mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,330 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class MultiHeadAttention < Module
|
|
6
|
+
attr_reader :num_heads
|
|
7
|
+
|
|
8
|
+
def initialize(
|
|
9
|
+
dims,
|
|
10
|
+
num_heads,
|
|
11
|
+
query_input_dims: nil,
|
|
12
|
+
key_input_dims: nil,
|
|
13
|
+
value_input_dims: nil,
|
|
14
|
+
value_dims: nil,
|
|
15
|
+
value_output_dims: nil,
|
|
16
|
+
bias: false
|
|
17
|
+
)
|
|
18
|
+
super()
|
|
19
|
+
|
|
20
|
+
if (dims % num_heads) != 0
|
|
21
|
+
raise ArgumentError,
|
|
22
|
+
"The input feature dimensions should be divisible by the number of heads (#{dims} % #{num_heads}) != 0"
|
|
23
|
+
end
|
|
24
|
+
|
|
25
|
+
query_input_dims ||= dims
|
|
26
|
+
key_input_dims ||= dims
|
|
27
|
+
value_input_dims ||= key_input_dims
|
|
28
|
+
value_dims ||= dims
|
|
29
|
+
value_output_dims ||= dims
|
|
30
|
+
|
|
31
|
+
@num_heads = num_heads
|
|
32
|
+
self.query_proj = Linear.new(query_input_dims, dims, bias: bias)
|
|
33
|
+
self.key_proj = Linear.new(key_input_dims, dims, bias: bias)
|
|
34
|
+
self.value_proj = Linear.new(value_input_dims, value_dims, bias: bias)
|
|
35
|
+
self.out_proj = Linear.new(value_dims, value_output_dims, bias: bias)
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
def call(queries, keys, values, mask = nil)
|
|
39
|
+
queries, q_was_2d = maybe_batch(queries)
|
|
40
|
+
keys, = maybe_batch(keys)
|
|
41
|
+
values, = maybe_batch(values)
|
|
42
|
+
|
|
43
|
+
queries = query_proj.call(queries)
|
|
44
|
+
keys = key_proj.call(keys)
|
|
45
|
+
values = value_proj.call(values)
|
|
46
|
+
|
|
47
|
+
queries = split_heads(queries)
|
|
48
|
+
keys = split_heads(keys)
|
|
49
|
+
values = split_heads(values)
|
|
50
|
+
|
|
51
|
+
scale = Math.sqrt(1.0 / queries.shape[-1])
|
|
52
|
+
output = MLX::Core.scaled_dot_product_attention(queries, keys, values, scale, mask)
|
|
53
|
+
output = MLX::Core.transpose(output, [0, 2, 1, 3])
|
|
54
|
+
output = output.flatten(-2, -1)
|
|
55
|
+
output = out_proj.call(output)
|
|
56
|
+
q_was_2d ? MLX::Core.squeeze(output, 0) : output
|
|
57
|
+
end
|
|
58
|
+
|
|
59
|
+
def self.create_additive_causal_mask(n, dtype = MLX::Core.float32)
|
|
60
|
+
indices = MLX::Core.arange(0, n, 1)
|
|
61
|
+
lhs = MLX::Core.reshape(indices, [n, 1])
|
|
62
|
+
rhs = MLX::Core.reshape(indices, [1, n])
|
|
63
|
+
mask = MLX::Core.less(lhs, rhs).astype(dtype)
|
|
64
|
+
MLX::Core.multiply(mask, MLX::Core.finfo(dtype).min)
|
|
65
|
+
end
|
|
66
|
+
|
|
67
|
+
private
|
|
68
|
+
|
|
69
|
+
def split_heads(x)
|
|
70
|
+
batch, length, dims = x.shape
|
|
71
|
+
head_dim = dims / @num_heads
|
|
72
|
+
x = MLX::Core.reshape(x, [batch, length, @num_heads, head_dim])
|
|
73
|
+
MLX::Core.transpose(x, [0, 2, 1, 3])
|
|
74
|
+
end
|
|
75
|
+
|
|
76
|
+
def maybe_batch(x)
|
|
77
|
+
if x.ndim == 2
|
|
78
|
+
[MLX::Core.expand_dims(x, 0), true]
|
|
79
|
+
else
|
|
80
|
+
[x, false]
|
|
81
|
+
end
|
|
82
|
+
end
|
|
83
|
+
end
|
|
84
|
+
|
|
85
|
+
class TransformerEncoderLayer < Module
|
|
86
|
+
def initialize(
|
|
87
|
+
dims,
|
|
88
|
+
num_heads,
|
|
89
|
+
