mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1986 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import os
4
+ import tempfile
5
+ import unittest
6
+
7
+ import mlx.core as mx
8
+ import mlx.nn as nn
9
+ import mlx_tests
10
+ import numpy as np
11
+ from mlx.utils import tree_flatten, tree_map, tree_reduce
12
+
13
+
14
+ class TestBase(mlx_tests.MLXTestCase):
15
+ def test_module_utilities(self):
16
+ m = nn.Sequential(
17
+ nn.Sequential(nn.Linear(2, 10), nn.relu),
18
+ nn.Sequential(nn.Linear(10, 10), nn.ReLU()),
19
+ nn.Linear(10, 1),
20
+ mx.sigmoid,
21
+ )
22
+
23
+ children = m.children()
24
+ self.assertTrue(isinstance(children, dict))
25
+ self.assertEqual(len(children), 1)
26
+ self.assertTrue(isinstance(children["layers"], list))
27
+ self.assertEqual(len(children["layers"]), 4)
28
+ self.assertEqual(children["layers"][3], {})
29
+ flat_children = tree_flatten(children, is_leaf=nn.Module.is_module)
30
+ self.assertEqual(len(flat_children), 3)
31
+
32
+ leaves = tree_flatten(m.leaf_modules(), is_leaf=nn.Module.is_module)
33
+ self.assertEqual(len(leaves), 4)
34
+ self.assertEqual(leaves[0][0], "layers.0.layers.0")
35
+ self.assertEqual(leaves[1][0], "layers.1.layers.0")
36
+ self.assertEqual(leaves[2][0], "layers.1.layers.1")
37
+ self.assertEqual(leaves[3][0], "layers.2")
38
+ self.assertTrue(leaves[0][1] is m.layers[0].layers[0])
39
+ self.assertTrue(leaves[1][1] is m.layers[1].layers[0])
40
+ self.assertTrue(leaves[2][1] is m.layers[1].layers[1])
41
+ self.assertTrue(leaves[3][1] is m.layers[2])
42
+
43
+ m.eval()
44
+
45
+ def assert_not_training(k, m):
46
+ self.assertFalse(m.training)
47
+
48
+ m.apply_to_modules(assert_not_training)
49
+
50
+ m.train()
51
+
52
+ def assert_training(k, m):
53
+ self.assertTrue(m.training)
54
+
55
+ m.apply_to_modules(assert_training)
56
+
57
+ def test_module_attributes(self):
58
+ class Model(nn.Module):
59
+ def __init__(self):
60
+ super().__init__()
61
+ self.val = None
62
+ self.initialize()
63
+
64
+ def initialize(self):
65
+ self.val = mx.array(1.0)
66
+
67
+ model = Model()
68
+ self.assertTrue(mx.array_equal(model.val, mx.array(1.0)))
69
+
70
+ model.val = None
71
+ self.assertEqual(model.val, None)
72
+
73
+ model.val = mx.array([3])
74
+ self.assertEqual(model.val.item(), 3)
75
+
76
+ def test_model_with_dict(self):
77
+ class DictModule(nn.Module):
78
+ def __init__(self):
79
+ super().__init__()
80
+ self.weights = {"w1": mx.zeros((2, 2)), "w2": mx.ones((2, 2))}
81
+
82
+ model = DictModule()
83
+ params = tree_flatten(model.parameters(), destination={})
84
+ self.assertEqual(len(params), 2)
85
+ self.assertTrue(mx.array_equal(params["weights.w1"], mx.zeros((2, 2))))
86
+ self.assertTrue(mx.array_equal(params["weights.w2"], mx.ones((2, 2))))
87
+
88
+ def test_save_npz_weights(self):
89
+ def make_model():
90
+ return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2))
91
+
92
+ m = make_model()
93
+ tdir = tempfile.TemporaryDirectory()
94
+ npz_file = os.path.join(tdir.name, "model.npz")
95
+ m.save_weights(npz_file)
96
+ m_load = make_model()
97
+ m_load.load_weights(npz_file)
98
+
99
+ # Eval before cleanup so model file is unlocked.
100
+ mx.eval(m_load.state)
101
+ tdir.cleanup()
102
+
103
+ eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters())
104
+ self.assertTrue(all(tree_flatten(eq_tree)))
105
+
106
+ def test_save_safetensors_weights(self):
107
+ def make_model():
108
+ return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2), nn.ReLU())
109
+
110
+ m = make_model()
111
+ tdir = tempfile.TemporaryDirectory()
112
+ safetensors_file = os.path.join(tdir.name, "model.safetensors")
113
+ m.save_weights(safetensors_file)
114
+ m_load = make_model()
115
+ m_load.load_weights(safetensors_file)
116
+
117
+ # Eval before cleanup so model file is unlocked.
118
+ mx.eval(m_load.state)
119
+ tdir.cleanup()
120
+
121
+ eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters())
122
+ self.assertTrue(all(tree_flatten(eq_tree)))
123
+
124
+ def test_load_from_weights(self):
125
+ m = nn.Linear(2, 2)
126
+
127
+ # Too few weights
128
+ weights = [("weight", mx.ones((2, 2)))]
129
+ with self.assertRaises(ValueError):
130
+ m.load_weights(weights)
131
+
132
+ m.load_weights(weights, strict=False)
133
+ self.assertTrue(mx.array_equal(m.weight, weights[0][1]))
134
+
135
+ # Wrong name
136
+ with self.assertRaises(ValueError):
137
+ m.load_weights([("weihgt", mx.ones((2, 2)))])
138
+
139
+ # Ok
140
+ m.load_weights([("weihgt", mx.ones((2, 2)))], strict=False)
141
+
142
+ # Too many weights
143
+ with self.assertRaises(ValueError):
144
+ m.load_weights(
145
+ [
146
+ ("weight", mx.ones((2, 2))),
147
+ ("bias", mx.ones((2,))),
148
+ ("bias2", mx.ones((2,))),
149
+ ]
150
+ )
151
+
152
+ # Wrong shape
153
+ with self.assertRaises(ValueError):
154
+ m.load_weights(
155
+ [
156
+ ("weight", mx.ones((2, 2))),
157
+ ("bias", mx.ones((2, 1))),
158
+ ]
159
+ )
160
+
161
+ # Wrong type
162
+ with self.assertRaises(ValueError):
163
+ m.load_weights(
164
+ [
165
+ ("weight", mx.ones((2, 2))),
166
+ ("bias", 3),
167
+ ]
168
+ )
169
+
170
+ # Empty weights is ok if strict is false
171
+ m.load_weights([], strict=False)
172
+
173
+ def test_module_state(self):
174
+ m = nn.Linear(10, 1)
175
+ m.state["hello"] = "world"
176
+ self.assertEqual(m.state["hello"], "world")
177
+
178
+ def test_chaining(self):
179
+ m = nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 1))
180
+ pre_freeze_num_params = len(m.parameters())
181
+ m.freeze().unfreeze()
182
+ self.assertEqual(len(m.parameters()), pre_freeze_num_params)
183
+ params_dict = m.parameters()
184
+
185
+ self.assertFalse(m.update(params_dict).eval()._training)
186
+ self.assertTrue(m.train()._training)
187
+
188
+ def test_quantize(self):
189
+ m = nn.Sequential(nn.Embedding(5, 256), nn.ReLU(), nn.Linear(256, 256))
190
+ nn.quantize(m)
191
+ self.assertTrue(isinstance(m.layers[0], nn.QuantizedEmbedding))
192
+ self.assertTrue(isinstance(m.layers[1], nn.ReLU))
193
+ self.assertTrue(isinstance(m.layers[2], nn.QuantizedLinear))
194
+
195
+ m = nn.Sequential(nn.Embedding(5, 256), nn.ReLU(), nn.Linear(256, 256))
196
+ nn.quantize(m, class_predicate=lambda _, m: isinstance(m, nn.Linear))
197
+ self.assertTrue(isinstance(m.layers[0], nn.Embedding))
198
+ self.assertTrue(isinstance(m.layers[1], nn.ReLU))
199
+ self.assertTrue(isinstance(m.layers[2], nn.QuantizedLinear))
200
+
201
+ nn.quantize(m, group_size=32, mode="mxfp4")
202
+ self.assertTrue(isinstance(m.layers[0], nn.QuantizedEmbedding))
203
+ self.assertTrue(isinstance(m.layers[1], nn.ReLU))
204
+ self.assertTrue(isinstance(m.layers[2], nn.QuantizedLinear))
205
+ self.assertTrue(isinstance(m.layers[2].scales, mx.array))
206
+
207
+ m = nn.Sequential(
208
+ nn.Embedding(5, 256), nn.ReLU(), nn.Linear(256, 256, bias=False)
209
+ )
210
+ nn.quantize(
211
+ m,
212
+ group_size=32,
213
+ mode="mxfp8",
214
+ quantize_input=True,
215
+ class_predicate=lambda path, module: isinstance(module, nn.Linear),
216
+ )
217
+ self.assertTrue(isinstance(m.layers[0], nn.Embedding))
218
+ self.assertTrue(isinstance(m.layers[1], nn.ReLU))
219
+ self.assertTrue(isinstance(m.layers[2], nn.QQLinear))
220
+
221
+ # Check that Embedding does not support quantize_input
222
+ m = nn.Sequential(
223
+ nn.Embedding(5, 256), nn.ReLU(), nn.Linear(256, 256, bias=False)
224
+ )
225
+ with self.assertRaises(ValueError) as context:
226
+ nn.quantize(m, group_size=32, mode="mxfp8", quantize_input=True)
227
+
228
+ def test_quantize_freeze(self):
229
+ lin = nn.Linear(512, 512)
230
+ qlin = lin.to_quantized()
231
+ qlin.unfreeze(keys=["scales"])
232
+ size = tree_reduce(lambda acc, p: acc + p.size, qlin.trainable_parameters(), 0)
233
+ self.assertTrue(size > 0)
234
+
235
+ def test_quantized_sharded_linear_construction(self):
236
+ input_dims, output_dims = 1536, 1024
237
+ for bits in [2, 3, 4, 5, 6, 8]:
238
+ lin = nn.Linear(input_dims, output_dims)
239
+ qlin = lin.to_quantized(bits=bits)
240
+
241
