mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,941 @@
1
+ // Copyright © 2024 Apple Inc.
2
+ #include <numeric>
3
+ #include <sstream>
4
+ #include <unordered_map>
5
+ #include <unordered_set>
6
+
7
+ #include "mlx/einsum.h"
8
+ #include "mlx/ops.h"
9
+
10
+ namespace mlx::core {
11
+
12
+ namespace {
13
+
14
+ // The MLX einsum implementation is based on NumPy (which is based on
15
+ // opt_einsum):
16
+ // https://github.com/numpy/numpy/blob/1d49c7f7ff527c696fc26ab2278ad51632a66660/numpy/_core/einsumfunc.py#L743
17
+ // https://github.com/dgasmith/opt_einsum
18
+
19
+ using CharSet = std::unordered_set<char>;
20
+
21
+ // A helper struct to hold the string and set
22
+ // representation of a subscript to avoid needing
23
+ // to recompute the set
24
+ struct Subscript {
25
+ Subscript(std::string str, CharSet set)
26
+ : str(std::move(str)), set(std::move(set)) {};
27
+ std::string str;
28
+ CharSet set;
29
+ };
30
+
31
+ struct PathInfo {
32
+ size_t naive_cost;
33
+ size_t naive_scaling;
34
+ size_t optimized_cost;
35
+ size_t optimized_scaling;
36
+ size_t largest_term;
37
+ };
38
+
39
+ struct PathNode {
40
+ PathNode(
41
+ std::vector<Subscript> inputs,
42
+ Subscript output,
43
+ std::vector<int> positions)
44
+ : inputs(std::move(inputs)),
45
+ output(std::move(output)),
46
+ positions(std::move(positions)) {};
47
+
48
+ std::vector<Subscript> inputs;
49
+ Subscript output;
50
+
51
+ std::vector<int> positions;
52
+ };
53
+
54
+ // Parse the comma separated subscripts into a vector of strings. If the
55
+ // output subscripts are missing they are inferred.
56
+ //
57
+ // For example:
58
+ // "ij,jk -> ik" becomes {{"ij", "jk"}, "ik"}
59
+ // "ij,jk" becomes {{"ij", "jk"}, "ik"}
60
+ std::pair<std::vector<std::string>, std::string> parse(std::string subscripts) {
61
+ std::string lhs, rhs;
62
+
63
+ // Start by removing all white space
64
+ subscripts.erase(
65
+ std::remove(subscripts.begin(), subscripts.end(), ' '), subscripts.end());
66
+
67
+ if (auto pos = subscripts.find("->"); pos != std::string::npos) {
68
+ // Explicit mode
69
+ lhs = subscripts.substr(0, pos);
70
+ rhs = subscripts.substr(pos + 2);
71
+ } else {
72
+ // Implicit mode:
73
+ // - repeats are summed
74
+ // - ellipses are placed in the beginning of the output
75
+ // - remaining output axes are ordered alphabetically
76
+ lhs = subscripts;
77
+ std::unordered_map<char, int> temp;
78
+ for (auto& c : subscripts) {
79
+ if (c == ',') {
80
+ continue;
81
+ }
82
+ if (c == '.' && rhs.empty()) {
83
+ rhs += "...";
84
+ continue;
85
+ }
86
+
87
+ auto inserted = temp.insert({c, 0});
88
+ inserted.first->second++;
89
+ }
90
+ for (auto& k : temp) {
91
+ if (k.second == 1) {
92
+ rhs += k.first;
93
+ }
94
+ }
95
+ std::sort(rhs.begin(), rhs.end());
96
+ }
97
+ std::vector<std::string> input_list;
98
+ std::stringstream ss(lhs);
99
+ std::string token;
100
+ while (getline(ss, token, ',')) {
101
+ input_list.push_back(token);
102
+ }
103
+ return {input_list, rhs};
104
+ }
105
+
106
+ // Check if two sets are disjoint
107
+ bool disjoint(const CharSet& x, const CharSet& y) {
108
+ for (auto& c : x) {
109
+ if (y.find(c) != y.end()) {
110
+ return false;
111
+ }
112
+ }
113
+ return true;
114
+ }
115
+
116
