mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,368 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <algorithm>
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/gpu/copy.h"
|
|
6
|
+
#include "mlx/backend/metal/device.h"
|
|
7
|
+
#include "mlx/backend/metal/kernels.h"
|
|
8
|
+
#include "mlx/backend/metal/utils.h"
|
|
9
|
+
#include "mlx/primitives.h"
|
|
10
|
+
|
|
11
|
+
namespace mlx::core {
|
|
12
|
+
|
|
13
|
+
namespace {
|
|
14
|
+
|
|
15
|
+
void single_block_sort(
|
|
16
|
+
const Stream& s,
|
|
17
|
+
metal::Device& d,
|
|
18
|
+
const array& in,
|
|
19
|
+
array& out,
|
|
20
|
+
int axis,
|
|
21
|
+
int bn,
|
|
22
|
+
int tn,
|
|
23
|
+
bool argsort) {
|
|
24
|
+
// Prepare shapes
|
|
25
|
+
int n_rows = in.size() / in.shape(axis);
|
|
26
|
+
|
|
27
|
+
auto in_nc_str = in.strides();
|
|
28
|
+
in_nc_str.erase(in_nc_str.begin() + axis);
|
|
29
|
+
|
|
30
|
+
auto out_nc_str = out.strides();
|
|
31
|
+
out_nc_str.erase(out_nc_str.begin() + axis);
|
|
32
|
+
|
|
33
|
+
auto nc_shape = in.shape();
|
|
34
|
+
nc_shape.erase(nc_shape.begin() + axis);
|
|
35
|
+
|
|
36
|
+
int nc_dim = nc_shape.size();
|
|
37
|
+
|
|
38
|
+
int size_sorted_axis = in.shape(axis);
|
|
39
|
+
int in_stride_sorted_axis = in.strides()[axis];
|
|
40
|
+
int out_stride_sorted_axis = out.strides()[axis];
|
|
41
|
+
|
|
42
|
+
// We can only use the contiguous kernel if the sorted axis
|
|
43
|
+
// has the largest or smallest stride.
|
|
44
|
+
// We also need the input to be contiguous
|
|
45
|
+
bool contiguous = in.flags().contiguous;
|
|
46
|
+
auto check_strides = [](array x, int sort_stride) {
|
|
47
|
+
int min_stride = *std::min_element(x.strides().begin(), x.strides().end());
|
|
48
|
+
int max_stride = *std::max_element(x.strides().begin(), x.strides().end());
|
|
49
|
+
return sort_stride == min_stride || sort_stride == max_stride;
|
|
50
|
+
};
|
|
51
|
+
contiguous &= check_strides(in, in_stride_sorted_axis);
|
|
52
|
+
contiguous &= check_strides(out, out_stride_sorted_axis);
|
|
53
|
+
|
|
54
|
+
// Prepare kernel name
|
|
55
|
+
std::ostringstream kname;
|
|
56
|
+
kname << (contiguous ? "c" : "nc");
|
|
57
|
+
if (argsort) {
|
|
58
|
+
kname << "arg";
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
kname << "_block_sort_" << type_to_name(in) << "_" << type_to_name(out)
|
|
62
|
+
<< "_bn" << bn << "_tn" << tn;
|
|
63
|
+
auto kernel = get_sort_kernel(d, kname.str(), in, out, bn, tn);
|
|
64
|
+
|
|
65
|
+
// Prepare command encoder
|
|
66
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
67
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
68
|
+
|
|
69
|
+
// Set inputs
|
|
70
|
+
compute_encoder.set_input_array(in, 0);
|
|
71
|
+
compute_encoder.set_output_array(out, 1);
|
|
72
|
+
compute_encoder.set_bytes(size_sorted_axis, 2);
|
|
73
|
+
compute_encoder.set_bytes(in_stride_sorted_axis, 3);
|
|
74
|
+
compute_encoder.set_bytes(out_stride_sorted_axis, 4);
|
|
75
|
+
|
|
76
|
+
if (contiguous) {
|
|
77
|
+
int in_stride_segment_axis = INT32_MAX;
|
|
78
|
+
int out_stride_segment_axis = INT32_MAX;
|
|
79
|
+
for (int i = 0; i < in_nc_str.size(); i++) {
|
|
80
|
+
if (nc_shape[i] == 1) {
|
|
81
|
+
continue;
|
|
82
|
+
}
|
|
83
|
+
if (in_nc_str[i] > INT32_MAX || out_nc_str[i] > INT32_MAX) {
|
|
84
|
+