+ slin1 = nn.QuantizedAllToShardedLinear.from_quantized_linear(qlin)
242
+ self.assertEqual(slin1.weight.shape, qlin.weight.shape)
243
+
244
+ slin2 = nn.QuantizedShardedToAllLinear.from_quantized_linear(qlin)
245
+ self.assertEqual(slin2.weight.shape, qlin.weight.shape)
246
+
247
+ def test_grad_of_module(self):
248
+ class Model(nn.Module):
249
+ def __init__(self):
250
+ super().__init__()
251
+ self.m1 = nn.Linear(3, 3)
252
+
253
+ model = Model()
254
+
255
+ def loss_fn(model):
256
+ return model.m1(x).sum()
257
+
258
+ x = mx.zeros((3,))
259
+ mx.grad(loss_fn)(model)
260
+
261
+ def test_update(self):
262
+ m = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
263
+
264
+ # Updating non-existent parameters
265
+ with self.assertRaises(ValueError):
266
+ updates = {"layers": [{"value": 0}]}
267
+ m.update(updates)
268
+
269
+ with self.assertRaises(ValueError):
270
+ updates = {"layers": ["hello"]}
271
+ m.update(updates)
272
+
273
+ # Wronge type
274
+ with self.assertRaises(ValueError):
275
+ updates = {"layers": [{"weight": "hi"}]}
276
+ m.update(updates)
277
+
278
+ def test_update_modules(self):
279
+ m = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
280
+
281
+ # Updating non-existent modules should not be allowed by default
282
+ with self.assertRaises(ValueError):
283
+ m = m.update_modules({"values": [0, 1]})
284
+
285
+ # Update wrong types
286
+ with self.assertRaises(ValueError):
287
+ m = m.update_modules({"layers": [0, 1]})
288
+
289
+ class MyModule(nn.Module):
290
+ def __init__(self):
291
+ super().__init__()
292
+ self.test = mx.array(1.0)
293
+ self.list = [mx.array(1.0), mx.array(2.0)]
294
+
295
+ m = MyModule()
296
+ with self.assertRaises(ValueError):
297
+ m = m.update_modules({"test": "hi"})
298
+ with self.assertRaises(ValueError):
299
+ m = m.update_modules({"list": ["hi"]})
300
+
301
+ # Allow updating a strict subset
302
+ m = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
303
+ m.update_modules({"layers": [{}, nn.Linear(3, 4)]})
304
+ self.assertEqual(m.layers[1].weight.shape, (4, 3))
305
+
306
+ # Using leaf_modules in the update should always work
307
+ class MyModel(nn.Module):
308
+ def __init__(self):
309
+ super().__init__()
310
+ self.stuff = [nn.Linear(2, 2), 0, nn.Linear(2, 2)]
311
+ self.more_stuff = {"hi": nn.Linear(2, 2), "bye": 0}
312
+
313
+ m = MyModel()
314
+ m.update_modules(m.leaf_modules())
315
+
316
+ def test_parameter_deletion(self):
317
+ m = nn.Linear(32, 32)
318
+ del m.weight
319
+ self.assertFalse(hasattr(m, "weight"))
320
+
321
+ def test_circular_leaks(self):
322
+ y = mx.random.uniform(1)
323
+ mx.eval(y)
324
+
325
+ def make_and_update():
326
+ model = nn.Linear(1024, 512)
327
+ mx.eval(model.parameters())
328
+ leaves = {}
329
+ model.update_modules(leaves)
330
+
331
+ mx.synchronize()
332
+ pre = mx.get_active_memory()
333
+ make_and_update()
334
+ mx.synchronize()
335
+ post = mx.get_active_memory()
336
+ self.assertEqual(pre, post)
337
+
338
+
339
+ class TestLayers(mlx_tests.MLXTestCase):
340
+ def test_identity(self):
341
+ inputs = mx.zeros((10, 4))
342
+ layer = nn.Identity()
343
+ outputs = layer(inputs)
344
+ self.assertEqual(inputs.shape, outputs.shape)
345
+
346
+ def test_linear(self):
347
+ inputs = mx.zeros((10, 4))
348
+ layer = nn.Linear(input_dims=4, output_dims=8)
349
+ outputs = layer(inputs)
350
+ self.assertEqual(outputs.shape, (10, 8))
351
+
352
+ def test_bilinear(self):
353
+ inputs1 = mx.zeros((10, 2))
354
+ inputs2 = mx.zeros((10, 4))
355
+ layer = nn.Bilinear(input1_dims=2, input2_dims=4, output_dims=6)
356
+ outputs = layer(inputs1, inputs2)
357
+ self.assertEqual(outputs.shape, (10, 6))
358
+
359
+ def test_group_norm(self):
360
+ x = mx.arange(100, dtype=mx.float32)
361
+ x = x.reshape(1, 10, 10, 1)
362
+ x = mx.broadcast_to(x, (2, 10, 10, 4))
363
+ x = mx.concatenate([x, 0.5 * x], axis=-1)
364
+
365
+ # Group norm in groups last mode
366
+ g = nn.GroupNorm(2, 8)
367
+ y = g(x)
368
+ means = y.reshape(2, -1, 2).mean(axis=1)
369
+ var = y.reshape(2, -1, 2).var(axis=1)
370
+ self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
371
+ self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
372
+ g.weight = g.weight * 2
373
+ g.bias = g.bias + 3
374
+ y = g(x)
375
+ means = y.reshape(2, -1, 2).mean(axis=1)
376
+ var = y.reshape(2, -1, 2).var(axis=1)
377
+ self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
378
+ self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
379
+
380
+ # Group norm in groups first mode
381
+ g = nn.GroupNorm(2, 8, pytorch_compatible=True)
382
+ y = g(x)
383
+ means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
384
+ var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
385
+ self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
386
+ self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
387
+ g.weight = g.weight * 2
388
+ g.bias = g.bias + 3
389
+ y = g(x)
390
+ means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
391
+ var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
392
+ self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
393
+ self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
394
+
395
+ def test_instance_norm(self):
396
+ # Test InstanceNorm1d
397
+ x = mx.array(
398
+ [
399
+ [
400
+ [-0.0119524, 1.1263, 2.02223],
401
+ [-0.500331, 0.517899, -1.21143],
402
+ [1.12958, -0.21413, -2.48738],
403
+ [1.39955, 0.891329, 1.63289],
404
+ ],
405
+ [
406
+ [0.241417, -0.619157, -0.77484],
407
+ [-1.42512, 0.970817, -1.31352],
408
+ [2.739, -1.2506, 1.56844],
409
+ [-1.23175, 0.32756, 1.13969],
410
+ ],
411
+ ]
412
+ )
413
+ inorm = nn.InstanceNorm(dims=3)
414
+ y = inorm(x)
415
+ expected_y = [
416
+ [
417
+ [-0.657082, 1.07593, 1.0712],
418
+ [-1.27879, -0.123074, -0.632505],
419
+ [0.796101, -1.56572, -1.30476],
420
+ [1.13978, 0.612862, 0.866067],
421
+ ],
422
+ [
423
+ [0.0964426, -0.557906, -0.759885],
424
+ [-0.904772, 1.30444, -1.20013],
425
+ [1.59693, -1.29752, 1.15521],
426
+ [-0.7886, 0.550987, 0.804807],
427
+ ],
428
+ ]
429
+ self.assertTrue(x.shape == y.shape)
430
+ self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
431
+ # Test InstanceNorm2d
432
+ x = mx.array(
433
+ [
434
+ [
435
+ [
436
+ [-0.458824, 0.483254, -0.58611],
437
+ [-0.447996, -0.176577, -0.622545],
438
+ [0.0486988, -0.0611224, 1.8845],
439
+ ],
440
+ [
441
+ [1.13049, 0.345315, -0.926389],
442
+ [0.301795, 0.99207, -0.184927],
443
+ [-2.23876, -0.758631, -1.12639],
444
+ ],
445
+ [
446
+ [0.0986325, -1.82973, -0.241765],
447
+ [-1.25257, 0.154442, -0.556204],
448
+ [-0.329399, -0.319107, 0.830584],
449
+ ],
450
+ ],
451
+ [
452
+ [
453
+ [1.04407, 0.073752, 0.407081],
454
+ [0.0800776, 1.2513, 1.20627],
455
+ [0.782321, -0.444367, 0.563132],
456
+ ],
457
+ [
458
+ [0.671423, -1.21689, -1.88979],
459
+ [-0.110299, -1.42248, 1.17838],
460
+ [0.159905, 0.516452, -0.539121],
461
+ ],
462
+ [
463
+ [0.810252, 1.50456, 1.08659],
464
+ [0.182597, 0.0576239, 0.973883],
465
+ [-0.0621687, 0.184253, 0.784216],
466
+ ],
467
+ ],
468
+ ]
469
+ )
470
+ inorm = nn.InstanceNorm(dims=3)
471
+ y = inorm(x)
472
+ expected_y = [
473
+ [
474
+ [
475
+ [-0.120422, 0.801503, -0.463983],
476
+ [-0.108465, -0.0608611, -0.504602],
477
+ [0.440008, 0.090032, 2.29032],
478
+ ],
479
+ [
480
+ [1.63457, 0.621224, -0.843335],
481
+ [0.719488, 1.4665, -0.0167344],
482
+ [-2.08591, -0.821575, -1.0663],
483
+ ],
484
+ [
485
+ [0.495147, -2.22145, -0.0800989],
486
+ [-0.996913, 0.371763, -0.430643],
487
+ [0.022495, -0.24714, 1.11538],
488
+ ],
489
+ ],
490
+ [
491
+ [
492
+ [1.5975, 0.0190292, -0.0123306],
493
+ [-0.776381, 1.28291, 0.817237],
494
+ [0.952927, -0.537076, 0.149652],
495
+ ],
496
+ [
497
+ [0.679836, -1.36624, -2.39651],
498
+ [-1.24519, -1.5869, 0.788287],
499
+ [-0.579802, 0.494186, -0.994499],
500
+ ],
501
+ [
502
+ [1.02171, 1.55474, 0.693008],
503
+ [-0.523922, 0.00171862, 0.576016],
504
+ [-1.12667, 0.137632, 0.37914],
505
+ ],
506
+ ],
507
+ ]
508
+ self.assertTrue(x.shape == y.shape)
509