+ template <typename T>
117
+ size_t term_size(const T& term, std::unordered_map<char, ShapeElem> dict) {
118
+ size_t size = 1;
119
+ for (auto c : term) {
120
+ size *= dict[c];
121
+ }
122
+ return size;
123
+ }
124
+
125
+ size_t flop_count(
126
+ const CharSet& term,
127
+ bool inner,
128
+ int num_terms,
129
+ std::unordered_map<char, ShapeElem> dict) {
130
+ size_t size = term_size(term, dict);
131
+ auto op_factor = 1;
132
+ if ((num_terms - 1) > op_factor) {
133
+ op_factor = num_terms - 1;
134
+ }
135
+ if (inner) {
136
+ op_factor += 1;
137
+ }
138
+ return size * op_factor;
139
+ }
140
+
141
+ std::pair<size_t, int> compute_cost_and_scaling(
142
+ const std::vector<Subscript>& inputs,
143
+ const Subscript& output,
144
+ std::unordered_map<char, ShapeElem> dim_map) {
145
+ CharSet contractions;
146
+ for (auto& in : inputs) {
147
+ contractions.insert(in.set.begin(), in.set.end());
148
+ }
149
+
150
+ bool inner = false;
151
+ for (auto c : contractions) {
152
+ if (output.set.find(c) == output.set.end()) {
153
+ inner = true;
154
+ break;
155
+ }
156
+ }
157
+ auto cost = flop_count(contractions, inner, inputs.size(), dim_map);
158
+ return {cost, contractions.size()};
159
+ }
160
+
161
+ std::tuple<std::vector<PathNode>, size_t, int> greedy_path(
162
+ std::vector<Subscript> inputs,
163
+ const Subscript& output,
164
+ std::unordered_map<char, ShapeElem> dim_map,
165
+ size_t cost_limit,
166
+ size_t memory_limit) {
167
+ // Helper struct for building the greedy path
168
+ struct Contraction {
169
+ Contraction(
170
+ size_t size,
171
+ size_t cost,
172
+ CharSet output,
173
+ int dims,
174
+ int x,
175
+ int y)
176
+ : size(size),
177
+ cost(cost),
178
+ output(std::move(output)),
179
+ dims(dims),
180
+ x(x),
181
+ y(y) {};
182
+
183
+ int64_t size; // Size difference, can be negative
184
+ size_t cost;
185
+ CharSet output;
186
+ int dims; // Number of dimensions in the contraction
187
+ int x;
188
+ int y;
189
+ };
190
+
191
+ // Start by iterating over all possible combinations
192
+ std::vector<std::pair<int, int>> pos_pairs;
193
+ for (int i = 0; i < inputs.size(); ++i) {
194
+ for (int j = i + 1; j < inputs.size(); ++j) {
195
+ pos_pairs.emplace_back(i, j);
196
+ }
197
+ }
198
+
199
+ std::vector<PathNode> path;
200
+ std::vector<Contraction> possible_contractions;
201
+ size_t path_cost = 0;
202
+ int path_scaling = 0;
203
+ auto num_in = inputs.size();
204
+ for (int i = 0; i < num_in - 1; ++i) {
205
+ auto add_contraction = [&](int p1, int p2) {
206
+ CharSet new_term;
207
+ CharSet contractions(inputs[p1].set.begin(), inputs[p1].set.end());
208
+ contractions.insert(inputs[p2].set.begin(), inputs[p2].set.end());
209
+ for (int i = 0; i < inputs.size(); i++) {
210
+ if (i == p1 || i == p2) {
211
+ continue;
212
+ }
213
+ auto& in = inputs[i].set;
214
+ for (auto c : in) {
215
+ if (contractions.find(c) != contractions.end()) {
216
+ new_term.insert(c);
217
+ }
218
+ }
219
+ }
220
+ for (auto c : output.set) {
221
+ if (contractions.find(c) != contractions.end()) {
222
+ new_term.insert(c);
223
+ }
224
+ }
225
+
226
+ // Ignore if:
227
+ // - The size of the new result is greater than the memory limit
228
+ // - The cost is larger than the naive cost
229