throw std::runtime_error("[Sort::eval_gpu] Stride too large.");
|
|
85
|
+
}
|
|
86
|
+
in_stride_segment_axis =
|
|
87
|
+
std::min(in_stride_segment_axis, static_cast<int>(in_nc_str[i]));
|
|
88
|
+
out_stride_segment_axis =
|
|
89
|
+
std::min(out_stride_segment_axis, static_cast<int>(out_nc_str[i]));
|
|
90
|
+
}
|
|
91
|
+
compute_encoder.set_bytes(in_stride_segment_axis, 5);
|
|
92
|
+
compute_encoder.set_bytes(out_stride_segment_axis, 6);
|
|
93
|
+
} else {
|
|
94
|
+
compute_encoder.set_bytes(nc_dim, 5);
|
|
95
|
+
if (nc_shape.empty()) {
|
|
96
|
+
int shape = 0;
|
|
97
|
+
int64_t stride = 0;
|
|
98
|
+
compute_encoder.set_bytes(shape, 6);
|
|
99
|
+
compute_encoder.set_bytes(stride, 7);
|
|
100
|
+
compute_encoder.set_bytes(stride, 8);
|
|
101
|
+
} else {
|
|
102
|
+
compute_encoder.set_vector_bytes(nc_shape, 6);
|
|
103
|
+
compute_encoder.set_vector_bytes(in_nc_str, 7);
|
|
104
|
+
compute_encoder.set_vector_bytes(out_nc_str, 8);
|
|
105
|
+
}
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
MTL::Size group_dims = MTL::Size(bn, 1, 1);
|
|
109
|
+
MTL::Size grid_dims = MTL::Size(1, n_rows, 1);
|
|
110
|
+
|
|
111
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
void multi_block_sort(
|
|
115
|
+
const Stream& s,
|
|
116
|
+
metal::Device& d,
|
|
117
|
+
const array& in,
|
|
118
|
+
array& out,
|
|
119
|
+
int axis,
|
|
120
|
+
int bn,
|
|
121
|
+
int tn,
|
|
122
|
+
int n_blocks,
|
|
123
|
+
bool argsort) {
|
|
124
|
+
// Prepare shapes
|
|
125
|
+
int n_rows = in.size() / in.shape(axis);
|
|
126
|
+
|
|
127
|
+
auto nc_str = in.strides();
|
|
128
|
+
nc_str.erase(nc_str.begin() + axis);
|
|
129
|
+
|
|
130
|
+
auto nc_shape = in.shape();
|
|
131
|
+
nc_shape.erase(nc_shape.begin() + axis);
|
|
132
|
+
|
|
133
|
+
int nc_dim = nc_shape.size();
|
|
134
|
+
|
|
135
|
+
if (nc_dim == 0) {
|
|
136
|
+
nc_shape = {0};
|
|
137
|
+
nc_str = {1};
|
|
138
|
+
}
|
|
139
|
+
|
|
140
|
+
int size_sorted_axis = in.shape(axis);
|
|
141
|
+
int stride_sorted_axis = in.strides()[axis];
|
|
142
|
+
|
|
143
|
+
// Make temporary copies
|
|
144
|
+
array dev_vals_0({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
|
|
145
|
+
array dev_vals_1({n_rows, size_sorted_axis}, in.dtype(), nullptr, {});
|
|
146
|
+
|
|
147
|
+
array dev_idxs_0({n_rows, size_sorted_axis}, uint32, nullptr, {});
|
|
148
|
+
array dev_idxs_1({n_rows, size_sorted_axis}, uint32, nullptr, {});
|
|
149
|
+
|
|
150
|
+
array block_partitions({n_rows, n_blocks + 1}, uint32, nullptr, {});
|
|
151
|
+
|
|
152
|
+
// Do allocations
|
|
153
|
+
dev_vals_0.set_data(allocator::malloc(dev_vals_0.nbytes()));
|
|
154
|
+
dev_vals_1.set_data(allocator::malloc(dev_vals_1.nbytes()));
|
|
155
|
+
dev_idxs_0.set_data(allocator::malloc(dev_idxs_0.nbytes()));
|
|
156
|
+
dev_idxs_1.set_data(allocator::malloc(dev_idxs_1.nbytes()));
|
|
157
|
+
block_partitions.set_data(allocator::malloc(block_partitions.nbytes()));
|
|
158
|
+
|
|
159
|
+
std::vector<array> copies = {
|
|
160
|
+
dev_vals_0, dev_vals_1, dev_idxs_0, dev_idxs_1, block_partitions};
|
|
161
|
+
|
|
162
|
+
// Prepare command encoder
|
|
163
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
164
|
+
|
|
165
|
+
// Do blockwise sort
|
|
166
|
+
{
|
|
167
|
+
std::ostringstream kname;
|
|
168
|
+
kname << "sort_mbsort_" << type_to_name(dev_vals_0) << "_"