+ self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
510
+ # # Test InstanceNorm3d
511
+ x = mx.array(
512
+ [
513
+ [
514
+ [
515
+ [[0.777621, 0.528145, -1.56133], [-2.1722, 0.128192, 0.153862]],
516
+ [
517
+ [-1.41317, 0.476288, -1.20411],
518
+ [0.284446, -0.649858, 0.152112],
519
+ ],
520
+ ],
521
+ [
522
+ [[0.11, -0.12431, 1.18768], [-0.837743, 1.93502, 0.00236324]],
523
+ [
524
+ [-2.40205, -1.25873, -2.04243],
525
+ [0.336682, -0.261986, 1.54289],
526
+ ],
527
+ ],
528
+ [
529
+ [
530
+ [0.789185, -1.63747, 0.67917],
531
+ [-1.42998, -1.73247, -0.402572],
532
+ ],
533
+ [
534
+ [-0.459489, -2.15559, -0.249959],
535
+ [0.0298199, 0.10275, -0.821897],
536
+ ],
537
+ ],
538
+ ],
539
+ [
540
+ [
541
+ [
542
+ [-2.12354, 0.643973, 0.72391],
543
+ [0.317797, -0.682916, 0.016364],
544
+ ],
545
+ [
546
+ [-0.146628, -0.987925, 0.573199],
547
+ [0.0329215, 1.54086, 0.213092],
548
+ ],
549
+ ],
550
+ [
551
+ [
552
+ [-1.55784, 0.71179, -0.0678402],
553
+ [2.41031, -0.290786, 0.00449439],
554
+ ],
555
+ [
556
+ [0.226341, 0.057712, -1.58342],
557
+ [0.265387, -0.742304, 1.28133],
558
+ ],
559
+ ],
560
+ [
561
+ [
562
+ [0.990317, -0.399875, -0.357647],
563
+ [0.475161, -1.10479, -1.07389],
564
+ ],
565
+ [
566
+ [-1.37804, 1.40097, 0.141618],
567
+ [-0.501041, 0.0723374, -0.386141],
568
+ ],
569
+ ],
570
+ ],
571
+ ]
572
+ )
573
+ inorm = nn.InstanceNorm(dims=3)
574
+ y = inorm(x)
575
+ expected_y = [
576
+ [
577
+ [
578
+ [[1.23593, 0.821849, -1.30944], [-1.54739, 0.462867, 0.357126]],
579
+ [[-0.831204, 0.775304, -0.962338], [0.770588, -0.23548, 0.355425]],
580
+ ],
581
+ [
582
+ [[0.605988, 0.236231, 1.36163], [-0.288258, 2.0846, 0.209922]],
583
+ [[-1.76427, -0.78198, -1.77689], [0.819875, 0.112659, 1.70677]],
584
+ ],
585
+ [
586
+ [[1.24684, -1.12192, 0.867539], [-0.847068, -1.20719, -0.183531]],
587
+ [
588
+ [0.0686449, -1.58697, -0.0352458],
589
+ [0.530334, 0.440032, -0.590967],
590
+ ],
591
+ ],
592
+ ],
593
+ [
594
+ [
595
+ [[-1.75315, 0.733967, 1.04349], [0.343736, -0.822472, 0.080661]],
596
+ [[-0.0551618, -1.18025, 0.838402], [0.0990544, 1.78602, 0.348368]],
597
+ ],
598
+ [
599
+ [[-1.26726, 0.813517, -0.033924], [2.14101, -0.362504, 0.0645089]],
600
+ [[0.265184, 0.0462839, -2.09632], [0.298721, -0.892134, 1.80203]],
601
+ ],
602
+ [
603
+ [[0.921369, -0.490465, -0.428293], [0.478897, -1.31732, -1.40296]],
604
+ [[-1.11283, 1.62192, 0.251107], [-0.35957, 0.0634394, -0.467067]],
605
+ ],
606
+ ],
607
+ ]
608
+ self.assertTrue(x.shape == y.shape)
609
+ self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
610
+ # Test repr
611
+ self.assertTrue(str(inorm) == "InstanceNorm(3, eps=1e-05, affine=False)")
612
+
613
+ def test_batch_norm(self):
614
+ mx.random.seed(42)
615
+ x = mx.random.normal((5, 4), dtype=mx.float32)
616
+
617
+ # Batch norm
618
+ bn = nn.BatchNorm(num_features=4, affine=True)
619
+ self.assertTrue(mx.allclose(bn.running_mean, mx.zeros_like(bn.running_mean)))
620
+ self.assertTrue(mx.allclose(bn.running_var, mx.ones_like(bn.running_var)))
621
+ y = bn(x)
622
+ expected_y = mx.array(
623
+ [
624
+ [-0.439520, 1.647328, -0.955515, 1.966031],
625
+ [-1.726690, -1.449826, -0.234026, -0.723364],
626
+ [0.938414, -0.349603, -0.354470, -0.175369],
627
+ [0.305006, 0.234914, -0.393017, -0.459385],
628
+ [0.922789, -0.082813, 1.937028, -0.607913],
629
+ ],
630
+ )
631
+ expected_mean = mx.array([0.008929, 0.005680, -0.016092, 0.027778])
632
+ expected_var = mx.array([0.928435, 1.00455, 1.04117, 0.94258])
633
+ self.assertTrue(x.shape == y.shape)
634
+ self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
635
+ self.assertTrue(mx.allclose(bn.running_mean, expected_mean, atol=1e-5))
636
+ self.assertTrue(mx.allclose(bn.running_var, expected_var, atol=1e-5))
637
+
638
+ # test eval mode
639
+ bn.eval()
640
+ y = bn(x)
641
+ expected_y = mx.array(
642
+ [
643
+ [-0.15984, 1.73159, -1.25456, 1.57891],
644
+ [-0.872193, -1.4281, -0.414439, -0.228678],
645
+ [0.602743, -0.30566, -0.554687, 0.139639],
646
+ [0.252199, 0.29066, -0.599572, -0.0512532],
647
+ [0.594096, -0.0334829, 2.11359, -0.151081],
648
+ ]
649
+ )
650
+
651
+ self.assertTrue(x.shape == y.shape)
652
+ self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
653
+
654
+ # test_no_affine
655
+ bn = nn.BatchNorm(num_features=4, affine=False)
656
+ y = bn(x)
657
+ expected_y = mx.array(
658
+ [
659
+ [-0.439520, 1.647328, -0.955515, 1.966031],
660
+ [-1.726690, -1.449826, -0.234026, -0.723364],
661
+ [0.938414, -0.349603, -0.354470, -0.175369],
662
+ [0.305006, 0.234914, -0.393017, -0.459385],
663
+ [0.922789, -0.082813, 1.937028, -0.607913],
664
+ ]
665
+ )
666
+ self.assertTrue(x.shape == y.shape)
667
+ self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
668
+
669
+ # test with 3D input
670
+ mx.random.seed(42)
671
+ N = 2
672
+ L = 4
673
+ C = 5
674
+ x = mx.random.normal((N, L, C), dtype=mx.float32)
675
+
676
+ # Batch norm
677
+ bn = nn.BatchNorm(num_features=C, affine=True)
678
+ self.assertTrue(mx.allclose(bn.running_mean, mx.zeros_like(bn.running_mean)))
679
+ self.assertTrue(mx.allclose(bn.running_var, mx.ones_like(bn.running_var)))
680
+ y = bn(x)
681
+ self.assertTrue(x.shape == y.shape)
682
+ expected_y = mx.array(
683
+ [
684
+ [
685
+ [-0.335754, 0.342054, 1.02653, 0.628588, -1.63899],
686
+ [1.92092, 0.432319, 0.343043, 1.95489, 1.0696],
687
+ [-0.853748, 1.3661, 0.868569, 0.0199196, -0.887284],
688
+ [0.459206, -0.684822, -0.706354, -0.271531, 0.566341],
689
+ ],
690
+ [
691
+ [-0.921179, 0.684951, -0.77466, -0.490372, -0.247032],
692
+ [1.10839, -2.13179, 0.628924, -1.62639, -0.539708],
693
+ [-0.348943, 0.412194, -2.03818, 0.524972, 1.64568],
694
+ [-1.02889, -0.421, 0.652127, -0.740079, 0.0313996],
695
+ ],
696
+ ]
697
+ )
698
+ self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
699
+ expected_mean = mx.array(
700
+ [[[0.00207845, -5.3259e-05, 0.04755, -0.0697296, 0.0236228]]]
701
+ )
702
+ expected_var = mx.array([[[0.968415, 1.05322, 0.96913, 0.932305, 0.967224]]])
703
+ self.assertTrue(mx.allclose(bn.running_mean, expected_mean, atol=1e-5))
704
+ self.assertTrue(mx.allclose(bn.running_var, expected_var, atol=1e-5))
705
+
706
+ x = mx.random.normal((N, L, C, L, C), dtype=mx.float32)
707
+ with self.assertRaises(ValueError):
708
+ y = bn(x)
709
+
710
+ # Check that the running stats are in the param dictionary
711
+ bn_parameters = bn.parameters()
712
+ self.assertIn("running_mean", bn_parameters)
713
+ self.assertIn("running_var", bn_parameters)
714
+ self.assertIn("weight", bn_parameters)
715
+ self.assertIn("bias", bn_parameters)
716
+
717
+ bn_trainable = bn.trainable_parameters()
718
+ self.assertNotIn("running_mean", bn_trainable)
719
+ self.assertNotIn("running_var", bn_trainable)
720
+ self.assertIn("weight", bn_trainable)
721
+ self.assertIn("bias", bn_trainable)
722
+
723
+ bn.unfreeze()
724
+ bn_trainable = bn.trainable_parameters()
725
+ self.assertNotIn("running_mean", bn_trainable)
726
+ self.assertNotIn("running_var", bn_trainable)
727
+ self.assertIn("weight", bn_trainable)
728
+ self.assertIn("bias", bn_trainable)
729
+
730
+ def test_batch_norm_stats(self):
731
+ batch_size = 2
732
+ num_features = 4
733
+ h = 3
734
+ w = 3
735
+ momentum = 0.1
736
+
737
+ batch_norm = nn.BatchNorm(num_features)
738
+
739
+ batch_norm.train()
740
+ running_mean = batch_norm.running_mean
741
+ running_var = batch_norm.running_var
742
+
743
+ data = mx.random.normal((batch_size, num_features))
744
+
745
+ normalized_data = batch_norm(data)
746
+ means = mx.mean(data, axis=0)
747
+ variances = mx.var(data, axis=0)
748
+ running_mean = (1 - momentum) * running_mean + momentum * means
749
+ running_var = (1 - momentum) * running_var + momentum * variances
750
+ self.assertTrue(mx.allclose(batch_norm.running_mean, running_mean, atol=1e-5))
751
+ self.assertTrue(mx.allclose(batch_norm.running_var, running_var, atol=1e-5))
752
+
753
+ batch_norm = nn.BatchNorm(num_features)
754
+
755
+ batch_norm.train()
756
+ running_mean = batch_norm.running_mean