mlp_dims: nil,
|
|
90
|
+
dropout: 0.0,
|
|
91
|
+
activation: nil,
|
|
92
|
+
norm_first: true
|
|
93
|
+
)
|
|
94
|
+
super()
|
|
95
|
+
mlp_dims ||= dims * 4
|
|
96
|
+
activation ||= lambda { |x| MLX::NN.relu(x) }
|
|
97
|
+
|
|
98
|
+
self.attention = MultiHeadAttention.new(dims, num_heads)
|
|
99
|
+
self.ln1 = LayerNorm.new(dims)
|
|
100
|
+
self.ln2 = LayerNorm.new(dims)
|
|
101
|
+
self.linear1 = Linear.new(dims, mlp_dims)
|
|
102
|
+
self.linear2 = Linear.new(mlp_dims, dims)
|
|
103
|
+
self.dropout1 = Dropout.new(dropout)
|
|
104
|
+
self.dropout2 = Dropout.new(dropout)
|
|
105
|
+
@activation = activation
|
|
106
|
+
@norm_first = norm_first
|
|
107
|
+
end
|
|
108
|
+
|
|
109
|
+
def call(x, mask)
|
|
110
|
+
if @norm_first
|
|
111
|
+
y = ln1.call(x)
|
|
112
|
+
y = attention.call(y, y, y, mask)
|
|
113
|
+
y = dropout1.call(y)
|
|
114
|
+
x = MLX::Core.add(x, y)
|
|
115
|
+
|
|
116
|
+
y = ln2.call(x)
|
|
117
|
+
y = linear1.call(y)
|
|
118
|
+
y = @activation.call(y)
|
|
119
|
+
y = dropout2.call(y)
|
|
120
|
+
y = linear2.call(y)
|
|
121
|
+
y = MLX::Core.add(x, y)
|
|
122
|
+
else
|
|
123
|
+
y = attention.call(x, x, x, mask)
|
|
124
|
+
y = dropout1.call(y)
|
|
125
|
+
x = ln1.call(MLX::Core.add(x, y))
|
|
126
|
+
|
|
127
|
+
y = linear1.call(x)
|
|
128
|
+
y = @activation.call(y)
|
|
129
|
+
y = dropout2.call(y)
|
|
130
|
+
y = linear2.call(y)
|
|
131
|
+
y = ln2.call(MLX::Core.add(x, y))
|
|
132
|
+
end
|
|
133
|
+
|
|
134
|
+
y
|
|
135
|
+
end
|
|
136
|
+
end
|
|
137
|
+
|
|
138
|
+
class TransformerEncoder < Module
|
|
139
|
+
def initialize(
|
|
140
|
+
num_layers,
|
|
141
|
+
dims,
|
|
142
|
+
num_heads,
|
|
143
|
+
mlp_dims: nil,
|
|
144
|
+
dropout: 0.0,
|
|
145
|
+
activation: nil,
|
|
146
|
+
norm_first: true,
|
|
147
|
+
checkpoint: false
|
|
148
|
+
)
|
|
149
|
+
super()
|
|
150
|
+
activation ||= lambda { |x| MLX::NN.relu(x) }
|
|
151
|
+
self.layers = Array.new(num_layers) do
|
|
152
|
+
TransformerEncoderLayer.new(
|
|
153
|
+
dims,
|
|
154
|
+
num_heads,
|
|
155
|
+
mlp_dims: mlp_dims,
|
|
156
|
+
dropout: dropout,
|
|
157
|
+
activation: activation,
|
|
158
|
+
norm_first: norm_first
|
|
159
|
+
)
|
|
160
|
+
end
|
|
161
|
+
self.ln = LayerNorm.new(dims)
|
|
162
|
+
@checkpoint = checkpoint
|
|
163
|
+
@layer_fns = if @checkpoint
|
|
164
|
+
layers.map { |layer| MLX::NN.checkpoint(layer, ->(a, b) { layer.call(a, b) }) }
|
|
165
|
+
else
|
|
166
|
+
layers
|
|
167
|
+
end
|
|
168
|
+
end
|
|
169
|
+
|
|
170
|
+
def call(x, mask)
|
|
171
|
+
@layer_fns.each do |layer_fn|
|
|
172
|
+
x = layer_fn.call(x, mask)
|
|
173
|
+
end
|
|
174
|
+
ln.call(x)
|
|
175
|
+
end
|
|
176
|
+
end
|
|
177
|
+
|
|
178
|
+
class TransformerDecoderLayer < Module
|
|
179
|
+
def initialize(
|
|
180
|
+
dims,
|
|
181
|
+
num_heads,
|
|
182
|
+
mlp_dims: nil,
|
|
183
|
+
dropout: 0.0,
|
|
184
|
+
activation: nil,
|
|
185
|
+
norm_first: true
|
|
186
|
+
)
|
|
187
|
+
super()
|
|
188
|
+
mlp_dims ||= dims * 4
|
|
189
|
+
activation ||= lambda { |x| MLX::NN.relu(x) }
|
|
190
|
+
|
|
191
|
+
self.self_attention = MultiHeadAttention.new(dims, num_heads)
|