+ auto new_size = term_size(new_term, dim_map);
230
+ if (new_size > memory_limit) {
231
+ return;
232
+ }
233
+ int64_t removed_size = term_size(inputs[p1].set, dim_map) +
234
+ term_size(inputs[p2].set, dim_map) - new_size;
235
+
236
+ bool inner = contractions.size() > new_term.size();
237
+ auto cost = flop_count(contractions, inner, 2, dim_map);
238
+ if (path_cost + cost > cost_limit) {
239
+ return;
240
+ }
241
+ possible_contractions.emplace_back(
242
+ removed_size, cost, std::move(new_term), contractions.size(), p1, p2);
243
+ };
244
+
245
+ for (auto& [p1, p2] : pos_pairs) {
246
+ // Ignore outer products
247
+ if (!disjoint(inputs[p1].set, inputs[p2].set)) {
248
+ add_contraction(p1, p2);
249
+ }
250
+ }
251
+
252
+ // If there's nothing in the contraction list,
253
+ // go over the pairs again without ignoring outer products
254
+ if (possible_contractions.empty()) {
255
+ for (auto& [p1, p2] : pos_pairs) {
256
+ add_contraction(p1, p2);
257
+ }
258
+ }
259
+
260
+ if (possible_contractions.empty()) {
261
+ // Default to naive einsum for the remaining inputs
262
+ std::vector<int> positions(inputs.size());
263
+ std::iota(positions.begin(), positions.end(), 0);
264
+ auto [cost, scale] = compute_cost_and_scaling(inputs, output, dim_map);
265
+ path.emplace_back(std::move(inputs), output, std::move(positions));
266
+
267
+ path_cost += cost;
268
+ path_scaling = std::max(scale, path_scaling);
269
+ break;
270
+ }
271
+
272
+ // Find the best contraction
273
+ auto& best = *std::min_element(
274
+ possible_contractions.begin(),
275
+ possible_contractions.end(),
276
+ [](const auto& x, const auto& y) {
277
+ return x.size > y.size || (x.size == y.size && x.cost < y.cost);
278
+ });
279
+ path_scaling = std::max(best.dims, path_scaling);
280
+
281
+ // Construct the output subscripts
282
+ std::string out_str(best.output.begin(), best.output.end());
283
+ // TODO, sorting by dimension size seems suboptimal?
284
+ std::sort(out_str.begin(), out_str.end(), [&dim_map](auto x, auto y) {
285
+ return dim_map[x] < dim_map[y];
286
+ });
287
+ Subscript new_output(std::move(out_str), std::move(best.output));
288
+
289
+ // Add the chosen contraction to the path
290
+ {
291
+ std::vector<Subscript> in_terms;
292
+ in_terms.push_back(std::move(inputs[best.x]));
293
+ in_terms.push_back(std::move(inputs[best.y]));
294
+ path.emplace_back(
295
+ std::move(in_terms), new_output, std::vector<int>{best.x, best.y});
296
+ }
297
+ // Remove used terms
298
+ inputs.erase(inputs.begin() + best.y);
299
+ inputs.erase(inputs.begin() + best.x);
300
+
301
+ // Add the new result
302
+ inputs.push_back(std::move(new_output));
303
+
304
+ // Update the existing contractions based on the selected one
305
+ std::vector<Contraction> updated_contractions;
306
+ for (auto& contraction : possible_contractions) {
307
+ // Drop contractions which contain either selected term
308
+ if (contraction.x == best.x || contraction.x == best.y ||
309
+ contraction.y == best.x || contraction.y == best.y) {
310
+ continue;
311
+ }
312
+
313
+ // Update the positions of other contractions
314
+ int x =
315
+ contraction.x - (contraction.x > best.x) - (contraction.x > best.y);
316
+ int y =
317
+ contraction.y - (contraction.y > best.x) - (contraction.y > best.y);