757
+ running_var = batch_norm.running_var
758
+ data = mx.random.normal((batch_size, h, w, num_features))
759
+
760
+ normalized_data = batch_norm(data)
761
+ means = mx.mean(data, axis=(0, 1, 2))
762
+ variances = mx.var(data, axis=(0, 1, 2))
763
+ running_mean = (1 - momentum) * running_mean + momentum * means
764
+ running_var = (1 - momentum) * running_var + momentum * variances
765
+ self.assertTrue(mx.allclose(batch_norm.running_mean, running_mean, atol=1e-5))
766
+ self.assertTrue(mx.allclose(batch_norm.running_var, running_var, atol=1e-5))
767
+
768
+ self.assertEqual(batch_norm.running_mean.shape, running_mean.shape)
769
+ self.assertEqual(batch_norm.running_var.shape, running_var.shape)
770
+
771
+ def test_conv1d(self):
772
+ N = 5
773
+ L = 12
774
+ ks = 3
775
+ C_in = 2
776
+ C_out = 4
777
+ x = mx.ones((N, L, C_in))
778
+ c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks)
779
+ c.weight = mx.ones_like(c.weight)
780
+ y = c(x)
781
+ self.assertEqual(y.shape, (N, L - ks + 1, C_out))
782
+ self.assertTrue(mx.allclose(y, mx.full(y.shape, ks * C_in, mx.float32)))
783
+
784
+ c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, stride=2)
785
+ y = c(x)
786
+ self.assertEqual(y.shape, (N, (L - ks + 1) // 2, C_out))
787
+ self.assertTrue("bias" in c.parameters())
788
+
789
+ dil = 2
790
+ c = nn.Conv1d(
791
+ in_channels=C_in, out_channels=C_out, kernel_size=ks, dilation=dil
792
+ )
793
+ y = c(x)
794
+ self.assertEqual(y.shape, (N, L - (ks - 1) * dil, C_out))
795
+
796
+ c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
797
+ self.assertTrue("bias" not in c.parameters())
798
+
799
+ groups = C_in
800
+ c = nn.Conv1d(
801
+ in_channels=C_in, out_channels=C_out, kernel_size=ks, groups=groups
802
+ )
803
+ y = c(x)
804
+ self.assertEqual(c.weight.shape, (C_out, ks, C_in // groups))
805
+ self.assertEqual(y.shape, (N, L - ks + 1, C_out))
806
+
807
+ def test_conv2d(self):
808
+ x = mx.ones((4, 8, 8, 3))
809
+ c = nn.Conv2d(3, 1, 8)
810
+ y = c(x)
811
+ self.assertEqual(y.shape, (4, 1, 1, 1))
812
+ c.weight = mx.ones_like(c.weight) / 8 / 8 / 3
813
+ y = c(x)
814
+ self.assertTrue(np.allclose(y[:, 0, 0, 0], x.mean(axis=(1, 2, 3))))
815
+
816
+ # 3x3 conv no padding stride 1
817
+ c = nn.Conv2d(3, 8, 3)
818
+ y = c(x)
819
+ self.assertEqual(y.shape, (4, 6, 6, 8))
820
+ self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
821
+
822
+ # 3x3 conv padding 1 stride 1
823
+ c = nn.Conv2d(3, 8, 3, padding=1)
824
+ y = c(x)
825
+ self.assertEqual(y.shape, (4, 8, 8, 8))
826
+ self.assertLess(mx.abs(y[:, 1:7, 1:7] - c.weight.sum((1, 2, 3))).max(), 1e-4)
827
+ self.assertLess(
828
+ mx.abs(y[:, 0, 0] - c.weight[:, 1:, 1:].sum(axis=(1, 2, 3))).max(),
829
+ 1e-4,
830
+ )
831
+ self.assertLess(
832
+ mx.abs(y[:, 7, 7] - c.weight[:, :-1, :-1].sum(axis=(1, 2, 3))).max(),
833
+ 1e-4,
834
+ )
835
+ self.assertLess(
836
+ mx.abs(y[:, 1:7, 7] - c.weight[:, :, :-1].sum(axis=(1, 2, 3))).max(),
837
+ 1e-4,
838
+ )
839
+ self.assertLess(
840
+ mx.abs(y[:, 7, 1:7] - c.weight[:, :-1, :].sum(axis=(1, 2, 3))).max(),
841
+ 1e-4,
842
+ )
843
+
844
+ # 3x3 conv no padding stride 2
845
+ c = nn.Conv2d(3, 8, 3, padding=0, stride=2)
846
+ y = c(x)
847
+ self.assertEqual(y.shape, (4, 3, 3, 8))
848
+ self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
849
+
850
+ c = nn.Conv2d(3, 8, 3, dilation=2)
851
+ y = c(x)
852
+ self.assertEqual(y.shape, (4, 4, 4, 8))
853
+ self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
854
+
855
+ # 3x3 conv groups > 1
856
+ x = mx.ones((4, 7, 7, 4))
857
+ c = nn.Conv2d(4, 8, 3, padding=1, stride=1, groups=2)
858
+ y = c(x)
859
+ self.assertEqual(y.shape, (4, 7, 7, 8))
860
+
861
+ def test_sequential(self):
862
+ x = mx.ones((10, 2))
863
+ m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
864
+ y = m(x)
865
+ self.assertEqual(y.shape, (10, 1))
866
+ params = m.parameters()
867
+ self.assertTrue("layers" in params)
868
+ self.assertEqual(len(params["layers"]), 3)
869
+ self.assertTrue("weight" in params["layers"][0])
870
+ self.assertEqual(len(params["layers"][1]), 0)
871
+ self.assertTrue("weight" in params["layers"][2])
872
+
873
+ m.layers[1] = nn.relu
874
+ y2 = m(x)
875
+ self.assertTrue(mx.array_equal(y, y2))
876
+
877
+ def test_gelu(self):
878
+ inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
879
+
880
+ # From: jax.nn.gelu(np.array(inputs), approximate=False)
881
+ expected = np.array(
882
+ [1.0093501, -0.16925684, 0.22918941, 0.60498625, 0.49459383]
883
+ )
884
+ # From: jax.nn.gelu(np.array(inputs), approximate=True)
885
+ expected_approx = np.array(
886
+ [1.0091482, -0.1693441, 0.22918446, 0.60491, 0.4945476]
887
+ )
888
+
889
+ out = nn.GELU()(mx.array(inputs))
890
+ self.assertTrue(np.allclose(out, expected))
891
+
892
+ # Test the precise/tanh approximation
893
+ out_approx = nn.GELU(approx="precise")(mx.array(inputs))
894
+ out_approx_tanh = nn.GELU(approx="tanh")(mx.array(inputs))
895
+ self.assertTrue(np.allclose(out_approx, expected_approx))
896
+ self.assertTrue(np.allclose(out_approx_tanh, expected_approx))
897
+ self.assertTrue(np.allclose(out_approx, out_approx_tanh))
898
+
899
+ # Crudely check the approximations
900
+ x = mx.arange(-6.0, 6.0, 12 / 100)
901
+ y = nn.gelu(x)
902
+ y_hat1 = nn.gelu_approx(x)
903
+ y_hat2 = nn.gelu_fast_approx(x)
904
+ self.assertLess(mx.abs(y - y_hat1).max(), 0.0005)
905
+ self.assertLess(mx.abs(y - y_hat2).max(), 0.025)
906
+
907
+ def test_sin_pe(self):
908
+ m = nn.SinusoidalPositionalEncoding(16, min_freq=0.01)
909
+ x = mx.arange(10)
910
+ y = m(x)
911
+
912
+ self.assertEqual(y.shape, (10, 16))
913
+ similarities = y @ y.T
914
+ self.assertLess(
915
+ mx.abs(similarities[mx.arange(10), mx.arange(10)] - 1).max(), 1e-5
916
+ )
917
+
918
+ def test_sigmoid(self):
919
+ x = mx.array([1.0, 0.0, -1.0])
920
+ y1 = mx.sigmoid(x)
921
+ y2 = nn.activations.sigmoid(x)
922
+ y3 = nn.Sigmoid()(x)
923
+
924
+ self.assertEqualArray(y1, y2, atol=0, rtol=0)
925
+ self.assertEqualArray(y1, y3, atol=0, rtol=0)
926
+
927
+ def test_relu(self):
928
+ x = mx.array([1.0, -1.0, 0.0])
929
+ y = nn.relu(x)
930
+ self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0])))
931
+ self.assertEqual(y.shape, (3,))
932
+ self.assertEqual(y.dtype, mx.float32)
933
+
934
+ def test_leaky_relu(self):
935
+ x = mx.array([1.0, -1.0, 0.0])
936
+ y = nn.leaky_relu(x)
937
+ self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.01, 0.0])))
938
+ self.assertEqual(y.shape, (3,))
939
+ self.assertEqual(y.dtype, mx.float32)
940
+
941
+ y = nn.LeakyReLU(negative_slope=0.1)(x)
942
+ self.assertTrue(mx.array_equal(y, mx.array([1.0, -0.1, 0.0])))
943
+ self.assertEqual(y.shape, (3,))
944
+ self.assertEqual(y.dtype, mx.float32)
945
+
946
+ def test_elu(self):
947
+ x = mx.array([1.0, -1.0, 0.0])
948
+ y = nn.elu(x)
949
+ epsilon = 1e-4
950
+ expected_y = mx.array([1.0, -0.6321, 0.0])
951
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
952
+ self.assertEqual(y.shape, (3,))
953
+ self.assertEqual(y.dtype, mx.float32)
954
+
955
+ y = nn.ELU(alpha=1.1)(x)
956
+ epsilon = 1e-4
957
+ expected_y = mx.array([1.0, -0.6953, 0.0])
958
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
959
+ self.assertEqual(y.shape, (3,))
960
+ self.assertEqual(y.dtype, mx.float32)
961
+
962
+ def test_relu6(self):
963
+ x = mx.array([1.0, -1.0, 0.0, 7.0, -7.0])
964
+ y = nn.relu6(x)
965
+ self.assertTrue(mx.array_equal(y, mx.array([1.0, 0.0, 0.0, 6.0, 0.0])))
966
+ self.assertEqual(y.shape, (5,))
967
+ self.assertEqual(y.dtype, mx.float32)
968
+
969
+ def test_softmax(self):
970
+ x = mx.array([1.0, -1.0, 0.0])
971
+ y = nn.softmax(x)
972
+ epsilon = 1e-4
973
+ expected_y = mx.array([0.6652, 0.0900, 0.2447])
974
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
975
+ self.assertEqual(y.shape, (3,))
976
+ self.assertEqual(y.dtype, mx.float32)
977
+
978
+ def test_softmin(self):
979
+ x = mx.array([1.0, 2.0, 3.0])
980
+ y = nn.softmin(x)
981
+ epsilon = 1e-4
982
+ expected_y = mx.array([0.6652, 0.2447, 0.0900])