|
|
169
|
+
<< type_to_name(dev_idxs_0) << "_bn" << bn << "_tn" << tn;
|
|
170
|
+
auto kernel =
|
|
171
|
+
get_mb_sort_kernel(d, kname.str(), dev_vals_0, dev_idxs_0, bn, tn);
|
|
172
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
173
|
+
|
|
174
|
+
compute_encoder.set_input_array(in, 0);
|
|
175
|
+
compute_encoder.set_output_array(dev_vals_0, 1);
|
|
176
|
+
compute_encoder.set_output_array(dev_idxs_0, 2);
|
|
177
|
+
compute_encoder.set_bytes(size_sorted_axis, 3);
|
|
178
|
+
compute_encoder.set_bytes(stride_sorted_axis, 4);
|
|
179
|
+
compute_encoder.set_bytes(nc_dim, 5);
|
|
180
|
+
compute_encoder.set_vector_bytes(nc_shape, 6);
|
|
181
|
+
compute_encoder.set_vector_bytes(nc_str, 7);
|
|
182
|
+
|
|
183
|
+
MTL::Size group_dims = MTL::Size(bn, 1, 1);
|
|
184
|
+
MTL::Size grid_dims = MTL::Size(n_blocks, n_rows, 1);
|
|
185
|
+
|
|
186
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
187
|
+
}
|
|
188
|
+
|
|
189
|
+
// Do merges
|
|
190
|
+
bool ping = false;
|
|
191
|
+
array dev_vals_in = dev_vals_0;
|
|
192
|
+
array dev_idxs_in = dev_idxs_0;
|
|
193
|
+
array dev_vals_out = dev_vals_1;
|
|
194
|
+
array dev_idxs_out = dev_idxs_1;
|
|
195
|
+
|
|
196
|
+
int n_thr_per_group = (n_blocks + 1) < 1024 ? (n_blocks + 1) : 1024;
|
|
197
|
+
|
|
198
|
+
for (int merge_tiles = 2; (merge_tiles / 2) < n_blocks; merge_tiles *= 2) {
|
|
199
|
+
dev_vals_in = ping ? dev_vals_1 : dev_vals_0;
|
|
200
|
+
dev_idxs_in = ping ? dev_idxs_1 : dev_idxs_0;
|
|
201
|
+
dev_vals_out = ping ? dev_vals_0 : dev_vals_1;
|
|
202
|
+
dev_idxs_out = ping ? dev_idxs_0 : dev_idxs_1;
|
|
203
|
+
ping = !ping;
|
|
204
|
+
|
|
205
|
+
// Do partition
|
|
206
|
+
{
|
|
207
|
+
std::ostringstream kname;
|
|
208
|
+
kname << "partition_mbsort_" << type_to_name(dev_vals_in) << "_"
|
|
209
|
+
<< type_to_name(dev_idxs_in) << "_bn" << bn << "_tn" << tn;
|
|
210
|
+
|
|
211
|
+
auto kernel =
|
|
212
|
+
get_mb_sort_kernel(d, kname.str(), dev_vals_0, dev_idxs_0, bn, tn);
|
|
213
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
214
|
+
|
|
215
|
+
compute_encoder.set_output_array(block_partitions, 0);
|
|
216
|
+
compute_encoder.set_input_array(dev_vals_in, 1);
|
|
217
|
+
compute_encoder.set_input_array(dev_idxs_in, 2);
|
|
218
|
+
compute_encoder.set_bytes(size_sorted_axis, 3);
|
|
219
|
+
compute_encoder.set_bytes(merge_tiles, 4);
|
|
220
|
+
compute_encoder.set_bytes(n_blocks, 5);
|
|
221
|
+
|
|
222
|
+
MTL::Size group_dims = MTL::Size(n_thr_per_group, 1, 1);
|
|
223
|
+
MTL::Size grid_dims = MTL::Size(1, n_rows, 1);
|
|
224
|
+
|
|
225
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
226
|
+
}
|
|
227
|
+
|
|
228
|
+
// Do merge
|
|
229
|
+
{
|
|
230
|
+
std::ostringstream kname;
|
|
231
|
+
kname << "merge_mbsort_" << type_to_name(dev_vals_in) << "_"
|
|
232
|
+
<< type_to_name(dev_idxs_in) << "_bn" << bn << "_tn" << tn;
|
|
233
|
+
|
|
234
|
+
auto kernel =
|
|
235
|
+
get_mb_sort_kernel(d, kname.str(), dev_vals_0, dev_idxs_0, bn, tn);
|
|
236
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
237
|
+
|
|
238
|
+
compute_encoder.set_input_array(block_partitions, 0);
|
|
239
|
+
compute_encoder.set_input_array(dev_vals_in, 1);
|
|
240
|
+
compute_encoder.set_input_array(dev_idxs_in, 2);
|
|
241
|
+
compute_encoder.set_output_array(dev_vals_out, 3);