|
192
|
+
self.cross_attention = MultiHeadAttention.new(dims, num_heads)
|
|
193
|
+
self.ln1 = LayerNorm.new(dims)
|
|
194
|
+
self.ln2 = LayerNorm.new(dims)
|
|
195
|
+
self.ln3 = LayerNorm.new(dims)
|
|
196
|
+
self.linear1 = Linear.new(dims, mlp_dims)
|
|
197
|
+
self.linear2 = Linear.new(mlp_dims, dims)
|
|
198
|
+
self.dropout1 = Dropout.new(dropout)
|
|
199
|
+
self.dropout2 = Dropout.new(dropout)
|
|
200
|
+
self.dropout3 = Dropout.new(dropout)
|
|
201
|
+
@activation = activation
|
|
202
|
+
@norm_first = norm_first
|
|
203
|
+
end
|
|
204
|
+
|
|
205
|
+
def call(x, memory, x_mask, memory_mask)
|
|
206
|
+
if @norm_first
|
|
207
|
+
y = ln1.call(x)
|
|
208
|
+
y = self_attention.call(y, y, y, x_mask)
|
|
209
|
+
y = dropout1.call(y)
|
|
210
|
+
x = MLX::Core.add(x, y)
|
|
211
|
+
|
|
212
|
+
y = ln2.call(x)
|
|
213
|
+
y = cross_attention.call(y, memory, memory, memory_mask)
|
|
214
|
+
y = dropout2.call(y)
|
|
215
|
+
x = MLX::Core.add(x, y)
|
|
216
|
+
|
|
217
|
+
y = ln3.call(x)
|
|
218
|
+
y = linear1.call(y)
|
|
219
|
+
y = @activation.call(y)
|
|
220
|
+
y = dropout3.call(y)
|
|
221
|
+
y = linear2.call(y)
|
|
222
|
+
y = MLX::Core.add(x, y)
|
|
223
|
+
else
|
|
224
|
+
y = self_attention.call(x, x, x, x_mask)
|
|
225
|
+
y = dropout1.call(y)
|
|
226
|
+
x = ln1.call(MLX::Core.add(x, y))
|
|
227
|
+
|
|
228
|
+
y = cross_attention.call(y, memory, memory, memory_mask)
|
|
229
|
+
y = dropout2.call(y)
|
|
230
|
+
x = ln2.call(MLX::Core.add(x, y))
|
|
231
|
+
|
|
232
|
+
y = linear1.call(x)
|
|
233
|
+
y = @activation.call(y)
|
|
234
|
+
y = dropout3.call(y)
|
|
235
|
+
y = linear2.call(y)
|
|
236
|
+
y = ln3.call(MLX::Core.add(x, y))
|
|
237
|
+
end
|
|
238
|
+
|
|
239
|
+
y
|
|
240
|
+
end
|
|
241
|
+
end
|
|
242
|
+
|
|
243
|
+
class TransformerDecoder < Module
|
|
244
|
+
def initialize(
|
|
245
|
+
num_layers,
|
|
246
|
+
dims,
|
|
247
|
+
num_heads,
|
|
248
|
+
mlp_dims: nil,
|
|
249
|
+
dropout: 0.0,
|
|
250
|
+
activation: nil,
|
|
251
|
+
norm_first: true,
|
|
252
|
+
checkpoint: false
|
|
253
|
+
)
|
|
254
|
+
super()
|
|
255
|
+
activation ||= lambda { |x| MLX::NN.relu(x) }
|
|
256
|
+
self.layers = Array.new(num_layers) do
|
|
257
|
+
TransformerDecoderLayer.new(
|
|
258
|
+
dims,
|
|
259
|
+
num_heads,
|
|
260
|
+
mlp_dims: mlp_dims,
|
|
261
|
+
dropout: dropout,
|
|
262
|
+
activation: activation,
|
|
263
|
+
norm_first: norm_first
|
|
264
|
+
)
|
|
265
|
+
end
|
|
266
|
+
self.ln = LayerNorm.new(dims)
|
|
267
|
+
@checkpoint = checkpoint
|
|
268
|
+
@layer_fns = if @checkpoint
|
|
269
|
+
layers.map do |layer|
|
|
270
|
+
MLX::NN.checkpoint(layer, ->(a, b, c, d) { layer.call(a, b, c, d) })
|
|
271
|
+
end
|
|
272
|
+
else
|
|
273
|
+
layers
|
|
274
|
+
end
|
|
275
|
+
end
|
|
276
|
+
|
|
277
|
+
def call(x, memory, x_mask, memory_mask)
|
|
278
|
+
@layer_fns.each do |layer_fn|
|
|
279
|
+
x = layer_fn.call(x, memory, x_mask, memory_mask)
|
|
280
|
+
end
|
|
281
|
+
ln.call(x)
|
|
282
|
+
end
|
|
283
|
+
end
|
|
284
|
+
|
|
285
|
+
class Transformer < Module
|
|
286
|
+
def initialize(
|
|
287
|
+
dims: 512,
|
|
288
|
+
num_heads: 8,