318
+ contraction.x = x;
319
+ contraction.y = y;
320
+ updated_contractions.push_back(std::move(contraction));
321
+ }
322
+
323
+ pos_pairs.clear();
324
+ for (int i = 0; i < inputs.size() - 1; ++i) {
325
+ pos_pairs.emplace_back(i, inputs.size() - 1);
326
+ }
327
+ path_cost += best.cost;
328
+
329
+ possible_contractions = std::move(updated_contractions);
330
+ }
331
+ return {path, path_cost, path_scaling};
332
+ }
333
+
334
+ // Assumes inputs have already have had repeats and single axis sums collapsed
335
+ bool can_dot(const std::vector<Subscript>& inputs, const Subscript& output) {
336
+ if (inputs.size() != 2) {
337
+ return false;
338
+ }
339
+
340
+ for (auto c : inputs[0].set) {
341
+ // Use batched tensordot if anything is being contracted
342
+ if (output.set.find(c) == output.set.end()) {
343
+ return true;
344
+ }
345
+ }
346
+ return false;
347
+ }
348
+
349
+ array batch_tensordot(
350
+ array a,
351
+ array b,
352
+ std::vector<int> a_contract,
353
+ std::vector<int> a_batch,
354
+ std::vector<int> a_concat,
355
+ std::vector<int> b_contract,
356
+ std::vector<int> b_batch,
357
+ std::vector<int> b_concat,
358
+ StreamOrDevice s) {
359
+ // Broadcast contracting dimensions
360
+ {
361
+ auto a_shape = a.shape();
362
+ auto b_shape = b.shape();
363
+ for (int i = 0; i < a_contract.size(); ++i) {
364
+ auto d = std::max(a.shape(a_contract[i]), b.shape(b_contract[i]));
365
+ a_shape[a_contract[i]] = d;
366
+ b_shape[b_contract[i]] = d;
367
+ }
368
+ a = broadcast_to(a, a_shape, s);
369
+ b = broadcast_to(b, b_shape, s);
370
+ }
371
+ auto transpose_reshape = [&s](
372
+ const array& x,
373
+ const std::vector<int>& i,
374
+ const std::vector<int>& j,
375
+ const std::vector<int>& k) {
376
+ std::vector<int> reorder(i.begin(), i.end());
377
+ reorder.insert(reorder.end(), j.begin(), j.end());
378
+ reorder.insert(reorder.end(), k.begin(), k.end());
379
+
380
+ int size1 = 1;
381
+ for (auto s : j) {
382
+ size1 *= x.shape(s);
383
+ }
384
+
385
+ int size2 = 1;
386
+ for (auto s : k) {
387
+ size2 *= x.shape(s);
388
+ }
389
+
390
+ Shape shape;
391
+ for (auto ax : i) {
392
+ shape.push_back(x.shape(ax));
393
+ }
394
+ shape.push_back(size1);
395
+ shape.push_back(size2);
396
+
397
+ return reshape(transpose(x, reorder, s), std::move(shape), s);
398
+ };
399
+
400
+ Shape out_shape;
401
+ for (auto ax : a_batch) {
402
+ out_shape.push_back(a.shape(ax));
403
+ }
404
+ for (auto ax : a_concat) {
405
+ out_shape.push_back(a.shape(ax));
406
+ }
407
+ for (auto ax : b_concat) {
408
+ out_shape.push_back(b.shape(ax));
409
+ }
410
+
411
+ a = transpose_reshape(a, a_batch, a_concat, a_contract);
412
+ b = transpose_reshape(b, b_batch, b_contract, b_concat);
413
+
414
+ return reshape(matmul(a, b, s), std::move(out_shape), s);
415
+ }
416
+
417
+ // Collapse repeated subscripts and return the resulting array. The subscript
418
+ // is also updated in place. For example:
419
+ // - Given an input with shape (4, 4) and subscript "ii", returns
420
+ // the diagonal of shape (4,) and updates the subscript to "i".
421
+ // - Given an input with shape (4, 2, 4, 2) and subscript "ijij",
422
+ // returns an output with shape (4, 2) and updates the subscript
423
+ // to "ij".