|
|
242
|
+
compute_encoder.set_output_array(dev_idxs_out, 4);
|
|
243
|
+
compute_encoder.set_bytes(size_sorted_axis, 5);
|
|
244
|
+
compute_encoder.set_bytes(merge_tiles, 6);
|
|
245
|
+
compute_encoder.set_bytes(n_blocks, 7);
|
|
246
|
+
|
|
247
|
+
MTL::Size group_dims = MTL::Size(bn, 1, 1);
|
|
248
|
+
MTL::Size grid_dims = MTL::Size(n_blocks, n_rows, 1);
|
|
249
|
+
|
|
250
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
251
|
+
}
|
|
252
|
+
}
|
|
253
|
+
|
|
254
|
+
// Copy outputs with appropriate strides
|
|
255
|
+
auto strides = out.strides();
|
|
256
|
+
for (int ax = axis + 1; ax < strides.size(); ax++) {
|
|
257
|
+
strides[ax] *= out.shape(axis);
|
|
258
|
+
}
|
|
259
|
+
strides[axis] = 1;
|
|
260
|
+
copy_gpu_inplace(
|
|
261
|
+
(argsort) ? dev_idxs_out : dev_vals_out,
|
|
262
|
+
out,
|
|
263
|
+
out.shape(),
|
|
264
|
+
strides,
|
|
265
|
+
out.strides(),
|
|
266
|
+
0,
|
|
267
|
+
0,
|
|
268
|
+
(axis == in.ndim() - 1) ? CopyType::Vector : CopyType::General,
|
|
269
|
+
s);
|
|
270
|
+
|
|
271
|
+
d.add_temporaries(std::move(copies), s.index);
|
|
272
|
+
}
|
|
273
|
+
|
|
274
|
+
void gpu_merge_sort(
|
|
275
|
+
const Stream& s,
|
|
276
|
+
metal::Device& d,
|
|
277
|
+
const array& in,
|
|
278
|
+
array& out,
|
|
279
|
+
int axis_,
|
|
280
|
+
bool argsort) {
|
|
281
|
+
// Get size info
|
|
282
|
+
int axis = axis_ < 0 ? axis_ + in.ndim() : axis_;
|
|
283
|
+
int size_sorted_axis = in.shape(axis);
|
|
284
|
+
|
|
285
|
+
// Get kernel size
|
|
286
|
+
int tn = 4;
|
|
287
|
+
int potential_bn = (size_sorted_axis + tn - 1) / tn;
|
|
288
|
+
|
|
289
|
+
int bn;
|
|
290
|
+
if (potential_bn > 256) {
|
|
291
|
+
bn = 512;
|
|
292
|
+
} else if (potential_bn > 128) {
|
|
293
|
+
bn = 256;
|
|
294
|
+
} else if (potential_bn > 64) {
|
|
295
|
+
bn = 128;
|
|
296
|
+
} else if (potential_bn > 32) {
|
|
297
|
+
bn = 64;
|
|
298
|
+
} else {
|
|
299
|
+
bn = 32;
|
|
300
|
+
}
|
|
301
|
+
|
|
302
|
+
if (bn == 512 && size_of(in.dtype()) > 4) {
|
|
303
|
+
bn = 256;
|
|
304
|
+
}
|
|
305
|
+
|
|
306
|
+
int n_per_block = bn * tn;
|
|
307
|
+
int n_blocks = (size_sorted_axis + n_per_block - 1) / n_per_block;
|
|
308
|
+
|
|
309
|
+
if (n_blocks > 1) {
|
|
310
|
+
return multi_block_sort(s, d, in, out, axis, bn, tn, n_blocks, argsort);
|
|
311
|
+
} else {
|
|
312
|
+
return single_block_sort(s, d, in, out, axis, bn, tn, argsort);
|
|
313
|
+
}
|
|
314
|
+
}
|
|
315
|
+
|
|
316
|
+
} // namespace
|
|
317
|
+
|
|
318
|
+
void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
319
|
+
assert(inputs.size() == 1);
|
|
320
|
+
|
|
321
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
322
|
+
|
|
323
|
+
auto& s = stream();
|
|
324
|
+
auto& d = metal::device(s.device);
|
|
325
|
+
auto& in = inputs[0];
|
|
326
|
+
|
|
327
|
+
gpu_merge_sort(s, d, in, out, axis_, true);
|
|
328
|
+
}
|
|
329
|
+
|
|
330
|
+
void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
331
|
+
assert(inputs.size() == 1);
|
|
332
|
+
|
|
333
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
334
|
+
|
|
335
|
+
auto& s = stream();
|
|
336
|
+
auto& d = metal::device(s.device);
|
|
337
|
+
auto& in = inputs[0];
|
|
338
|
+
|
|
339
|
+
gpu_merge_sort(s, d, in, out, axis_, false);
|
|
340
|
+
}
|
|
341
|
+
|
|
342
|
+
void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