983
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
984
+ self.assertEqual(y.shape, (3,))
985
+ self.assertEqual(y.dtype, mx.float32)
986
+
987
+ def test_softplus(self):
988
+ x = mx.array([1.0, -1.0, 0.0])
989
+ y = nn.softplus(x)
990
+ epsilon = 1e-4
991
+ expected_y = mx.array([1.3133, 0.3133, 0.6931])
992
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
993
+ self.assertEqual(y.shape, (3,))
994
+ self.assertEqual(y.dtype, mx.float32)
995
+
996
+ def test_softsign(self):
997
+ x = mx.array([1.0, -1.0, 0.0])
998
+ y = nn.softsign(x)
999
+ epsilon = 1e-4
1000
+ expected_y = mx.array([0.5, -0.5, 0.0])
1001
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1002
+ self.assertEqual(y.shape, (3,))
1003
+ self.assertEqual(y.dtype, mx.float32)
1004
+
1005
+ def test_softshrink(self):
1006
+ x = mx.array([1.0, -1.0, 0.0])
1007
+ y = nn.softshrink(x)
1008
+ epsilon = 1e-4
1009
+ expected_y = mx.array([0.5, -0.5, 0.0])
1010
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1011
+ self.assertEqual(y.shape, (3,))
1012
+ self.assertEqual(y.dtype, mx.float32)
1013
+
1014
+ y = nn.Softshrink(lambd=0.7)(x)
1015
+ expected_y = mx.array([0.3, -0.3, 0.0])
1016
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1017
+ self.assertEqual(y.shape, (3,))
1018
+ self.assertEqual(y.dtype, mx.float32)
1019
+
1020
+ def test_celu(self):
1021
+ x = mx.array([1.0, -1.0, 0.0])
1022
+ y = nn.celu(x)
1023
+ epsilon = 1e-4
1024
+ expected_y = mx.array([1.0, -0.6321, 0.0])
1025
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1026
+ self.assertEqual(y.shape, (3,))
1027
+ self.assertEqual(y.dtype, mx.float32)
1028
+
1029
+ y = nn.CELU(alpha=1.1)(x)
1030
+ expected_y = mx.array([1.0, -0.6568, 0.0])
1031
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1032
+ self.assertEqual(y.shape, (3,))
1033
+ self.assertEqual(y.dtype, mx.float32)
1034
+
1035
+ def test_log_softmax(self):
1036
+ x = mx.array([1.0, 2.0, 3.0])
1037
+ y = nn.log_softmax(x)
1038
+ epsilon = 1e-4
1039
+ expected_y = mx.array([-2.4076, -1.4076, -0.4076])
1040
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1041
+ self.assertEqual(y.shape, (3,))
1042
+ self.assertEqual(y.dtype, mx.float32)
1043
+
1044
+ def test_log_sigmoid(self):
1045
+ x = mx.array([1.0, -1.0, 0.0])
1046
+ y = nn.log_sigmoid(x)
1047
+ epsilon = 1e-4
1048
+ expected_y = mx.array([-0.3133, -1.3133, -0.6931])
1049
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1050
+ self.assertEqual(y.shape, (3,))
1051
+ self.assertEqual(y.dtype, mx.float32)
1052
+
1053
+ def test_prelu(self):
1054
+ self.assertEqualArray(
1055
+ nn.PReLU()(mx.array([1.0, -1.0, 0.0, 0.5])),
1056
+ mx.array([1.0, -0.25, 0.0, 0.5]),
1057
+ )
1058
+
1059
+ def test_mish(self):
1060
+ self.assertEqualArray(
1061
+ nn.Mish()(mx.array([1.0, -1.0, 0.0, 0.5])),
1062
+ mx.array([0.8651, -0.3034, 0.0000, 0.3752]),
1063
+ )
1064
+
1065
+ def test_hardswish(self):
1066
+ x = mx.array([-3.0, -1.5, 0.0, 1.5, 3.0])
1067
+ y = nn.hardswish(x)
1068
+ epsilon = 1e-4
1069
+ expected_y = mx.array([0.0, -0.375, 0.0, 1.125, 3.0])
1070
+ self.assertTrue(mx.all(mx.abs(y - expected_y) < epsilon))
1071
+ self.assertEqual(y.shape, (5,))
1072
+ self.assertEqual(y.dtype, mx.float32)
1073
+
1074
+ def test_glu(self):
1075
+ x = mx.array([[[1.0, 2.0, 3.0, 4.0]]], dtype=mx.float32)
1076
+ y = mx.array([[[0.952574, 1.96403]]], dtype=mx.float32)
1077
+ out = nn.glu(x)
1078
+ self.assertEqualArray(out, y)
1079
+
1080
+ def test_hard_tanh(self):
1081
+ x = mx.array([1.0, -2.0, 0.0, 0.5, 2.0])
1082
+ y = nn.hard_tanh(x)
1083
+ expected_y = mx.array([1.0, -1.0, 0.0, 0.5, 1.0])
1084
+ self.assertTrue(mx.array_equal(y, expected_y))
1085
+ self.assertEqual(y.shape, (5,))
1086
+ self.assertEqual(y.dtype, mx.float32)
1087
+
1088
+ def test_hard_shrink(self):
1089
+ x = mx.array([1.0, -0.5, 0.0, 0.5, -1.5])
1090
+ y = nn.hard_shrink(x)
1091
+ expected_y = mx.array([1.0, 0.0, 0.0, 0.0, -1.5])
1092
+ self.assertTrue(mx.array_equal(y, expected_y))
1093
+ self.assertEqual(y.shape, (5,))
1094
+ self.assertEqual(y.dtype, mx.float32)
1095
+
1096
+ y = nn.hard_shrink(x, lambd=0.1)
1097
+ expected_y = mx.array([1.0, -0.5, 0.0, 0.5, -1.5])
1098
+ self.assertTrue(mx.array_equal(y, expected_y))
1099
+ self.assertEqual(y.shape, (5,))
1100
+ self.assertEqual(y.dtype, mx.float32)
1101
+
1102
+ def test_rope(self):
1103
+ for kwargs in [{}, {"traditional": False}, {"base": 10000}, {"scale": 0.25}]:
1104
+ rope = nn.RoPE(4, **kwargs)
1105
+ shape = (1, 3, 4)
1106
+ x = mx.random.uniform(shape=shape)
1107
+ y = rope(x)
1108
+ self.assertEqual(y.shape, shape)
1109
+ self.assertEqual(y.dtype, mx.float32)
1110
+
1111
+ y = rope(x, offset=3)
1112
+ self.assertEqual(y.shape, shape)
1113
+
1114
+ y = rope(x.astype(mx.float16))
1115
+ self.assertEqual(y.dtype, mx.float16)
1116
+
1117
+ def test_alibi(self):
1118
+ alibi = nn.ALiBi()
1119
+ shape = (1, 8, 20, 20)
1120
+ x = mx.random.uniform(shape=shape)
1121
+ y = alibi(x)
1122
+ self.assertEqual(y.shape, shape)
1123
+ self.assertEqual(y.dtype, mx.float32)
1124
+
1125
+ y = alibi(x.astype(mx.float16))
1126
+ self.assertEqual(y.dtype, mx.float16)
1127
+
1128
+ def test_dropout(self):
1129
+ x = mx.ones((2, 4))
1130
+ y = nn.Dropout(0.5)(x)
1131
+ self.assertEqual(y.shape, x.shape)
1132
+ self.assertEqual(y.dtype, mx.float32)
1133
+
1134
+ x = mx.ones((2, 4), dtype=mx.bfloat16)
1135
+ y = nn.Dropout(0.5)(x)
1136
+ self.assertEqual(y.shape, x.shape)
1137
+ self.assertEqual(y.dtype, mx.bfloat16)
1138
+
1139
+ x = mx.ones((2, 4), dtype=mx.float16)
1140
+ y = nn.Dropout(0.5)(x)
1141
+ self.assertEqual(y.shape, x.shape)
1142
+ self.assertEqual(y.dtype, mx.float16)
1143
+
1144
+ def test_dropout2d(self):
1145
+ x = mx.ones((2, 4, 4, 4))
1146
+ y = nn.Dropout2d(0.5)(x)
1147
+ self.assertEqual(y.shape, x.shape)
1148
+ self.assertEqual(y.dtype, mx.float32)
1149
+
1150
+ x = mx.ones((2, 4, 4, 4), dtype=mx.bfloat16)
1151
+ y = nn.Dropout2d(0.5)(x)
1152
+ self.assertEqual(y.shape, x.shape)
1153
+ self.assertEqual(y.dtype, mx.bfloat16)
1154
+
1155
+ x = mx.ones((2, 4, 4, 4), dtype=mx.float16)
1156
+ y = nn.Dropout2d(0.5)(x)
1157
+ self.assertEqual(y.shape, x.shape)
1158
+ self.assertEqual(y.dtype, mx.float16)
1159
+
1160
+ def test_dropout3d(self):
1161
+ x = mx.ones((2, 4, 4, 4, 4))
1162
+ y = nn.Dropout3d(0.5)(x)
1163
+ self.assertEqual(y.shape, x.shape)
1164
+ self.assertEqual(y.dtype, mx.float32)
1165
+
1166
+ x = mx.ones((2, 4, 4, 4, 4), dtype=mx.bfloat16)
1167
+ y = nn.Dropout3d(0.5)(x)
1168
+ self.assertEqual(y.shape, x.shape)
1169
+ self.assertEqual(y.dtype, mx.bfloat16)
1170
+
1171
+ x = mx.ones((2, 4, 4, 4, 4), dtype=mx.float16)
1172
+ y = nn.Dropout3d(0.5)(x)
1173
+ self.assertEqual(y.shape, x.shape)
1174
+ self.assertEqual(y.dtype, mx.float16)
1175
+
1176
+ def test_upsample(self):
1177
+ b, h, w, c = 1, 2, 2, 1
1178
+ scale_factor = 2
1179
+ upsample_nearest = nn.Upsample(
1180
+ scale_factor=scale_factor, mode="nearest", align_corners=True
1181
+ )
1182
+ upsample_bilinear = nn.Upsample(
1183
+ scale_factor=scale_factor, mode="linear", align_corners=True
1184
+ )
1185
+ upsample_nearest = nn.Upsample(
1186
+ scale_factor=scale_factor, mode="nearest", align_corners=True
1187
+ )
1188
+ upsample_bilinear_no_align_corners = nn.Upsample(
1189
+ scale_factor=scale_factor, mode="linear", align_corners=False
1190
+ )
1191
+ upsample_nearest_no_align_corners = nn.Upsample(
1192
+ scale_factor=scale_factor, mode="nearest", align_corners=False
1193
+ )
1194
+ # Test single feature map, align corners
1195
+ x = mx.arange(b * h * w * c).reshape((b, c, h, w)).transpose((0, 2, 3, 1))
1196
+ expected_nearest = mx.array(
1197
+ [[[[0, 0, 1, 1], [0, 0, 1, 1], [2, 2, 3, 3], [2, 2, 3, 3]]]]
1198
+ ).transpose((0, 2, 3, 1))
1199
+ expected_bilinear = mx.array(
1200
+ [
1201
+ [
1202
+ [
1203
+ [0, 0.333333, 0.666667, 1],
1204
+ [0.666667, 1, 1.33333, 1.66667],
1205
+ [1.33333, 1.66667, 2, 2.33333],
1206
+ [2, 2.33333, 2.66667, 3],
1207
+ ]
1208
+ ]
1209
+ ]
1210