424
+ array collapse_repeats(array in, Subscript& subscript, StreamOrDevice s) {
425
+ // Build a list of (repeat chars, num repeats)
426
+ auto& str = subscript.str;
427
+ std::vector<std::pair<char, int>> repeats;
428
+ std::string new_str;
429
+ {
430
+ std::string repeat_str;
431
+ std::string no_repeat_str;
432
+ std::unordered_map<char, int> counts;
433
+ for (int i = 0; i < str.size(); ++i) {
434
+ auto [it, _] = counts.insert({str[i], 0});
435
+ it->second++;
436
+ }
437
+
438
+ for (auto& v : counts) {
439
+ if (v.second > 1) {
440
+ repeats.emplace_back(v.first, v.second);
441
+ repeat_str += v.first;
442
+ }
443
+ }
444
+ for (auto& c : str) {
445
+ if (counts[c] == 1) {
446
+ no_repeat_str += c;
447
+ }
448
+ }
449
+ new_str = repeat_str + no_repeat_str;
450
+ }
451
+
452
+ // Build the inputs for gather
453
+ auto slice_sizes = in.shape();
454
+ std::vector<int> axes;
455
+ std::vector<array> indices;
456
+ int n_expand = repeats.size();
457
+ for (auto [c, v] : repeats) {
458
+ for (int i = 0; i < str.size(); ++i) {
459
+ if (str[i] == c) {
460
+ slice_sizes[i] = 1;
461
+ axes.push_back(i);
462
+ }
463
+ }
464
+ Shape idx_shape(n_expand--, 1);
465
+ idx_shape[0] = in.shape(axes.back());
466
+ auto idx = reshape(
467
+ arange(static_cast<ShapeElem>(in.shape(axes.back())), s), idx_shape, s);
468
+ for (int i = 0; i < v; ++i) {
469
+ indices.push_back(idx);
470
+ }
471
+ }
472
+
473
+ in = gather(in, indices, axes, slice_sizes, s);
474
+
475
+ // Update subscript string with removed dups
476
+ str = new_str;
477
+
478
+ // Squeeze singleton dimensions left over from the gather
479
+ for (auto& ax : axes) {
480
+ ax += indices[0].ndim();
481
+ }
482
+
483
+ return squeeze(in, axes, s);
484
+ }
485
+
486
+ // Collapse repeat indices and sum single dimensions.
487
+ // For example:
488
+ // - "aa" becomes "a"
489
+ // - "ij,jk->k" becoms "j,jk->k"
490
+ void preprocess_einsum_inputs(
491
+ std::vector<Subscript>& inputs,
492
+ const Subscript& output,
493
+ const std::vector<int>& positions,
494
+ std::vector<array>& operands,
495
+ StreamOrDevice s) {
496
+ // Collapse repeat indices
497
+ for (int i = 0; i < inputs.size(); ++i) {
498
+ auto& in = inputs[i];
499
+ if (in.set.size() < in.str.size()) {
500
+ operands[positions[i]] = collapse_repeats(operands[positions[i]], in, s);
501
+ }
502
+ }
503
+
504
+ // Sum indices that are only in a single input
505
+ {
506
+ std::unordered_map<char, int> counts;
507
+ for (auto& in : inputs) {
508
+ for (auto c : in.set) {
509
+ auto inserted = counts.insert({c, 0});
510
+ inserted.first->second++;
511
+ }
512
+ }
513
+ for (auto c : output.set) {
514
+ auto inserted = counts.insert({c, 0});
515
+ inserted.first->second++;
516
+ }
517
+ for (int i = 0; i < inputs.size(); ++i) {
518
+ auto& in = inputs[i];
519
+ std::vector<int> sum_axes;
520
+ for (int ax = 0; ax < in.str.size(); ++ax) {
521
+ if (counts[in.str[ax]] == 1) {
522
+ sum_axes.push_back(ax);
523
+ }
524
+ }
525
+ if (!sum_axes.empty()) {
526
+ operands[positions[i]] =
527
+ sum(operands[positions[i]], sum_axes, false, s);
528
+ }
529
+ for (auto it = sum_axes.rbegin(); it != sum_axes.rend(); ++it) {
530
+ in.set.erase(in.str[*it]);
531
+ in.str.erase(in.str.begin() + *it);
532
+ }
533
+ }
534
+ }
535
+ }
536
+
537
+ array einsum_naive(
538
+ std::vector<Subscript> inputs,
539
+ const Subscript& output,
540
+ const std::vector<int>& positions,