343
|
+
// We direct arg partition to sort for now
|
|
344
|
+
assert(inputs.size() == 1);
|
|
345
|
+
|
|
346
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
347
|
+
|
|
348
|
+
auto& s = stream();
|
|
349
|
+
auto& d = metal::device(s.device);
|
|
350
|
+
auto& in = inputs[0];
|
|
351
|
+
|
|
352
|
+
gpu_merge_sort(s, d, in, out, axis_, true);
|
|
353
|
+
}
|
|
354
|
+
|
|
355
|
+
void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
356
|
+
// We direct partition to sort for now
|
|
357
|
+
assert(inputs.size() == 1);
|
|
358
|
+
|
|
359
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
360
|
+
|
|
361
|
+
auto& s = stream();
|
|
362
|
+
auto& d = metal::device(s.device);
|
|
363
|
+
auto& in = inputs[0];
|
|
364
|
+
|
|
365
|
+
gpu_merge_sort(s, d, in, out, axis_, false);
|
|
366
|
+
}
|
|
367
|
+
|
|
368
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/common/ternary.h"
|
|
4
|
+
#include "mlx/backend/metal/device.h"
|
|
5
|
+
#include "mlx/backend/metal/kernels.h"
|
|
6
|
+
#include "mlx/backend/metal/utils.h"
|
|
7
|
+
#include "mlx/primitives.h"
|
|
8
|
+
|
|
9
|
+
namespace mlx::core {
|
|
10
|
+
|
|
11
|
+
void ternary_op_gpu_inplace(
|
|
12
|
+
const std::vector<array>& inputs,
|
|
13
|
+
array& out,
|
|
14
|
+
const char* op,
|
|
15
|
+
const Stream& s) {
|
|
16
|
+
assert(inputs.size() == 3);
|
|
17
|
+
auto& a = inputs[0];
|
|
18
|
+
auto& b = inputs[1];
|
|
19
|
+
auto& c = inputs[2];
|
|
20
|
+
TernaryOpType topt = get_ternary_op_type(a, b, c);
|
|
21
|
+
|
|
22
|
+
if (out.size() == 0) {
|
|
23
|
+
return;
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
// Try to collapse contiguous dims
|
|
27
|
+
auto maybe_collapse = [topt, &a, &b, &c, &out]() {
|
|
28
|
+
if (topt == TernaryOpType::General) {
|
|
29
|
+
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
|
|
30
|
+
return std::make_tuple(
|
|
31
|
+
shape, strides[0], strides[1], strides[2], strides[3]);
|
|
32
|
+
} else {
|
|
33
|
+
Strides e;
|
|
34
|
+
return std::make_tuple(Shape{}, e, e, e, e);
|
|
35
|
+
}
|
|
36
|
+
};
|
|
37
|
+
auto [shape, strides_a, strides_b, strides_c, strides_out] = maybe_collapse();
|
|
38
|
+
|
|
39
|
+
bool large;
|
|
40
|
+
auto ndim = shape.size();
|
|
41
|
+
int work_per_thread;
|
|
42
|
+
if (topt == TernaryOpType::General) {
|
|
43
|
+
large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
|
44
|
+
c.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
|
45
|
+
work_per_thread = large ? 4 : 2;
|
|
46
|
+
} else {
|
|
47
|
+
large = out.data_size() > INT32_MAX;
|
|
48
|
+
work_per_thread = get_work_per_thread(b.dtype(), out.data_size());
|
|
49
|
+
}
|
|
50
|
+
std::string kernel_name;
|
|
51
|
+
if (topt == TernaryOpType::General) {
|
|
52
|
+
kernel_name = "g";
|
|
53
|
+
if (shape.size() <= 3) {
|
|
54
|
+
kernel_name += std::to_string(shape.size());
|
|
55
|
+
} else if (work_per_thread > 1) {
|
|
56
|
+
concatenate(kernel_name, "n", std::to_string(work_per_thread));
|
|
57
|
+
}
|
|
58
|
+
if (large) {
|
|
59
|
+
kernel_name += "large";
|
|
60
|
+
}
|
|
61
|
+
} else {
|
|
62
|
+
if (topt == TernaryOpType::VectorScalarVector) {
|
|
63
|
+
kernel_name = "sv";
|
|
64
|
+
} else if (topt == TernaryOpType::VectorVectorScalar) {
|
|
65
|
+
kernel_name = "vs";
|
|
66
|
+
} else {
|
|
67
|
+