+ ).transpose((0, 2, 3, 1))
1211
+ # Test single feature map, no align corners
1212
+ x = (
1213
+ mx.arange(1, b * h * w * c + 1)
1214
+ .reshape((b, c, h, w))
1215
+ .transpose((0, 2, 3, 1))
1216
+ )
1217
+ expected_bilinear_no_align_corners = mx.array(
1218
+ [
1219
+ [
1220
+ [
1221
+ [1.0000, 1.2500, 1.7500, 2.0000],
1222
+ [1.5000, 1.7500, 2.2500, 2.5000],
1223
+ [2.5000, 2.7500, 3.2500, 3.5000],
1224
+ [3.0000, 3.2500, 3.7500, 4.0000],
1225
+ ]
1226
+ ]
1227
+ ]
1228
+ ).transpose((0, 2, 3, 1))
1229
+ expected_nearest_no_align_corners = mx.array(
1230
+ [[[[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]]]]
1231
+ ).transpose((0, 2, 3, 1))
1232
+ self.assertTrue(
1233
+ np.allclose(
1234
+ upsample_nearest_no_align_corners(x), expected_nearest_no_align_corners
1235
+ )
1236
+ )
1237
+ self.assertTrue(
1238
+ np.allclose(
1239
+ upsample_bilinear_no_align_corners(x),
1240
+ expected_bilinear_no_align_corners,
1241
+ )
1242
+ )
1243
+
1244
+ # Test a more complex batch
1245
+ b, h, w, c = 2, 3, 3, 2
1246
+ scale_factor = 2
1247
+ x = mx.arange((b * h * w * c)).reshape((b, c, h, w)).transpose((0, 2, 3, 1))
1248
+
1249
+ upsample_nearest = nn.Upsample(
1250
+ scale_factor=scale_factor, mode="nearest", align_corners=True
1251
+ )
1252
+ upsample_bilinear = nn.Upsample(
1253
+ scale_factor=scale_factor, mode="linear", align_corners=True
1254
+ )
1255
+
1256
+ expected_nearest = mx.array(
1257
+ [
1258
+ [
1259
+ [
1260
+ [0.0, 0.0, 1.0, 1.0, 2.0, 2.0],
1261
+ [0.0, 0.0, 1.0, 1.0, 2.0, 2.0],
1262
+ [3.0, 3.0, 4.0, 4.0, 5.0, 5.0],
1263
+ [3.0, 3.0, 4.0, 4.0, 5.0, 5.0],
1264
+ [6.0, 6.0, 7.0, 7.0, 8.0, 8.0],
1265
+ [6.0, 6.0, 7.0, 7.0, 8.0, 8.0],
1266
+ ],
1267
+ [
1268
+ [9.0, 9.0, 10.0, 10.0, 11.0, 11.0],
1269
+ [9.0, 9.0, 10.0, 10.0, 11.0, 11.0],
1270
+ [12.0, 12.0, 13.0, 13.0, 14.0, 14.0],
1271
+ [12.0, 12.0, 13.0, 13.0, 14.0, 14.0],
1272
+ [15.0, 15.0, 16.0, 16.0, 17.0, 17.0],
1273
+ [15.0, 15.0, 16.0, 16.0, 17.0, 17.0],
1274
+ ],
1275
+ ],
1276
+ [
1277
+ [
1278
+ [18.0, 18.0, 19.0, 19.0, 20.0, 20.0],
1279
+ [18.0, 18.0, 19.0, 19.0, 20.0, 20.0],
1280
+ [21.0, 21.0, 22.0, 22.0, 23.0, 23.0],
1281
+ [21.0, 21.0, 22.0, 22.0, 23.0, 23.0],
1282
+ [24.0, 24.0, 25.0, 25.0, 26.0, 26.0],
1283
+ [24.0, 24.0, 25.0, 25.0, 26.0, 26.0],
1284
+ ],
1285
+ [
1286
+ [27.0, 27.0, 28.0, 28.0, 29.0, 29.0],
1287
+ [27.0, 27.0, 28.0, 28.0, 29.0, 29.0],
1288
+ [30.0, 30.0, 31.0, 31.0, 32.0, 32.0],
1289
+ [30.0, 30.0, 31.0, 31.0, 32.0, 32.0],
1290
+ [33.0, 33.0, 34.0, 34.0, 35.0, 35.0],
1291
+ [33.0, 33.0, 34.0, 34.0, 35.0, 35.0],
1292
+ ],
1293
+ ],
1294
+ ]
1295
+ ).transpose((0, 2, 3, 1))
1296
+ expected_bilinear = mx.array(
1297
+ [
1298
+ [
1299
+ [
1300
+ [0.0, 0.4, 0.8, 1.2, 1.6, 2.0],
1301
+ [1.2, 1.6, 2.0, 2.4, 2.8, 3.2],
1302
+ [2.4, 2.8, 3.2, 3.6, 4.0, 4.4],
1303
+ [3.6, 4.0, 4.4, 4.8, 5.2, 5.6],
1304
+ [4.8, 5.2, 5.6, 6.0, 6.4, 6.8],
1305
+ [6.0, 6.4, 6.8, 7.2, 7.6, 8.0],
1306
+ ],
1307
+ [
1308
+ [9.0, 9.4, 9.8, 10.2, 10.6, 11.0],
1309
+ [10.2, 10.6, 11.0, 11.4, 11.8, 12.2],
1310
+ [11.4, 11.8, 12.2, 12.6, 13.0, 13.4],
1311
+ [12.6, 13.0, 13.4, 13.8, 14.2, 14.6],
1312
+ [13.8, 14.2, 14.6, 15.0, 15.4, 15.8],
1313
+ [15.0, 15.4, 15.8, 16.2, 16.6, 17.0],
1314
+ ],
1315
+ ],
1316
+ [
1317
+ [
1318
+ [18.0, 18.4, 18.8, 19.2, 19.6, 20.0],
1319
+ [19.2, 19.6, 20.0, 20.4, 20.8, 21.2],
1320
+ [20.4, 20.8, 21.2, 21.6, 22.0, 22.4],
1321
+ [21.6, 22.0, 22.4, 22.8, 23.2, 23.6],
1322
+ [22.8, 23.2, 23.6, 24.0, 24.4, 24.8],
1323
+ [24.0, 24.4, 24.8, 25.2, 25.6, 26.0],
1324
+ ],
1325
+ [
1326
+ [27.0, 27.4, 27.8, 28.2, 28.6, 29.0],
1327
+ [28.2, 28.6, 29.0, 29.4, 29.8, 30.2],
1328
+ [29.4, 29.8, 30.2, 30.6, 31.0, 31.4],
1329
+ [30.6, 31.0, 31.4, 31.8, 32.2, 32.6],
1330
+ [31.8, 32.2, 32.6, 33.0, 33.4, 33.8],
1331
+ [33.0, 33.4, 33.8, 34.2, 34.6, 35.0],
1332
+ ],
1333
+ ],
1334
+ ]
1335
+ ).transpose((0, 2, 3, 1))
1336
+ self.assertTrue(np.allclose(upsample_nearest(x), expected_nearest))
1337
+ self.assertTrue(np.allclose(upsample_bilinear(x), expected_bilinear))
1338
+
1339
+ # Test different height and width scale_factor
1340
+ b, h, w, c = 1, 2, 2, 2
1341
+ x = mx.arange(b * h * w * c).reshape((b, c, h, w)).transpose((0, 2, 3, 1))
1342
+ upsample_nearest = nn.Upsample(
1343
+ scale_factor=(2, 3), mode="nearest", align_corners=True
1344
+ )
1345
+ upsample_bilinear = nn.Upsample(
1346
+ scale_factor=(2, 3), mode="linear", align_corners=True
1347
+ )
1348
+
1349
+ expected_nearest = mx.array(
1350
+ [
1351
+ [
1352
+ [
1353
+ [0, 0, 0, 1, 1, 1],
1354
+ [0, 0, 0, 1, 1, 1],
1355
+ [2, 2, 2, 3, 3, 3],
1356
+ [2, 2, 2, 3, 3, 3],
1357
+ ],
1358
+ [
1359
+ [4, 4, 4, 5, 5, 5],
1360
+ [4, 4, 4, 5, 5, 5],
1361
+ [6, 6, 6, 7, 7, 7],
1362
+ [6, 6, 6, 7, 7, 7],
1363
+ ],
1364
+ ]
1365
+ ]
1366
+ ).transpose((0, 2, 3, 1))
1367
+ expected_bilinear = mx.array(
1368
+ [
1369
+ [
1370
+ [
1371
+ [0, 0.2, 0.4, 0.6, 0.8, 1],
1372
+ [0.666667, 0.866667, 1.06667, 1.26667, 1.46667, 1.66667],
1373
+ [1.33333, 1.53333, 1.73333, 1.93333, 2.13333, 2.33333],
1374
+ [2, 2.2, 2.4, 2.6, 2.8, 3],
1375
+ ],
1376
+ [
1377
+ [4, 4.2, 4.4, 4.6, 4.8, 5],
1378
+ [4.66667, 4.86667, 5.06667, 5.26667, 5.46667, 5.66667],
1379
+ [5.33333, 5.53333, 5.73333, 5.93333, 6.13333, 6.33333],
1380
+ [6, 6.2, 6.4, 6.6, 6.8, 7],
1381
+ ],
1382
+ ]
1383
+ ]
1384
+ ).transpose((0, 2, 3, 1))
1385
+ self.assertTrue(np.allclose(upsample_nearest(x), expected_nearest))
1386
+ self.assertTrue(np.allclose(upsample_bilinear(x), expected_bilinear))
1387
+
1388
+ # Test repr
1389
+ self.assertEqual(
1390
+ str(nn.Upsample(scale_factor=2)),
1391
+ "Upsample(scale_factor=2.0, mode='nearest', align_corners=False)",
1392
+ )
1393
+ self.assertEqual(
1394
+ str(nn.Upsample(scale_factor=(2, 3))),
1395
+ "Upsample(scale_factor=(2.0, 3.0), mode='nearest', align_corners=False)",
1396
+ )
1397
+
1398
+ def test_pooling(self):
1399
+ # Test 1d pooling
1400
+ x = mx.array(
1401
+ [
1402
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],
1403
+ [[12, 13, 14], [15, 16, 17], [18, 19, 20], [21, 22, 23]],
1404
+ ]
1405
+ )
1406
+ expected_max_pool_output_no_padding_stride_1 = [
1407
+ [[3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
1408
+ [[15.0, 16.0, 17.0], [18.0, 19.0, 20.0], [21.0, 22.0, 23.0]],
1409
+ ]
1410
+ expected_max_pool_output_no_padding_stride_2 = [
1411
+ [[3.0, 4.0, 5.0], [9.0, 10.0, 11.0]],
1412
+ [[15.0, 16.0, 17.0], [21.0, 22.0, 23.0]],
1413
+ ]
1414
+ expected_max_pool_output_padding_1_stride_2 = [
1415
+ [[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
1416
+ [[12.0, 13.0, 14.0], [18.0, 19.0, 20.0], [21.0, 22.0, 23.0]],
1417
+ ]
1418
+ expected_max_pool_output_padding_1_stride_2_kernel_3 = [
1419
+ [[3.0, 4.0, 5.0], [9.0, 10.0, 11.0]],
1420
+ [[15.0, 16.0, 17.0], [21.0, 22.0, 23.0]],
1421
+ ]
1422
+ expected_avg_pool_output_no_padding_stride_1 = [
1423
+ [
1424
+ [1.5000, 2.5000, 3.5000],
1425
+ [4.5000, 5.5000, 6.5000],
1426
+ [7.5000, 8.5000, 9.5000],
1427
+ ],
1428
+ [
1429
+ [13.5000, 14.5000, 15.5000],
1430
+ [16.5000, 17.5000, 18.5000],
1431
+ [19.5000, 20.5000, 21.5000],
1432
+ ],
1433
+ ]
1434
+ expected_avg_pool_output_no_padding_stride_2 = [
1435
+ [[1.5000, 2.5000, 3.5000], [7.5000, 8.5000, 9.5000]],
1436
+ [[13.5000, 14.5000, 15.5000], [19.5000, 20.5000, 21.5000]],
1437
+ ]
1438
+ expected_avg_pool_output_padding_1_stride_2 = [
1439
+ [
1440
+ [0.0000, 0.5000, 1.0000],
1441
+ [4.5000, 5.5000, 6.5000],
1442
+ [4.5000, 5.0000, 5.5000],
1443
+ ],
1444
+ [
1445
+ [6.0000, 6.5000, 7.0000],
1446
+ [16.5000, 17.5000, 18.5000],
1447
+ [10.5000, 11.0000, 11.5000],
1448
+ ],
1449
+ ]
1450
+ expected_avg_pool_output_padding_1_kernel_3 = [
1451
+ [[1, 1.66667, 2.33333], [6, 7, 8]],
1452
+ [[9, 9.66667, 10.3333], [18, 19, 20]],
1453
+ ]
1454
+ self.assertTrue(
1455
+ np.array_equal(
1456
+ nn.MaxPool1d(kernel_size=2, stride=1, padding=0)(x),
1457
+ expected_max_pool_output_no_padding_stride_1,
1458
+ )
1459
+ )
1460
+ self.assertTrue(
1461
+ np.array_equal(
1462
+ nn.MaxPool1d(kernel_size=2, stride=2, padding=0)(x),