541
+ std::vector<array> operands,
542
+ StreamOrDevice s) {
543
+ // Map each character to an axis
544
+ std::unordered_map<char, int> char_to_ax;
545
+ for (auto& in : inputs) {
546
+ for (auto c : in.str) {
547
+ char_to_ax.insert({c, char_to_ax.size()});
548
+ }
549
+ }
550
+
551
+ // Expand and transpose inputs as needed
552
+ for (int i = 0; i < inputs.size(); ++i) {
553
+ int pos = positions[i];
554
+ auto& op = operands[pos];
555
+
556
+ // Add missing dimensions at the end
557
+ if (op.ndim() != char_to_ax.size()) {
558
+ auto shape = op.shape();
559
+ shape.insert(shape.end(), char_to_ax.size() - shape.size(), 1);
560
+ op = reshape(op, std::move(shape), s);
561
+ }
562
+
563
+ // Transpose:
564
+ // - Build a vector of (char, ax) pairs for the current input
565
+ // - Sort the vector by the canonical axis in char_to_ax
566
+ // - Extract the sorted axis to get transpose order
567
+ std::vector<std::pair<char, int>> str_ax;
568
+ for (auto c : inputs[i].str) {
569
+ str_ax.emplace_back(c, str_ax.size());
570
+ }
571
+ for (auto [c, ax] : char_to_ax) {
572
+ if (inputs[i].set.find(c) == inputs[i].set.end()) {
573
+ str_ax.emplace_back(c, str_ax.size());
574
+ }
575
+ }
576
+ std::sort(
577
+ str_ax.begin(),
578
+ str_ax.end(),
579
+ [&char_to_ax](const auto& x, const auto& y) {
580
+ return char_to_ax[x.first] < char_to_ax[y.first];
581
+ });
582
+
583
+ // Skip the transpose if not needed
584
+ if (std::is_sorted(
585
+ str_ax.begin(), str_ax.end(), [](const auto& x, const auto& y) {
586
+ return x.second < y.second;
587
+ })) {
588
+ continue;
589
+ }
590
+
591
+ std::vector<int> reorder;
592
+ for (auto [c, ax] : str_ax) {
593
+ reorder.push_back(ax);
594
+ }
595
+ op = transpose(op, reorder, s);
596
+ }
597
+
598
+ // Multiply and sum
599
+ auto out = operands[positions[0]];
600
+ for (int i = 1; i < positions.size(); ++i) {
601
+ out = multiply(out, operands[positions[i]], s);
602
+ }
603
+ std::vector<int> sum_axes;
604
+ for (auto [c, ax] : char_to_ax) {
605
+ if (output.set.find(c) == output.set.end()) {
606
+ sum_axes.push_back(ax);
607
+ }
608
+ }
609
+ if (!sum_axes.empty()) {
610
+ out = sum(out, sum_axes, false, s);
611
+ }
612
+
613
+ // Transpose output if needed
614
+ std::vector<int> reorder;
615
+ for (auto c : output.str) {
616
+ reorder.push_back(char_to_ax[c]);
617
+ }
618
+ for (auto& r : reorder) {
619
+ int offset = 0;
620
+ for (auto s : sum_axes) {
621
+ if (r > s) {
622
+ offset++;
623
+ }
624
+ }
625
+ r -= offset;
626
+ }
627
+ return transpose(out, reorder, s);
628
+ }
629
+
630
+ std::pair<std::vector<PathNode>, PathInfo> einsum_path_helper(
631
+ const std::string& subscripts,
632
+ const std::vector<array>& operands,
633
+ const std::string& fn_name) {
634
+ if (operands.size() == 0) {
635
+ std::ostringstream msg;
636
+ msg << "[" << fn_name << "] At least one operand is required.";
637
+ throw std::invalid_argument(msg.str());
638
+ }
639
+
640
+ auto [in_subscripts, out_subscript] = parse(subscripts);
641
+
642
+ if (operands.size() != in_subscripts.size()) {
643
+ std::ostringstream msg;
644
+ msg << "[" << fn_name << "] Number of operands, " << operands.size()
645
+ << ", does not match number of input subscripts, "
646
+ << in_subscripts.size();
647
+ throw std::invalid_argument(msg.str());
648
+ }
649
+
650
+ // Expand ellipses
651
+ // 1. Collect all the characters we can use for the missing axes.