kernel_name = "v";
|
|
68
|
+
}
|
|
69
|
+
if (large) {
|
|
70
|
+
kernel_name += "2";
|
|
71
|
+
} else if (work_per_thread > 1) {
|
|
72
|
+
kernel_name += "n";
|
|
73
|
+
}
|
|
74
|
+
}
|
|
75
|
+
concatenate(kernel_name, "_", op, type_to_name(b));
|
|
76
|
+
|
|
77
|
+
auto& d = metal::device(s.device);
|
|
78
|
+
|
|
79
|
+
auto kernel = get_ternary_kernel(d, kernel_name, out.dtype(), op);
|
|
80
|
+
|
|
81
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
82
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
83
|
+
compute_encoder.set_input_array(a, 0);
|
|
84
|
+
compute_encoder.set_input_array(b, 1);
|
|
85
|
+
compute_encoder.set_input_array(c, 2);
|
|
86
|
+
compute_encoder.set_output_array(out, 3);
|
|
87
|
+
|
|
88
|
+
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
89
|
+
if (topt == TernaryOpType::General) {
|
|
90
|
+
// Launch up to 3D grid of threads
|
|
91
|
+
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
|
92
|
+
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
|
93
|
+
size_t rest = out.size() / (dim0 * dim1);
|
|
94
|
+
|
|
95
|
+
if (ndim > 3) {
|
|
96
|
+
compute_encoder.set_vector_bytes(shape, 4);
|
|
97
|
+
compute_encoder.set_vector_bytes(strides_a, 5);
|
|
98
|
+
compute_encoder.set_vector_bytes(strides_b, 6);
|
|
99
|
+
compute_encoder.set_vector_bytes(strides_c, 7);
|
|
100
|
+
|
|
101
|
+
compute_encoder.set_bytes(ndim, 8);
|
|
102
|
+
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
|
103
|
+
} else {
|
|
104
|
+
// The shape is implicit in the grid for <= 3D
|
|
105
|
+
compute_encoder.set_vector_bytes(strides_a, 4);
|
|
106
|
+
compute_encoder.set_vector_bytes(strides_b, 5);
|
|
107
|
+
compute_encoder.set_vector_bytes(strides_c, 6);
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
if (thread_group_size != 1024) {
|
|
111
|
+
throw std::runtime_error("[Metal::ternary] Must use 1024 sized block");
|
|
112
|
+
}
|
|
113
|
+
MTL::Size group_dims = get_block_dims(dim0, dim1, rest);
|
|
114
|
+
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
|
115
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
116
|
+
} else {
|
|
117
|
+
// Launch a 1D or 2D grid of threads
|
|
118
|
+
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
|
|
119
|
+
if (thread_group_size > nthreads) {
|
|
120
|
+
thread_group_size = nthreads;
|
|
121
|
+
}
|
|
122
|
+
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
123
|
+
MTL::Size grid_dims;
|
|
124
|
+
if (large) {
|
|
125
|
+
compute_encoder.set_bytes<int64_t>(out.data_size(), 4);
|
|
126
|
+
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
|
|
127
|
+
} else {
|
|
128
|
+
compute_encoder.set_bytes<int>(out.data_size(), 4);
|
|
129
|
+
grid_dims = MTL::Size(nthreads, 1, 1);
|
|
130
|
+
}
|
|
131
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
|
|
135
|
+
void ternary_op_gpu(
|
|
136
|
+
const std::vector<array>& inputs,
|
|
137
|
+
array& out,
|
|
138
|
+
const char* op,
|
|
139
|
+
const Stream& s) {
|
|
140
|
+
auto& a = inputs[0];
|
|
141
|
+
auto& b = inputs[1];
|
|
142
|
+
auto& c = inputs[2];
|
|
143
|
+
TernaryOpType topt = get_ternary_op_type(a, b, c);
|
|
144
|
+
set_ternary_op_output_data(a, b, c, out, topt);
|
|
145
|
+
ternary_op_gpu_inplace(inputs, out, op, s);
|
|
146
|
+
}
|
|
147
|
+
|
|
148
|
+
void ternary_op_gpu(
|
|
149