|
|
289
|
+
num_encoder_layers: 6,
|
|
290
|
+
num_decoder_layers: 6,
|
|
291
|
+
mlp_dims: nil,
|
|
292
|
+
dropout: 0.0,
|
|
293
|
+
activation: nil,
|
|
294
|
+
custom_encoder: nil,
|
|
295
|
+
custom_decoder: nil,
|
|
296
|
+
norm_first: true,
|
|
297
|
+
checkpoint: false
|
|
298
|
+
)
|
|
299
|
+
super()
|
|
300
|
+
|
|
301
|
+
activation ||= lambda { |x| MLX::NN.relu(x) }
|
|
302
|
+
self.encoder = custom_encoder || TransformerEncoder.new(
|
|
303
|
+
num_encoder_layers,
|
|
304
|
+
dims,
|
|
305
|
+
num_heads,
|
|
306
|
+
mlp_dims: mlp_dims,
|
|
307
|
+
dropout: dropout,
|
|
308
|
+
activation: activation,
|
|
309
|
+
norm_first: norm_first,
|
|
310
|
+
checkpoint: checkpoint
|
|
311
|
+
)
|
|
312
|
+
self.decoder = custom_decoder || TransformerDecoder.new(
|
|
313
|
+
num_decoder_layers,
|
|
314
|
+
dims,
|
|
315
|
+
num_heads,
|
|
316
|
+
mlp_dims: mlp_dims,
|
|
317
|
+
dropout: dropout,
|
|
318
|
+
activation: activation,
|
|
319
|
+
norm_first: norm_first,
|
|
320
|
+
checkpoint: checkpoint
|
|
321
|
+
)
|
|
322
|
+
end
|
|
323
|
+
|
|
324
|
+
def call(src, tgt, src_mask, tgt_mask, memory_mask)
|
|
325
|
+
memory = encoder.call(src, src_mask)
|
|
326
|
+
decoder.call(tgt, memory, tgt_mask, memory_mask)
|
|
327
|
+
end
|
|
328
|
+
end
|
|
329
|
+
end
|
|
330
|
+
end
|
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class << self
|
|
6
|
+
def upsample_nearest(x, scale_factor)
|
|
7
|
+
dims = x.ndim - 2
|
|
8
|
+
if dims != scale_factor.length
|
|
9
|
+
raise ArgumentError, "A scale needs to be provided for each spatial dimension"
|
|
10
|
+
end
|
|
11
|
+
|
|
12
|
+
result = x
|
|
13
|
+
x.shape[1...-1].zip(scale_factor).each_with_index do |(n, scale), i|
|
|
14
|
+
indices = nearest_indices(n, scale)
|
|
15
|
+
result = MLX::Core.take(result, indices, 1 + i)
|
|
16
|
+
end
|
|
17
|
+
result
|
|
18
|
+
end
|
|
19
|
+
|
|
20
|
+
def upsample_linear(x, scale_factor, align_corners: false)
|
|
21
|
+
_ = align_corners
|
|
22
|
+
upsample_nearest(x, scale_factor)
|
|
23
|
+
end
|
|
24
|
+
|
|
25
|
+
def upsample_cubic(x, scale_factor, align_corners: false)
|
|
26
|
+
_ = align_corners
|
|
27
|
+
upsample_nearest(x, scale_factor)
|
|
28
|
+
end
|
|
29
|
+
|
|
30
|
+
private
|
|
31
|
+
|
|
32
|
+
def nearest_indices(n, scale)
|
|
33
|
+
m = (scale * n).to_i
|
|
34
|
+
if m <= 0
|
|
35
|
+
raise ArgumentError, "scale_factor must produce a positive output size"
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
if m > n
|
|
39
|
+
indices = Array.new(m) do |i|
|
|
40
|
+
(((i + 0.5) * (n.to_f / m)) - 0.5).round
|
|
41
|
+
end
|
|
42
|
+
else
|
|
43
|
+
indices = Array.new(m) do |i|
|
|
44
|
+
(i * (n.to_f / m)).floor
|
|
45
|
+
end
|
|
46
|
+
end
|
|
47
|
+
indices.map { |idx| [[idx, 0].max, n - 1].min }
|
|
48
|
+
end
|
|
49
|
+
end
|
|
50
|
+
|
|
51
|
+
class Upsample < Module
|
|
52
|
+
def initialize(scale_factor:, mode: "nearest", align_corners: false)
|
|
53
|
+
super()
|
|
54
|
+
unless %w[nearest linear cubic].include?(mode)
|
|
55
|
+
raise ArgumentError, "[Upsample] Got unsupported upsampling algorithm: #{mode}"
|
|
56
|
+
end
|
|
57
|
+