652
+ // 2. Go over each subscript and check if all the characters are either
653
+ // alphanumeric or an ellipsis.
654
+ // 3. Expand the ellipsis with as many characters from the unused ones as
655
+ // necessary. We use the last N characters effectively prepending with
656
+ // singleton dims for inputs with fewer dimensions.
657
+ // 4. For the output use the maximum size of ellipsis that we encountered in
658
+ // the input.
659
+ CharSet used_chars(subscripts.begin(), subscripts.end());
660
+ std::string remaining_chars;
661
+ remaining_chars.reserve(52 - used_chars.size());
662
+ for (char c = 'a'; c <= 'z'; c++) {
663
+ if (used_chars.find(c) == used_chars.end()) {
664
+ remaining_chars += c;
665
+ }
666
+ }
667
+ for (char c = 'A'; c <= 'Z'; c++) {
668
+ if (used_chars.find(c) == used_chars.end()) {
669
+ remaining_chars += c;
670
+ }
671
+ }
672
+ int max_ellipsis_length = 0;
673
+ auto check_letters_and_expand_ellipsis = [&](auto& subscript,
674
+ const array* operand,
675
+ int operand_idx) {
676
+ bool have_ellipsis = false;
677
+ int cnt_before = 0, cnt_after = 0;
678
+ for (int i = 0; i < subscript.size(); i++) {
679
+ if (!isalpha(subscript[i])) {
680
+ if (i + 2 >= subscript.size() || subscript[i] != '.' ||
681
+ subscript[i + 1] != '.' || subscript[i + 2] != '.') {
682
+ std::ostringstream msg;
683
+ msg << "[" << fn_name << "] Subscripts must be letters, but got '"
684
+ << subscript[i] << "'.";
685
+ throw std::invalid_argument(msg.str());
686
+ }
687
+
688
+ if (have_ellipsis) {
689
+ std::ostringstream msg;
690
+ msg << "[" << fn_name
691
+ << "] Only one ellipsis per subscript is allowed but found more in '"
692
+ << subscript << "'.";
693
+ throw std::invalid_argument(msg.str());
694
+ }
695
+
696
+ have_ellipsis = true;
697
+ i += 2;
698
+ continue;
699
+ }
700
+
701
+ if (have_ellipsis) {
702
+ cnt_after++;
703
+ } else {
704
+ cnt_before++;
705
+ }
706
+ }
707
+
708
+ if (have_ellipsis) {
709
+ int ellipsis_length;
710
+ if (operand != nullptr) {
711
+ ellipsis_length = operand->ndim() - cnt_before - cnt_after;
712
+ if (ellipsis_length < 0) {
713
+ std::ostringstream msg;
714
+ msg << "[" << fn_name << "] Operand " << operand_idx << " with shape "
715
+ << operand->shape()
716
+ << " has insufficient dimensions for subscript '" << subscript
717
+ << "'. The ellipsis requires at least "
718
+ << (cnt_before + cnt_after) << " dimensions but the operand has "
719
+ << operand->ndim() << " dimensions.";
720
+ throw std::invalid_argument(msg.str());
721
+ }
722
+ max_ellipsis_length = std::max(ellipsis_length, max_ellipsis_length);
723
+ } else {
724
+ ellipsis_length = max_ellipsis_length;
725
+ }
726
+
727
+ subscript.replace(
728
+ subscript.begin() + cnt_before,
729
+ subscript.begin() + cnt_before + 3,
730
+ remaining_chars.end() - ellipsis_length,
731
+ remaining_chars.end());
732
+ }
733
+ };
734
+
735
+ for (int i = 0; i < operands.size(); i++) {
736
+ check_letters_and_expand_ellipsis(in_subscripts[i], &operands[i], i);
737
+ }
738
+ check_letters_and_expand_ellipsis(out_subscript, nullptr, -1);
739
+
740
+ CharSet out_set(out_subscript.begin(), out_subscript.end());
741
+ if (out_set.size() != out_subscript.size()) {
742
+ std::ostringstream msg;