|
+
const std::vector<array>& inputs,
|
|
150
|
+
array& out,
|
|
151
|
+
const char* op) {
|
|
152
|
+
auto& s = out.primitive().stream();
|
|
153
|
+
ternary_op_gpu(inputs, out, op, s);
|
|
154
|
+
}
|
|
155
|
+
|
|
156
|
+
void Select::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
157
|
+
ternary_op_gpu(inputs, out, name());
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/array.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core {
|
|
8
|
+
|
|
9
|
+
void ternary_op_gpu(
|
|
10
|
+
const std::vector<array>& inputs,
|
|
11
|
+
array& out,
|
|
12
|
+
const char* op,
|
|
13
|
+
const Stream& s);
|
|
14
|
+
|
|
15
|
+
void ternary_op_gpu_inplace(
|
|
16
|
+
const std::vector<array>& inputs,
|
|
17
|
+
array& out,
|
|
18
|
+
const char* op,
|
|
19
|
+
const Stream& s);
|
|
20
|
+
|
|
21
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/common/unary.h"
|
|
4
|
+
#include "mlx/backend/metal/device.h"
|
|
5
|
+
#include "mlx/backend/metal/kernels.h"
|
|
6
|
+
#include "mlx/backend/metal/utils.h"
|
|
7
|
+
#include "mlx/primitives.h"
|
|
8
|
+
|
|
9
|
+
#define UNARY_GPU(func) \
|
|
10
|
+
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
|
11
|
+
unary_op_gpu(inputs, out, name()); \
|
|
12
|
+
}
|
|
13
|
+
|
|
14
|
+
namespace mlx::core {
|
|
15
|
+
|
|
16
|
+
void unary_op_gpu_inplace(
|
|
17
|
+
const std::vector<array>& inputs,
|
|
18
|
+
array& out,
|
|
19
|
+
const char* op,
|
|
20
|
+
const Stream& s) {
|
|
21
|
+
auto& in = inputs[0];
|
|
22
|
+
bool contig = in.flags().contiguous;
|
|
23
|
+
if (in.size() == 0) {
|
|
24
|
+
return;
|
|
25
|
+
}
|
|
26
|
+
|
|
27
|
+
auto& d = metal::device(s.device);
|
|
28
|
+
|
|
29
|
+
auto maybe_collapse = [contig, &in]() {
|
|
30
|
+
if (!contig) {
|
|
31
|
+
return collapse_contiguous_dims(in);
|
|
32
|
+
} else {
|
|
33
|
+
return std::make_pair(Shape{}, Strides{});
|
|
34
|
+
}
|
|
35
|
+
};
|
|
36
|
+
auto [shape, strides] = maybe_collapse();
|
|
37
|
+
int ndim = shape.size();
|
|
38
|
+
bool large;
|
|
39
|
+
if (!contig) {
|
|
40
|
+
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
|
41
|
+
} else {
|
|
42
|
+
large = in.data_size() > UINT32_MAX;
|
|
43
|
+
}
|
|
44
|
+
int work_per_thread;
|
|
45
|
+
std::string kernel_name;
|
|
46
|
+
if (contig) {
|
|
47
|
+
work_per_thread = get_work_per_thread(in.dtype(), in.data_size());
|
|
48
|
+
kernel_name = (large ? "v2" : (work_per_thread > 1 ? "vn" : "v"));
|
|
49
|
+
} else {
|
|
50
|
+
work_per_thread = large ? 4 : 1;
|
|
51
|
+
kernel_name = "gn" + std::to_string(work_per_thread);
|
|
52
|
+
if (large) {
|
|
53
|
+
kernel_name += "large";
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
concatenate(kernel_name, "_", op, type_to_name(in), type_to_name(out));
|
|
57
|
+
auto kernel = get_unary_kernel(d, kernel_name, in.dtype(), out.dtype(), op);
|
|
58
|
+
|
|
59
|
+
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
60
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
61
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
62
|
+
compute_encoder.set_input_array(in, 0);
|
|
63
|
+
compute_encoder.set_output_array(out, 1);
|
|
64
|
+
if (!contig) {
|
|
65
|
+
// Launch up to 3D grid of threads
|
|
66
|
+
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
|
67
|
+
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
