+
stride_sorted_axis,
|
|
906
|
+
nc_shape_param,
|
|
907
|
+
nc_strides_param,
|
|
908
|
+
nc_dim);
|
|
909
|
+
|
|
910
|
+
int n_thr_per_group = (n_blocks + 1) < 1024 ? (n_blocks + 1) : 1024;
|
|
911
|
+
|
|
912
|
+
for (int merge_tiles = 2; (merge_tiles / 2) < n_blocks;
|
|
913
|
+
merge_tiles *= 2) {
|
|
914
|
+
auto partition_kernel = cu::mb_block_partition_kernel<
|
|
915
|
+
ValT,
|
|
916
|
+
IdxT,
|
|
917
|
+
ARG_SORT,
|
|
918
|
+
BLOCK_THREADS,
|
|
919
|
+
N_PER_THREAD>;
|
|
920
|
+
|
|
921
|
+
encoder.set_input_array(dev_vals_in);
|
|
922
|
+
encoder.set_input_array(dev_idxs_in);
|
|
923
|
+
encoder.set_output_array(block_partitions);
|
|
924
|
+
|
|
925
|
+
encoder.add_kernel_node(
|
|
926
|
+
partition_kernel,
|
|
927
|
+
dim3(1, n_rows, 1),
|
|
928
|
+
dim3(n_thr_per_group, 1, 1),
|
|
929
|
+
0,
|
|
930
|
+
gpu_ptr<IdxT>(block_partitions),
|
|
931
|
+
gpu_ptr<ValT>(dev_vals_in),
|
|
932
|
+
gpu_ptr<IdxT>(dev_idxs_in),
|
|
933
|
+
size_sorted_axis,
|
|
934
|
+
merge_tiles,
|
|
935
|
+
n_blocks);
|
|
936
|
+
|
|
937
|
+
auto merge_kernel = cu::mb_block_merge_kernel<
|
|
938
|
+
ValT,
|
|
939
|
+
IdxT,
|
|
940
|
+
ARG_SORT,
|
|
941
|
+
BLOCK_THREADS,
|
|
942
|
+
N_PER_THREAD>;
|
|
943
|
+
|
|
944
|
+
encoder.set_input_array(dev_vals_in);
|
|
945
|
+
encoder.set_input_array(dev_idxs_in);
|
|
946
|
+
encoder.set_input_array(block_partitions);
|
|
947
|
+
encoder.set_output_array(dev_vals_out);
|
|
948
|
+
encoder.set_output_array(dev_idxs_out);
|
|
949
|
+
|
|
950
|
+
encoder.add_kernel_node(
|
|
951
|
+
merge_kernel,
|
|
952
|
+
dim3(n_blocks, n_rows, 1),
|
|
953
|
+
dim3(BLOCK_THREADS, 1, 1),
|
|
954
|
+
0,
|
|
955
|
+
gpu_ptr<IdxT>(block_partitions),
|
|
956
|
+
gpu_ptr<ValT>(dev_vals_in),
|
|
957
|
+
gpu_ptr<IdxT>(dev_idxs_in),
|
|
958
|
+
gpu_ptr<ValT>(dev_vals_out),
|
|
959
|
+
gpu_ptr<IdxT>(dev_idxs_out),
|
|
960
|
+
size_sorted_axis,
|
|
961
|
+
merge_tiles,
|
|
962
|
+
n_blocks);
|
|
963
|
+
std::swap(dev_vals_in, dev_vals_out);
|
|
964
|
+
std::swap(dev_idxs_in, dev_idxs_out);
|
|
965
|
+
}
|
|
966
|
+
});
|
|
967
|
+
} else {
|
|
968
|
+
throw std::runtime_error(
|
|
969
|
+
"CUDA backend does not support sorting complex numbers");
|
|
970
|
+
}
|
|
971
|
+
});
|
|
972
|
+
|
|
973
|
+
encoder.add_temporary(dev_vals_out);
|
|
974
|
+
encoder.add_temporary(dev_idxs_out);
|
|
975
|
+
encoder.add_temporary(argsort ? dev_vals_in : dev_idxs_in);
|
|
976
|
+
if (axis == in.ndim() - 1) {
|
|
977
|
+
// Copy buffer to out, no need for temporary
|
|
978
|
+
out.copy_shared_buffer(
|
|
979
|
+
argsort ? dev_idxs_in : dev_vals_in,
|
|
980
|
+
out.strides(),
|
|
981
|
+
out.flags(),
|
|
982
|
+
out.size());
|
|
983
|
+
} else {
|
|
984
|
+
encoder.add_temporary(argsort ? dev_idxs_in : dev_vals_in);
|
|
985
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
986
|
+
auto strides = out.strides();
|
|
987
|
+
for (int ax = axis + 1; ax < strides.size(); ax++) {
|
|
988
|
+