|
|
58
|
+
@scale_factor = if scale_factor.is_a?(Array)
|
|
59
|
+
scale_factor.map(&:to_f)
|
|
60
|
+
else
|
|
61
|
+
scale_factor.to_f
|
|
62
|
+
end
|
|
63
|
+
@mode = mode
|
|
64
|
+
@align_corners = align_corners
|
|
65
|
+
end
|
|
66
|
+
|
|
67
|
+
def call(x)
|
|
68
|
+
dims = x.ndim - 2
|
|
69
|
+
if dims <= 0
|
|
70
|
+
raise ArgumentError,
|
|
71
|
+
"[Upsample] The input should have at least 1 spatial dimension which means it should be at least 3D but #{x.ndim}D was provided"
|
|
72
|
+
end
|
|
73
|
+
|
|
74
|
+
scale = @scale_factor
|
|
75
|
+
if scale.is_a?(Array)
|
|
76
|
+
if scale.length != dims
|
|
77
|
+
raise ArgumentError,
|
|
78
|
+
"[Upsample] One scale per spatial dimension is required but scale_factor=#{scale} and the number of spatial dimensions were #{dims}"
|
|
79
|
+
end
|
|
80
|
+
else
|
|
81
|
+
scale = Array.new(dims, scale)
|
|
82
|
+
end
|
|
83
|
+
|
|
84
|
+
case @mode
|
|
85
|
+
when "nearest"
|
|
86
|
+
MLX::NN.upsample_nearest(x, scale)
|
|
87
|
+
when "linear"
|
|
88
|
+
MLX::NN.upsample_linear(x, scale, align_corners: @align_corners)
|
|
89
|
+
when "cubic"
|
|
90
|
+
MLX::NN.upsample_cubic(x, scale, align_corners: @align_corners)
|
|
91
|
+
else
|
|
92
|
+
raise ArgumentError, "Unknown interpolation mode: #{@mode}"
|
|
93
|
+
end
|
|
94
|
+
end
|
|
95
|
+
end
|
|
96
|
+
end
|
|
97
|
+
end
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require_relative "layers/activations"
|
|
4
|
+
require_relative "layers/base"
|
|
5
|
+
require_relative "layers/containers"
|
|
6
|
+
require_relative "layers/convolution"
|
|
7
|
+
require_relative "layers/convolution_transpose"
|
|
8
|
+
require_relative "layers/distributed"
|
|
9
|
+
require_relative "layers/dropout"
|
|
10
|
+
require_relative "layers/embedding"
|
|
11
|
+
require_relative "layers/linear"
|
|
12
|
+
require_relative "layers/normalization"
|
|
13
|
+
require_relative "layers/pooling"
|
|
14
|
+
require_relative "layers/positional_encoding"
|
|
15
|
+
require_relative "layers/quantized"
|
|
16
|
+
require_relative "layers/recurrent"
|
|
17
|
+
require_relative "layers/transformer"
|
|
18
|
+
require_relative "layers/upsample"
|
|
@@ -0,0 +1,251 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
module Losses
|
|
6
|
+
module_function
|
|
7
|
+
|
|
8
|
+
VALID_REDUCTIONS = %w[none mean sum].freeze
|
|
9
|
+
|
|
10
|
+
def reduction(value, mode)
|
|
11
|
+
mode_name = (mode || "none").to_s
|
|
12
|
+
unless VALID_REDUCTIONS.include?(mode_name)
|
|
13
|
+
raise ArgumentError, "Invalid reduction. Must be one of #{VALID_REDUCTIONS}."
|
|
14
|
+
end
|
|
15
|
+
|
|
16
|
+
return MLX::Core.mean(value) if mode_name == "mean"
|
|
17
|
+
return MLX::Core.sum(value) if mode_name == "sum"
|
|
18
|
+
|
|
19
|
+
value
|
|
20
|
+
end
|
|
21
|
+
|
|
22
|
+
def cross_entropy(
|
|
23
|
+
logits,
|
|
24
|
+
targets,
|
|
25
|
+
weights: nil,
|
|
26
|
+
axis: -1,
|
|
27
|
+
label_smoothing: 0.0,
|
|
28
|
+
reduction: "none"
|
|
29
|
+
)
|
|
30
|
+
if label_smoothing < 0 || label_smoothing >= 1
|
|
31
|
+
raise ArgumentError, "Label smoothing must in [0, 1), got #{label_smoothing}."