1463
+ expected_max_pool_output_no_padding_stride_2,
1464
+ )
1465
+ )
1466
+ self.assertTrue(
1467
+ np.array_equal(
1468
+ nn.MaxPool1d(kernel_size=2, stride=2, padding=1)(x),
1469
+ expected_max_pool_output_padding_1_stride_2,
1470
+ )
1471
+ )
1472
+ self.assertTrue(
1473
+ np.array_equal(
1474
+ nn.MaxPool1d(kernel_size=3, stride=2, padding=1)(x),
1475
+ expected_max_pool_output_padding_1_stride_2_kernel_3,
1476
+ )
1477
+ )
1478
+ self.assertTrue(
1479
+ np.allclose(
1480
+ nn.AvgPool1d(kernel_size=2, stride=1, padding=0)(x),
1481
+ expected_avg_pool_output_no_padding_stride_1,
1482
+ )
1483
+ )
1484
+ self.assertTrue(
1485
+ np.allclose(
1486
+ nn.AvgPool1d(kernel_size=2, stride=2, padding=0)(x),
1487
+ expected_avg_pool_output_no_padding_stride_2,
1488
+ )
1489
+ )
1490
+ self.assertTrue(
1491
+ np.allclose(
1492
+ nn.AvgPool1d(kernel_size=2, stride=2, padding=1)(x),
1493
+ expected_avg_pool_output_padding_1_stride_2,
1494
+ )
1495
+ )
1496
+ self.assertTrue(
1497
+ np.allclose(
1498
+ nn.AvgPool1d(kernel_size=3, stride=2, padding=1)(x),
1499
+ expected_avg_pool_output_padding_1_kernel_3,
1500
+ )
1501
+ )
1502
+ # Test 2d pooling
1503
+ x = mx.array(
1504
+ [
1505
+ [
1506
+ [[0, 16], [1, 17], [2, 18], [3, 19]],
1507
+ [[4, 20], [5, 21], [6, 22], [7, 23]],
1508
+ [[8, 24], [9, 25], [10, 26], [11, 27]],
1509
+ [[12, 28], [13, 29], [14, 30], [15, 31]],
1510
+ ]
1511
+ ]
1512
+ )
1513
+ expected_max_pool_output_no_padding_stride_1 = [
1514
+ [
1515
+ [[5, 21], [6, 22], [7, 23]],
1516
+ [[9, 25], [10, 26], [11, 27]],
1517
+ [[13, 29], [14, 30], [15, 31]],
1518
+ ]
1519
+ ]
1520
+ expected_max_pool_output_no_padding_stride_2 = [
1521
+ [[[5, 21], [7, 23]], [[13, 29], [15, 31]]]
1522
+ ]
1523
+ expected_max_pool_output_padding_1 = [
1524
+ [
1525
+ [[0, 16], [2, 18], [3, 19]],
1526
+ [[8, 24], [10, 26], [11, 27]],
1527
+ [[12, 28], [14, 30], [15, 31]],
1528
+ ]
1529
+ ]
1530
+ expected_mean_pool_output_no_padding_stride_1 = [
1531
+ [
1532
+ [[2.5000, 18.5000], [3.5000, 19.5000], [4.5000, 20.5000]],
1533
+ [[6.5000, 22.5000], [7.5000, 23.5000], [8.5000, 24.5000]],
1534
+ [[10.5000, 26.5000], [11.5000, 27.5000], [12.5000, 28.5000]],
1535
+ ]
1536
+ ]
1537
+ expected_mean_pool_output_no_padding_stride_2 = [
1538
+ [
1539
+ [[2.5000, 18.5000], [4.5000, 20.5000]],
1540
+ [[10.5000, 26.5000], [12.5000, 28.5000]],
1541
+ ]
1542
+ ]
1543
+ expected_mean_pool_output_padding_1 = [
1544
+ [
1545
+ [[0.0000, 4.0000], [0.7500, 8.7500], [0.7500, 4.7500]],
1546
+ [[3.0000, 11.0000], [7.5000, 23.5000], [4.5000, 12.5000]],
1547
+ [[3.0000, 7.0000], [6.7500, 14.7500], [3.7500, 7.7500]],
1548
+ ]
1549
+ ]
1550
+ self.assertTrue(
1551
+ np.array_equal(
1552
+ nn.MaxPool2d(kernel_size=2, stride=1, padding=0)(x),
1553
+ expected_max_pool_output_no_padding_stride_1,
1554
+ )
1555
+ )
1556
+ self.assertTrue(
1557
+ np.array_equal(
1558
+ nn.MaxPool2d(kernel_size=2, stride=2, padding=0)(x),
1559
+ expected_max_pool_output_no_padding_stride_2,
1560
+ )
1561
+ )
1562
+ self.assertTrue(
1563
+ np.array_equal(
1564
+ nn.MaxPool2d(kernel_size=2, stride=2, padding=1)(x),
1565
+ expected_max_pool_output_padding_1,
1566
+ )
1567
+ )
1568
+ # Average pooling
1569
+ self.assertTrue(
1570
+ np.allclose(
1571
+ nn.AvgPool2d(kernel_size=2, stride=1, padding=0)(x),
1572
+ expected_mean_pool_output_no_padding_stride_1,
1573
+ )
1574
+ )
1575
+ self.assertTrue(
1576
+ np.array_equal(
1577
+ nn.AvgPool2d(kernel_size=2, stride=2, padding=0)(x),
1578
+ expected_mean_pool_output_no_padding_stride_2,
1579
+ )
1580
+ )
1581
+ self.assertTrue(
1582
+ np.array_equal(
1583
+ nn.AvgPool2d(kernel_size=2, stride=2, padding=1)(x),
1584
+ expected_mean_pool_output_padding_1,
1585
+ )
1586
+ )
1587
+ # Test multiple batches
1588
+ x = mx.array(
1589
+ [
1590
+ [
1591
+ [[0, 1], [2, 3], [4, 5], [6, 7]],
1592
+ [[8, 9], [10, 11], [12, 13], [14, 15]],
1593
+ [[16, 17], [18, 19], [20, 21], [22, 23]],
1594
+ [[24, 25], [26, 27], [28, 29], [30, 31]],
1595
+ ],
1596
+ [
1597
+ [[32, 33], [34, 35], [36, 37], [38, 39]],
1598
+ [[40, 41], [42, 43], [44, 45], [46, 47]],
1599
+ [[48, 49], [50, 51], [52, 53], [54, 55]],
1600
+ [[56, 57], [58, 59], [60, 61], [62, 63]],
1601
+ ],
1602
+ ]
1603
+ )
1604
+ expected_max_pool_output = [
1605
+ [[[10.0, 11.0], [14.0, 15.0]], [[26.0, 27.0], [30.0, 31.0]]],
1606
+ [[[42.0, 43.0], [46.0, 47.0]], [[58.0, 59.0], [62.0, 63.0]]],
1607
+ ]
1608
+ expected_avg_pool_output = [
1609
+ [[[2.22222, 2.66667], [5.33333, 6]], [[11.3333, 12], [20, 21]]],
1610
+ [[[16.4444, 16.8889], [26.6667, 27.3333]], [[32.6667, 33.3333], [52, 53]]],
1611
+ ]
1612
+ self.assertTrue(
1613
+ np.array_equal(
1614
+ nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x),
1615
+ expected_max_pool_output,
1616
+ )
1617
+ )
1618
+ self.assertTrue(
1619
+ np.allclose(
1620
+ nn.AvgPool2d(kernel_size=3, stride=2, padding=1)(x),
1621
+ expected_avg_pool_output,
1622
+ )
1623
+ )
1624
+ # Test irregular kernel (2, 4), stride (3, 1) and padding (1, 2)
1625
+ x = mx.array(
1626
+ [
1627
+ [
1628
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],
1629
+ [[12, 13, 14], [15, 16, 17], [18, 19, 20], [21, 22, 23]],
1630
+ [[24, 25, 26], [27, 28, 29], [30, 31, 32], [33, 34, 35]],
1631
+ [[36, 37, 38], [39, 40, 41], [42, 43, 44], [45, 46, 47]],
1632
+ ],
1633
+ [
1634
+ [[48, 49, 50], [51, 52, 53], [54, 55, 56], [57, 58, 59]],
1635
+ [[60, 61, 62], [63, 64, 65], [66, 67, 68], [69, 70, 71]],
1636
+ [[72, 73, 74], [75, 76, 77], [78, 79, 80], [81, 82, 83]],
1637
+ [[84, 85, 86], [87, 88, 89], [90, 91, 92], [93, 94, 95]],
1638
+ ],
1639
+ ]
1640
+ )
1641
+ expected_irregular_max_pool_output = [
1642
+ [
1643
+ [
1644
+ [3.0, 4.0, 5.0],
1645
+ [6.0, 7.0, 8.0],
1646
+ [9.0, 10.0, 11.0],
1647
+ [9.0, 10.0, 11.0],
1648
+ [9.0, 10.0, 11.0],
1649
+ ],
1650
+ [
1651
+ [39.0, 40.0, 41.0],
1652
+ [42.0, 43.0, 44.0],
1653
+ [45.0, 46.0, 47.0],
1654
+ [45.0, 46.0, 47.0],
1655
+ [45.0, 46.0, 47.0],
1656
+ ],
1657
+ ],
1658
+ [
1659
+ [
1660
+ [51.0, 52.0, 53.0],
1661
+ [54.0, 55.0, 56.0],
1662
+ [57.0, 58.0, 59.0],
1663
+ [57.0, 58.0, 59.0],
1664
+ [57.0, 58.0, 59.0],
1665
+ ],
1666
+ [
1667
+ [87.0, 88.0, 89.0],
1668
+ [90.0, 91.0, 92.0],
1669
+ [93.0, 94.0, 95.0],
1670
+ [93.0, 94.0, 95.0],
1671
+ [93.0, 94.0, 95.0],
1672
+ ],
1673
+ ],
1674
+ ]
1675
+ expected_irregular_average_pool_output = [
1676
+ [
1677
+ [
1678
+ [0.3750, 0.6250, 0.8750],
1679
+ [1.1250, 1.5000, 1.8750],
1680
+ [2.2500, 2.7500, 3.2500],
1681
+ [2.2500, 2.6250, 3.0000],
1682
+ [1.8750, 2.1250, 2.3750],
1683
+ ],
1684
+ [
1685
+ [15.7500, 16.2500, 16.7500],
1686
+ [24.7500, 25.5000, 26.2500],
1687
+ [34.5000, 35.5000, 36.5000],
1688
+ [27.0000, 27.7500, 28.5000],
1689
+ [18.7500, 19.2500, 19.7500],
1690
+ ],
1691
+ ],
1692
+ [
1693
+ [
1694
+ [12.3750, 12.6250, 12.8750],
1695
+ [19.1250, 19.5000, 19.8750],
1696
+ [26.2500, 26.7500, 27.2500],
1697
+ [20.2500, 20.6250, 21.0000],
1698
+ [13.8750, 14.1250, 14.3750],
1699
+ ],
1700
+ [
1701
+ [39.7500, 40.2500, 40.7500],
1702
+ [60.7500, 61.5000, 62.2500],
1703
+ [82.5000, 83.5000, 84.5000],
1704
+ [63.0000, 63.7500, 64.5000],
1705
+ [42.7500, 43.2500, 43.7500],
1706
+ ],
1707
+ ],
1708
+ ]
1709
+ self.assertTrue(
1710
+ np.array_equal(
1711
+ nn.MaxPool2d(kernel_size=(2, 4), stride=(3, 1), padding=(1, 2))(x),
1712
+ expected_irregular_max_pool_output,
1713
+ )
1714
+ )
1715
+ self.assertTrue(
1716
+ np.allclose(
1717
+ nn.AvgPool2d(kernel_size=(2, 4), stride=(3, 1), padding=(1, 2))(x),
1718
+ expected_irregular_average_pool_output,
1719
+ )
1720
+ )
1721
+ # Test repr
1722
+ self.assertEqual(
1723
+ str(nn.MaxPool1d(kernel_size=3, padding=2)),
1724
+ "MaxPool1d(kernel_size=(3,), stride=(3,), padding=(2,))",
1725
+ )
1726
+ self.assertEqual(
1727
+ str(nn.AvgPool1d(kernel_size=2, stride=3)),
1728
+ "AvgPool1d(kernel_size=(2,), stride=(3,), padding=(0,))",
1729
+ )
1730
+ self.assertEqual(
1731
+ str(nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
1732
+ "MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))",