strides[ax] *= out.shape(axis);
|
|
989
|
+
}
|
|
990
|
+
strides[axis] = 1;
|
|
991
|
+
copy_gpu_inplace(
|
|
992
|
+
(argsort) ? dev_idxs_in : dev_vals_in,
|
|
993
|
+
out,
|
|
994
|
+
out.shape(),
|
|
995
|
+
strides,
|
|
996
|
+
out.strides(),
|
|
997
|
+
0,
|
|
998
|
+
0,
|
|
999
|
+
CopyType::General,
|
|
1000
|
+
s);
|
|
1001
|
+
}
|
|
1002
|
+
}
|
|
1003
|
+
|
|
1004
|
+
void gpu_merge_sort(
|
|
1005
|
+
const Stream& s,
|
|
1006
|
+
const array& in,
|
|
1007
|
+
array& out,
|
|
1008
|
+
int axis_,
|
|
1009
|
+
bool argsort) {
|
|
1010
|
+
int axis = axis_ < 0 ? axis_ + in.ndim() : axis_;
|
|
1011
|
+
int size_sorted_axis = in.shape(axis);
|
|
1012
|
+
|
|
1013
|
+
constexpr int tn = N_PER_THREAD;
|
|
1014
|
+
int potential_bn = (size_sorted_axis + tn - 1) / tn;
|
|
1015
|
+
|
|
1016
|
+
int bn;
|
|
1017
|
+
if (potential_bn > 256) {
|
|
1018
|
+
bn = 512;
|
|
1019
|
+
} else if (potential_bn > 128) {
|
|
1020
|
+
bn = 256;
|
|
1021
|
+
} else if (potential_bn > 64) {
|
|
1022
|
+
bn = 128;
|
|
1023
|
+
} else if (potential_bn > 32) {
|
|
1024
|
+
bn = 64;
|
|
1025
|
+
} else {
|
|
1026
|
+
bn = 32;
|
|
1027
|
+
}
|
|
1028
|
+
|
|
1029
|
+
if (bn == 512 && size_of(in.dtype()) > 4) {
|
|
1030
|
+
bn = 256;
|
|
1031
|
+
}
|
|
1032
|
+
|
|
1033
|
+
int n_per_block = bn * tn;
|
|
1034
|
+
int n_blocks = (size_sorted_axis + n_per_block - 1) / n_per_block;
|
|
1035
|
+
|
|
1036
|
+
if (n_blocks > 1) {
|
|
1037
|
+
return multi_block_sort(s, in, out, axis, n_blocks, argsort);
|
|
1038
|
+
}
|
|
1039
|
+
return single_block_sort(s, in, out, axis, bn, argsort);
|
|
1040
|
+
}
|
|
1041
|
+
|
|
1042
|
+
void gpu_sort(
|
|
1043
|
+
const Stream& s,
|
|
1044
|
+
const array& in,
|
|
1045
|
+
array& out,
|
|
1046
|
+
int axis,
|
|
1047
|
+
bool argsort) {
|
|
1048
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
1049
|
+
gpu_merge_sort(s, in, out, axis, argsort);
|
|
1050
|
+
}
|
|
1051
|
+
|
|
1052
|
+
} // namespace
|
|
1053
|
+
|
|
1054
|
+
void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
1055
|
+
nvtx3::scoped_range r("ArgSort::eval_gpu");
|
|
1056
|
+
assert(inputs.size() == 1);
|
|
1057
|
+
gpu_sort(stream(), inputs[0], out, axis_, true);
|
|
1058
|
+
}
|
|
1059
|
+
|
|
1060
|
+
void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
1061
|
+
nvtx3::scoped_range r("Sort::eval_gpu");
|
|
1062
|
+
assert(inputs.size() == 1);
|
|
1063
|
+
gpu_sort(stream(), inputs[0], out, axis_, false);
|
|
1064
|
+
}
|
|
1065
|
+
|
|
1066
|
+
void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
1067
|
+
nvtx3::scoped_range r("ArgPartition::eval_gpu");
|
|
1068
|
+
gpu_sort(stream(), inputs[0], out, axis_, true);
|
|
1069
|
+
}
|
|
1070
|
+
|
|
1071
|
+
void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
1072
|
+
nvtx3::scoped_range r("Partition::eval_gpu");
|
|
1073
|
+
gpu_sort(stream(), inputs[0], out, axis_, false);
|
|
1074
|
+
}
|
|
1075
|
+
|
|
1076
|
+
} // namespace mlx::core
|