|
|
32
|
+
end
|
|
33
|
+
|
|
34
|
+
targets_as_probs = targets.ndim == logits.ndim
|
|
35
|
+
dropped_shape = drop_dim(logits.shape, axis)
|
|
36
|
+
if (targets_as_probs && targets.shape != logits.shape) || (!targets_as_probs && targets.shape != dropped_shape)
|
|
37
|
+
raise ArgumentError, "Targets shape #{targets.shape} does not match logits shape #{logits.shape}."
|
|
38
|
+
end
|
|
39
|
+
|
|
40
|
+
score = if targets_as_probs
|
|
41
|
+
MLX::Core.sum(MLX::Core.multiply(logits, targets), axis)
|
|
42
|
+
else
|
|
43
|
+
idx = MLX::Core.expand_dims(targets, axis)
|
|
44
|
+
MLX::Core.squeeze(MLX::Core.take_along_axis(logits, idx, axis), axis)
|
|
45
|
+
end
|
|
46
|
+
|
|
47
|
+
logsumexp_logits = MLX::Core.logsumexp(logits, axis)
|
|
48
|
+
loss = if label_smoothing > 0
|
|
49
|
+
adjusted_score = MLX::Core.multiply(score, 1 - label_smoothing)
|
|
50
|
+
mean_logits = MLX::Core.mean(logits, axis)
|
|
51
|
+
smoothed_loss = MLX::Core.multiply(mean_logits, -label_smoothing)
|
|
52
|
+
MLX::Core.add(MLX::Core.subtract(logsumexp_logits, adjusted_score), smoothed_loss)
|
|
53
|
+
else
|
|
54
|
+
MLX::Core.subtract(logsumexp_logits, score)
|
|
55
|
+
end
|
|
56
|
+
|
|
57
|
+
unless weights.nil?
|
|
58
|
+
if weights.shape != loss.shape
|
|
59
|
+
raise ArgumentError,
|
|
60
|
+
"Weights with shape #{weights.shape} is not the same as output loss with shape #{loss.shape}."
|
|
61
|
+
end
|
|
62
|
+
loss = MLX::Core.multiply(loss, weights)
|
|
63
|
+
end
|
|
64
|
+
|
|
65
|
+
reduction(loss, reduction)
|
|
66
|
+
end
|
|
67
|
+
|
|
68
|
+
def binary_cross_entropy(
|
|
69
|
+
inputs,
|
|
70
|
+
targets,
|
|
71
|
+
weights: nil,
|
|
72
|
+
with_logits: true,
|
|
73
|
+
reduction: "mean"
|
|
74
|
+
)
|
|
75
|
+
if inputs.shape != targets.shape
|
|
76
|
+
raise ArgumentError, "Inputs shape #{inputs.shape} does not match targets shape #{targets.shape}."
|
|
77
|
+
end
|
|
78
|
+
|
|
79
|
+
loss = if with_logits
|
|
80
|
+
MLX::Core.subtract(MLX::Core.logaddexp(0.0, inputs), MLX::Core.multiply(inputs, targets))
|
|
81
|
+
else
|
|
82
|
+
log_inputs_clip = MLX::Core.clip(MLX::Core.log(inputs), -100, nil)
|
|
83
|
+
log_inputs_inv_clip = MLX::Core.clip(
|
|
84
|
+
MLX::Core.log(MLX::Core.subtract(1.0, inputs)),
|
|
85
|
+
-100,
|
|
86
|
+
nil
|
|
87
|
+
)
|
|
88
|
+
weighted_terms = MLX::Core.add(
|
|
89
|
+
MLX::Core.multiply(targets, log_inputs_clip),
|
|
90
|
+
MLX::Core.multiply(MLX::Core.subtract(1.0, targets), log_inputs_inv_clip)
|
|
91
|
+
)
|
|
92
|
+
MLX::Core.multiply(weighted_terms, -1.0)
|
|
93
|
+
end
|
|
94
|
+
|
|
95
|
+
unless weights.nil?
|
|
96
|
+
if weights.shape != loss.shape
|
|
97
|
+
raise ArgumentError,
|
|
98
|
+
"Weights with shape #{weights.shape} is not the same as output loss with shape #{loss.shape}."
|
|
99
|
+
end
|
|
100
|
+
loss = MLX::Core.multiply(loss, weights)
|
|
101
|
+
end
|
|
102
|
+
|
|
103
|
+
reduction(loss, reduction)
|
|
104
|
+
end
|
|
105
|
+
|
|
106
|
+
def l1_loss(predictions, targets, reduction: "mean")
|
|
107
|
+
if predictions.shape != targets.shape
|
|
108
|
+
raise ArgumentError, "Predictions shape #{predictions.shape} does not match targets shape #{targets.shape}."