1733
+ )
1734
+ self.assertEqual(
1735
+ str(nn.AvgPool2d(kernel_size=(1, 2), stride=2, padding=(1, 2))),
1736
+ "AvgPool2d(kernel_size=(1, 2), stride=(2, 2), padding=(1, 2))",
1737
+ )
1738
+ # Test 3d pooling
1739
+ x = mx.array(
1740
+ [
1741
+ [
1742
+ [
1743
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
1744
+ [[9, 10, 11], [12, 13, 14], [15, 16, 17]],
1745
+ [[18, 19, 20], [21, 22, 23], [24, 25, 26]],
1746
+ ],
1747
+ [
1748
+ [[27, 28, 29], [30, 31, 32], [33, 34, 35]],
1749
+ [[36, 37, 38], [39, 40, 41], [42, 43, 44]],
1750
+ [[45, 46, 47], [48, 49, 50], [51, 52, 53]],
1751
+ ],
1752
+ ]
1753
+ ]
1754
+ )
1755
+ expected_max_pool_output_no_padding_stride_1 = [
1756
+ [[[[39, 40, 41], [42, 43, 44]], [[48, 49, 50], [51, 52, 53]]]]
1757
+ ]
1758
+
1759
+ expected_max_pool_output_no_padding_stride_2 = [[[[[39, 40, 41]]]]]
1760
+ expected_max_pool_output_padding_1 = [
1761
+ [
1762
+ [[[0, 1, 2], [6, 7, 8]], [[18, 19, 20], [24, 25, 26]]],
1763
+ [[[27, 28, 29], [33, 34, 35]], [[45, 46, 47], [51, 52, 53]]],
1764
+ ]
1765
+ ]
1766
+ expected_irregular_max_pool_output = [
1767
+ [
1768
+ [[[9, 10, 11], [12, 13, 14], [15, 16, 17]]],
1769
+ [[[36, 37, 38], [39, 40, 41], [42, 43, 44]]],
1770
+ ]
1771
+ ]
1772
+
1773
+ self.assertTrue(
1774
+ np.array_equal(
1775
+ nn.MaxPool3d(kernel_size=2, stride=1, padding=0)(x),
1776
+ expected_max_pool_output_no_padding_stride_1,
1777
+ )
1778
+ )
1779
+ self.assertTrue(
1780
+ np.array_equal(
1781
+ nn.MaxPool3d(kernel_size=2, stride=2, padding=0)(x),
1782
+ expected_max_pool_output_no_padding_stride_2,
1783
+ )
1784
+ )
1785
+ self.assertTrue(
1786
+ np.array_equal(
1787
+ nn.MaxPool3d(kernel_size=2, stride=2, padding=1)(x),
1788
+ expected_max_pool_output_padding_1,
1789
+ )
1790
+ )
1791
+ self.assertTrue(
1792
+ np.array_equal(
1793
+ nn.MaxPool3d(kernel_size=(1, 2, 1), stride=(1, 2, 1))(x),
1794
+ expected_irregular_max_pool_output,
1795
+ )
1796
+ )
1797
+ self.assertEqual(
1798
+ str(nn.MaxPool3d(kernel_size=3, stride=3, padding=2)),
1799
+ "MaxPool3d(kernel_size=(3, 3, 3), stride=(3, 3, 3), padding=(2, 2, 2))",
1800
+ )
1801
+
1802
+ expected_avg_pool_output_no_padding_stride_1 = [
1803
+ [
1804
+ [
1805
+ [[19.5, 20.5, 21.5], [22.5, 23.5, 24.5]],
1806
+ [[28.5, 29.5, 30.5], [31.5, 32.5, 33.5]],
1807
+ ]
1808
+ ]
1809
+ ]
1810
+
1811
+ expected_avg_pool_output_no_padding_stride_2 = [[[[[19.5, 20.5, 21.5]]]]]
1812
+ expected_avg_pool_output_padding_1 = [
1813
+ [
1814
+ [
1815
+ [[0, 0.125, 0.25], [1.125, 1.375, 1.625]],
1816
+ [[3.375, 3.625, 3.875], [9, 9.5, 10]],
1817
+ ],
1818
+ [
1819
+ [[3.375, 3.5, 3.625], [7.875, 8.125, 8.375]],
1820
+ [[10.125, 10.375, 10.625], [22.5, 23, 23.5]],
1821
+ ],
1822
+ ]
1823
+ ]
1824
+ expected_irregular_avg_pool_output = [
1825
+ [
1826
+ [[[4.5, 5.5, 6.5], [7.5, 8.5, 9.5], [10.5, 11.5, 12.5]]],
1827
+ [[[31.5, 32.5, 33.5], [34.5, 35.5, 36.5], [37.5, 38.5, 39.5]]],
1828
+ ]
1829
+ ]
1830
+
1831
+ self.assertTrue(
1832
+ np.array_equal(
1833
+ nn.AvgPool3d(kernel_size=2, stride=1, padding=0)(x),
1834
+ expected_avg_pool_output_no_padding_stride_1,
1835
+ )
1836
+ )
1837
+ self.assertTrue(
1838
+ np.array_equal(
1839
+ nn.AvgPool3d(kernel_size=2, stride=2, padding=0)(x),
1840
+ expected_avg_pool_output_no_padding_stride_2,
1841
+ )
1842
+ )
1843
+ self.assertTrue(
1844
+ np.array_equal(
1845
+ nn.AvgPool3d(kernel_size=2, stride=2, padding=1)(x),
1846
+ expected_avg_pool_output_padding_1,
1847
+ )
1848
+ )
1849
+ self.assertTrue(
1850
+ np.array_equal(
1851
+ nn.AvgPool3d(kernel_size=(1, 2, 1), stride=(1, 2, 1))(x),
1852
+ expected_irregular_avg_pool_output,
1853
+ )
1854
+ )
1855
+ self.assertEqual(
1856
+ str(nn.AvgPool3d(kernel_size=3, stride=3, padding=2)),
1857
+ "AvgPool3d(kernel_size=(3, 3, 3), stride=(3, 3, 3), padding=(2, 2, 2))",
1858
+ )
1859
+
1860
+ def test_set_dtype(self):
1861
+ def assert_dtype(layer, dtype):
1862
+ for k, v in tree_flatten(layer.parameters()):
1863
+ self.assertEqual(v.dtype, dtype, f"dtype mismatch for {k}")
1864
+
1865
+ layer = nn.Linear(input_dims=4, output_dims=8, bias=True)
1866
+ assert_dtype(layer, mx.float32)
1867
+
1868
+ layer.set_dtype(mx.bfloat16)
1869
+ assert_dtype(layer, mx.bfloat16)
1870
+
1871
+ layer.set_dtype(mx.float32, lambda x: False)
1872
+ assert_dtype(layer, mx.bfloat16)
1873
+
1874
+ layer.set_dtype(mx.int32, lambda x: True)
1875
+ assert_dtype(layer, mx.int32)
1876
+
1877
+ layer.set_dtype(mx.int64, predicate=None)
1878
+ assert_dtype(layer, mx.int64)
1879
+
1880
+ layer.set_dtype(mx.int16, lambda x: mx.issubdtype(x, mx.integer))
1881
+ assert_dtype(layer, mx.int16)
1882
+
1883
+ def test_rnn(self):
1884
+ layer = nn.RNN(input_size=5, hidden_size=12, bias=True)
1885
+ inp = mx.random.normal((2, 25, 5))
1886
+
1887
+ h_out = layer(inp)
1888
+ self.assertEqual(h_out.shape, (2, 25, 12))
1889
+
1890
+ layer = nn.RNN(
1891
+ 5,
1892
+ 12,
1893
+ bias=False,
1894
+ nonlinearity=lambda x: mx.maximum(0, x),
1895
+ )
1896
+
1897
+ h_out = layer(inp)
1898
+ self.assertEqual(h_out.shape, (2, 25, 12))
1899
+
1900
+ with self.assertRaises(ValueError):
1901
+ nn.RNN(5, 12, nonlinearity="tanh")
1902
+
1903
+ inp = mx.random.normal((44, 5))
1904
+ h_out = layer(inp)
1905
+ self.assertEqual(h_out.shape, (44, 12))
1906
+
1907
+ h_out = layer(inp, hidden=h_out[-1, :])
1908
+ self.assertEqual(h_out.shape, (44, 12))
1909
+
1910
+ def test_gru(self):
1911
+ layer = nn.GRU(5, 12, bias=True)
1912
+ inp = mx.random.normal((2, 25, 5))
1913
+
1914
+ h_out = layer(inp)
1915
+ self.assertEqual(h_out.shape, (2, 25, 12))
1916
+
1917
+ h_out = layer(inp, hidden=h_out[:, -1, :])
1918
+ self.assertEqual(h_out.shape, (2, 25, 12))
1919
+
1920
+ inp = mx.random.normal((44, 5))
1921
+ h_out = layer(inp)
1922
+ self.assertEqual(h_out.shape, (44, 12))
1923
+
1924
+ h_out = layer(inp, h_out[-1, :])
1925
+ self.assertEqual(h_out.shape, (44, 12))
1926
+
1927
+ def test_lstm(self):
1928
+ layer = nn.LSTM(5, 12)
1929
+ inp = mx.random.normal((2, 25, 5))
1930
+
1931
+ h_out, c_out = layer(inp)
1932
+ self.assertEqual(h_out.shape, (2, 25, 12))
1933
+ self.assertEqual(c_out.shape, (2, 25, 12))
1934
+
1935
+ h_out, c_out = layer(inp, hidden=h_out[:, -1, :], cell=c_out[:, -1, :])
1936
+ self.assertEqual(h_out.shape, (2, 25, 12))
1937
+ self.assertEqual(c_out.shape, (2, 25, 12))
1938
+
1939
+ inp = mx.random.normal((44, 5))
1940
+ h_out, c_out = layer(inp)
1941
+ self.assertEqual(h_out.shape, (44, 12))
1942
+ self.assertEqual(c_out.shape, (44, 12))
1943
+
1944
+ inp = mx.random.normal((44, 5))
1945
+ h_out, c_out = layer(inp, hidden=h_out[-1, :], cell=c_out[-1, :])
1946
+ self.assertEqual(h_out.shape, (44, 12))
1947
+ self.assertEqual(c_out.shape, (44, 12))
1948
+
1949
+ def test_quantized_embedding(self):
1950
+ emb = nn.Embedding(32, 256)
1951
+ qemb = nn.QuantizedEmbedding.from_embedding(emb, bits=8)
1952
+ x = mx.array([2, 6, 9, 3, 0, 3])
1953
+ y = emb(x)
1954
+ yq = qemb(x)
1955
+ self.assertLess((y - yq).abs().max(), qemb.scales.max())
1956
+
1957
+ x = mx.random.uniform(shape=(2, 256))
1958
+ y = emb.as_linear(x)
1959
+ yq = qemb.as_linear(x)
1960
+
1961
+ def cosine(a, b):
1962
+ ab = (a * b).sum(-1)
1963
+ aa = mx.linalg.norm(a, axis=-1)
1964
+ bb = mx.linalg.norm(b, axis=-1)
1965
+ return ab / aa / bb
1966
+
1967
+ self.assertGreater(cosine(y, yq).min(), 0.99)
1968
+
1969
+ def test_causal_mask(self):
1970
+ mask = nn.MultiHeadAttention.create_additive_causal_mask(4, mx.float16)
1971
+ self.assertFalse(mx.any(mx.isnan(mask)))
1972
+ self.assertTrue(mask[0, -1].item() < 0)
1973
+
1974
+ mask = nn.MultiHeadAttention.create_additive_causal_mask(4, mx.bfloat16)
1975
+ self.assertFalse(mx.any(mx.isnan(mask)))
1976
+ self.assertTrue(mask[0, -1].item() < 0)
1977
+
1978
+ def test_attention(self):
1979
+ attn = nn.MultiHeadAttention(32, 4)
1980
+ x = mx.random.normal(shape=(2, 5, 32))
1981
+ out = attn(x, x, x)
1982
+ self.assertEqual(out.shape, x.shape)
1983
+
1984
+
1985
+ if __name__ == "__main__":
1986
+ mlx_tests.MLXTestRunner()