|
68
|
+
size_t rest = out.size() / (dim0 * dim1);
|
|
69
|
+
compute_encoder.set_vector_bytes(shape, 2);
|
|
70
|
+
compute_encoder.set_vector_bytes(strides, 3);
|
|
71
|
+
compute_encoder.set_bytes(ndim, 4);
|
|
72
|
+
if (thread_group_size != 1024) {
|
|
73
|
+
throw std::runtime_error("[Metal::unary] Must use 1024 sized block");
|
|
74
|
+
}
|
|
75
|
+
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
|
76
|
+
auto group_dims = get_block_dims(dim0, dim1, rest);
|
|
77
|
+
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
|
78
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
79
|
+
} else {
|
|
80
|
+
size_t nthreads = ceildiv(in.data_size(), work_per_thread);
|
|
81
|
+
if (thread_group_size > nthreads) {
|
|
82
|
+
thread_group_size = nthreads;
|
|
83
|
+
}
|
|
84
|
+
|
|
85
|
+
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
86
|
+
MTL::Size grid_dims;
|
|
87
|
+
if (large) {
|
|
88
|
+
compute_encoder.set_bytes<int64_t>(in.data_size(), 2);
|
|
89
|
+
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
|
|
90
|
+
} else {
|
|
91
|
+
compute_encoder.set_bytes<int>(in.data_size(), 2);
|
|
92
|
+
grid_dims = MTL::Size(nthreads, 1, 1);
|
|
93
|
+
}
|
|
94
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
95
|
+
}
|
|
96
|
+
}
|
|
97
|
+
|
|
98
|
+
void unary_op_gpu(
|
|
99
|
+
const std::vector<array>& inputs,
|
|
100
|
+
array& out,
|
|
101
|
+
const char* op,
|
|
102
|
+
const Stream& s) {
|
|
103
|
+
set_unary_output_data(inputs[0], out);
|
|
104
|
+
unary_op_gpu_inplace(inputs, out, op, s);
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
void unary_op_gpu(
|
|
108
|
+
const std::vector<array>& inputs,
|
|
109
|
+
array& out,
|
|
110
|
+
const char* op) {
|
|
111
|
+
auto& s = out.primitive().stream();
|
|
112
|
+
unary_op_gpu(inputs, out, op, s);
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
UNARY_GPU(Abs)
|
|
116
|
+
UNARY_GPU(ArcCos)
|
|
117
|
+
UNARY_GPU(ArcCosh)
|
|
118
|
+
UNARY_GPU(ArcSin)
|
|
119
|
+
UNARY_GPU(ArcSinh)
|
|
120
|
+
UNARY_GPU(ArcTan)
|
|
121
|
+
UNARY_GPU(ArcTanh)
|
|
122
|
+
UNARY_GPU(BitwiseInvert)
|
|
123
|
+
UNARY_GPU(Conjugate)
|
|
124
|
+
UNARY_GPU(Cos)
|
|
125
|
+
UNARY_GPU(Cosh)
|
|
126
|
+
UNARY_GPU(Erf)
|
|
127
|
+
UNARY_GPU(ErfInv)
|
|
128
|
+
UNARY_GPU(Exp)
|
|
129
|
+
UNARY_GPU(Expm1)
|
|
130
|
+
UNARY_GPU(Imag)
|
|
131
|
+
UNARY_GPU(Log1p)
|
|
132
|
+
UNARY_GPU(LogicalNot)
|
|
133
|
+
UNARY_GPU(Floor)
|
|
134
|
+
UNARY_GPU(Ceil)
|
|
135
|
+
UNARY_GPU(Negative)
|
|
136
|
+
UNARY_GPU(Real)
|
|
137
|
+
UNARY_GPU(Sigmoid)
|
|
138
|
+
UNARY_GPU(Sign)
|
|
139
|
+
UNARY_GPU(Sin)
|
|
140
|
+
UNARY_GPU(Sinh)
|
|
141
|
+
UNARY_GPU(Square)
|
|
142
|
+
UNARY_GPU(Sqrt)
|
|
143
|
+
UNARY_GPU(Tan)
|
|
144
|
+
UNARY_GPU(Tanh)
|
|
145
|
+
|
|
146
|
+
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
147
|
+
unary_op_gpu(inputs, out, name());
|
|
148
|
+
}
|
|
149
|
+
|
|
150
|
+
void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
151
|
+
assert(inputs.size() == 1);
|
|
152
|
+
const auto& in = inputs[0];
|
|
153
|
+
if (issubdtype(in.dtype(), inexact)) {
|
|
154
|
+
unary_op_gpu(inputs, out, name());
|
|
155
|
+
} else {
|
|
156
|
+
// No-op integer types
|
|
157
|
+
out.copy_shared_buffer(in);
|
|
158
|
+
}
|
|
159
|
+
}
|
|
160
|
+
|
|
161
|
+
} // namespace mlx::core
|