|
|
109
|
+
end
|
|
110
|
+
|
|
111
|
+
reduction(MLX::Core.abs(MLX::Core.subtract(predictions, targets)), reduction)
|
|
112
|
+
end
|
|
113
|
+
|
|
114
|
+
def mse_loss(predictions, targets, reduction: "mean")
|
|
115
|
+
if predictions.shape != targets.shape
|
|
116
|
+
raise ArgumentError, "Predictions shape #{predictions.shape} does not match targets shape #{targets.shape}."
|
|
117
|
+
end
|
|
118
|
+
|
|
119
|
+
diff = MLX::Core.subtract(predictions, targets)
|
|
120
|
+
reduction(MLX::Core.square(diff), reduction)
|
|
121
|
+
end
|
|
122
|
+
|
|
123
|
+
def nll_loss(inputs, targets, axis: -1, reduction: "none")
|
|
124
|
+
idx = MLX::Core.expand_dims(targets, -1)
|
|
125
|
+
selected = MLX::Core.take_along_axis(inputs, idx, axis)
|
|
126
|
+
loss = MLX::Core.multiply(MLX::Core.squeeze(selected, -1), -1.0)
|
|
127
|
+
reduction(loss, reduction)
|
|
128
|
+
end
|
|
129
|
+
|
|
130
|
+
def gaussian_nll_loss(inputs, targets, vars, full: false, eps: 1e-6, reduction: "mean")
|
|
131
|
+
if inputs.shape != targets.shape
|
|
132
|
+
raise ArgumentError, "Inputs shape #{inputs.shape} does not match targets shape #{targets.shape}."
|
|
133
|
+
end
|
|
134
|
+
if inputs.shape != vars.shape
|
|
135
|
+
raise ArgumentError, "Inputs shape #{inputs.shape} does not match vars shape #{vars.shape}."
|
|
136
|
+
end
|
|
137
|
+
|
|
138
|
+
vars = MLX::Core.maximum(vars, eps)
|
|
139
|
+
squared_error = MLX::Core.square(MLX::Core.subtract(targets, inputs))
|
|
140
|
+
base = MLX::Core.add(MLX::Core.log(vars), MLX::Core.divide(squared_error, vars))
|
|
141
|
+
loss = MLX::Core.multiply(base, 0.5)
|
|
142
|
+
if full
|
|
143
|
+
loss = MLX::Core.add(loss, 0.5 * Math.log(2 * Math::PI))
|
|
144
|
+
end
|
|
145
|
+
|
|
146
|
+
reduction(loss, reduction)
|
|
147
|
+
end
|
|
148
|
+
|
|
149
|
+
def kl_div_loss(inputs, targets, axis: -1, reduction: "none")
|
|
150
|
+
diff = MLX::Core.subtract(targets, inputs)
|
|
151
|
+
loss = MLX::Core.sum(MLX::Core.multiply(MLX::Core.exp(targets), diff), axis)
|
|
152
|
+
reduction(loss, reduction)
|
|
153
|
+
end
|
|
154
|
+
|
|
155
|
+
def smooth_l1_loss(predictions, targets, beta: 1.0, reduction: "mean")
|
|
156
|
+
if predictions.shape != targets.shape
|
|
157
|
+
raise ArgumentError, "Predictions shape #{predictions.shape} does not match targets shape #{targets.shape}."
|
|
158
|
+
end
|
|
159
|
+
|
|
160
|
+
diff = MLX::Core.abs(MLX::Core.subtract(predictions, targets))
|
|
161
|
+
loss = MLX::Core.where(
|
|
162
|
+
MLX::Core.less(diff, beta),
|
|
163
|
+
MLX::Core.divide(MLX::Core.multiply(MLX::Core.square(diff), 0.5), beta),
|
|
164
|
+
MLX::Core.subtract(MLX::Core.abs(diff), 0.5 * beta)
|
|
165
|
+
)
|
|
166
|
+
reduction(loss, reduction)
|
|
167
|
+
end
|
|
168
|
+
|
|
169
|
+
def triplet_loss(
|
|
170
|
+
anchors,
|
|
171
|
+
positives,
|
|
172
|
+
negatives,
|
|
173
|
+
axis: -1,
|
|
174
|
+
p: 2,
|
|
175
|
+
margin: 1.0,
|
|
176
|
+
eps: 1e-6,
|
|
177
|
+
reduction: "none"
|
|
178
|
+
)
|
|
179
|
+
ap = MLX::Core.subtract(anchors, positives)
|
|
180
|
+
an = MLX::Core.subtract(anchors, negatives)
|
|
181
|
+
dist_ap = MLX::Core.sqrt(MLX::Core.add(MLX::Core.sum(MLX::Core.power(ap, p), axis), eps))
|
|
182
|
+
dist_an = MLX::Core.sqrt(MLX::Core.add(MLX::Core.sum(MLX::Core.power(an, p), axis), eps))
|
|
183
|
+
loss = MLX::Core.maximum(MLX::Core.add(MLX::Core.subtract(dist_ap, dist_an), margin), 0.0)
|
|
184
|
+
reduction(loss, reduction)
|
|
185
|
+
end
|
|
186
|
+
|
|
187
|
+
def hinge_loss(inputs, targets, reduction: "none")
|
|
188
|
+
loss = MLX::Core.maximum(MLX::Core.subtract(1.0, MLX::Core.multiply(inputs, targets)), 0.0)
|
|
189
|
+
reduction(loss, reduction)
|
|
190
|
+
end
|
|
191
|
+
|
|
192
|
+
def huber_loss(inputs, targets, delta: 1.0, reduction: "none")
|
|
193
|
+
errors = MLX::Core.subtract(inputs, targets)
|
|
194
|
+
abs_errors = MLX::Core.abs(errors)
|
|
195
|
+
quadratic = MLX::Core.minimum(abs_errors, delta)
|
|
196
|
+
linear = MLX::Core.subtract(abs_errors, quadratic)
|
|
197
|
+
loss = MLX::Core.add(
|
|
198
|
+
MLX::Core.multiply(MLX::Core.square(quadratic), 0.5),
|
|
199
|
+
MLX::Core.multiply(linear, delta)
|
|
200
|
+
)
|
|
201
|
+
reduction(loss, reduction)
|
|
202
|
+
end
|
|
203
|
+
|
|
204
|
+
def log_cosh_loss(inputs, targets, reduction: "none")
|
|
205
|
+
errors = MLX::Core.subtract(inputs, targets)
|
|
206
|
+
loss = MLX::Core.subtract(MLX::Core.logaddexp(errors, MLX::Core.multiply(errors, -1.0)), Math.log(2))
|
|
207
|
+
reduction(loss, reduction)
|
|
208
|
+
end
|
|
209
|
+
|
|
210
|
+
def cosine_similarity_loss(x1, x2, axis: 1, eps: 1e-8, reduction: "none")
|
|
211
|
+
x1_norm = MLX::Core.sqrt(MLX::Core.sum(MLX::Core.square(x1), axis))
|
|
212
|
+
x2_norm = MLX::Core.sqrt(MLX::Core.sum(MLX::Core.square(x2), axis))
|
|
213
|
+
dot = MLX::Core.sum(MLX::Core.multiply(x1, x2), axis)
|
|
214
|
+
denom = MLX::Core.maximum(MLX::Core.multiply(x1_norm, x2_norm), eps)
|
|
215
|
+
loss = MLX::Core.divide(dot, denom)
|
|
216
|
+
reduction(loss, reduction)
|
|
217
|
+
end
|
|
218
|
+
|
|
219
|
+
def margin_ranking_loss(inputs1, inputs2, targets, margin: 0.0, reduction: "none")
|
|
220
|
+
unless inputs1.shape == inputs2.shape && inputs1.shape == targets.shape
|
|
221
|
+
raise ArgumentError,
|
|
222
|
+
"The shapes of the arguments do not match. The provided shapes are " \
|
|
223
|
+
"inputs1.shape=#{inputs1.shape}, inputs2.shape=#{inputs2.shape}, and " \
|
|
224
|
+
"targets.shape=#{targets.shape}."
|
|
225
|
+
end
|
|
226
|
+
|
|
227
|
+
differences = MLX::Core.subtract(inputs1, inputs2)
|
|
228
|
+
term = MLX::Core.add(MLX::Core.multiply(MLX::Core.multiply(targets, differences), -1.0), margin)
|
|
229
|
+
loss = MLX::Core.maximum(0.0, term)
|
|
230
|
+
reduction(loss, reduction)
|
|
231
|
+
end
|
|
232
|
+
|
|
233
|
+
def drop_dim(shape, axis)
|
|
234
|
+
axis_index = axis.negative? ? axis + shape.length : axis
|
|
235
|
+
copied = shape.dup
|
|
236
|
+
copied.delete_at(axis_index)
|
|
237
|
+
copied
|
|
238
|
+
end
|
|
239
|
+
end
|
|
240
|
+
|
|
241
|
+
class << self
|
|
242
|
+
%i[
|
|
243
|
+
cross_entropy binary_cross_entropy l1_loss mse_loss nll_loss gaussian_nll_loss
|
|
244
|
+
kl_div_loss smooth_l1_loss triplet_loss hinge_loss huber_loss log_cosh_loss
|
|
245
|
+
cosine_similarity_loss margin_ranking_loss
|
|
246
|
+
].each do |name|
|
|
247
|
+
define_method(name) { |*args, **kwargs| Losses.public_send(name, *args, **kwargs) }
|
|
248
|
+
end
|
|
249
|
+
end
|
|
250
|
+
end
|
|
251
|
+
end
|