743
+ msg << "[" << fn_name << "] Repeat indices not allowed in output.";
744
+ throw std::invalid_argument(msg.str());
745
+ }
746
+ Subscript output(out_subscript, std::move(out_set));
747
+
748
+ std::unordered_map<char, ShapeElem> dim_map;
749
+ std::vector<Subscript> inputs;
750
+ for (int i = 0; i < in_subscripts.size(); ++i) {
751
+ auto& in = in_subscripts[i];
752
+ CharSet in_set(in.begin(), in.end());
753
+ inputs.emplace_back(in, in_set);
754
+
755
+ if (in.size() != operands[i].ndim()) {
756
+ std::ostringstream msg;
757
+ msg << "[" << fn_name << "] Invalid number of subscripts " << in.size()
758
+ << " for input " << i << " with " << operands[i].ndim()
759
+ << " dimensions.";
760
+ throw std::invalid_argument(msg.str());
761
+ }
762
+
763
+ // Check repeat subscripts are valid
764
+ if (in_set.size() < in.size()) {
765
+ std::unordered_map<char, ShapeElem> local_dims;
766
+ for (int j = 0; j < in.size(); ++j) {
767
+ auto dim = operands[i].shape(j);
768
+ auto inserted = local_dims.insert({in[j], dim});
769
+ if (!inserted.second) {
770
+ if (inserted.first->second != dim) {
771
+ std::ostringstream msg;
772
+ msg << "[" << fn_name << "] Dimensions of repeated subscripts "
773
+ << "do not have the same size (" << inserted.first->second
774
+ << " != " << dim << ").";
775
+ throw std::invalid_argument(msg.str());
776
+ }
777
+ }
778
+ }
779
+ }
780
+
781
+ for (int j = 0; j < in.size(); j++) {
782
+ auto c = in[j];
783
+ auto dim = operands[i].shape(j);
784
+ auto inserted = dim_map.insert({c, dim});
785
+ auto& in_dim = inserted.first->second;
786
+ if (dim != 1 && in_dim != 1 && in_dim != dim) {
787
+ std::ostringstream msg;
788
+ msg << "[" << fn_name << "] Cannot broadcast dimension " << j
789
+ << " of input " << i << " with shape " << operands[i].shape()
790
+ << " to size " << in_dim << ".";
791
+ throw std::invalid_argument(msg.str());
792
+ }
793
+ // Ensure the broadcasted size is used
794
+ in_dim = std::max(in_dim, dim);
795
+ }
796
+ }
797
+
798
+ size_t max_size = term_size(out_subscript, dim_map);
799
+ for (auto& in : in_subscripts) {
800
+ max_size = std::max(max_size, term_size(in, dim_map));
801
+ }
802
+
803
+ PathInfo path_info;
804
+
805
+ // Get the full naive cost
806
+ std::tie(path_info.naive_cost, path_info.naive_scaling) =
807
+ compute_cost_and_scaling(inputs, output, dim_map);
808
+
809
+ // Calculate the path
810
+ std::vector<PathNode> path;
811
+ if (inputs.size() <= 2) {
812
+ std::vector<int> positions(in_subscripts.size());
813
+ std::iota(positions.begin(), positions.end(), 0);
814
+ path.emplace_back(
815
+ std::move(inputs), std::move(output), std::move(positions));
816
+ } else {
817
+ std::tie(path, path_info.optimized_cost, path_info.optimized_scaling) =
818
+ greedy_path(inputs, output, dim_map, path_info.naive_cost, max_size);
819
+ // Set the final output subscript to the actual output
820
+ path.back().output = std::move(output);
821
+ }
822
+ return {path, path_info};
823
+ }
824
+
825
+ } // namespace
826
+
827
+ std::pair<std::vector<std::vector<int>>, std::string> einsum_path(
828
+ const std::string& subscripts,
829
+ const std::vector<array>& operands) {
830
+ auto [path, path_info] =
831
+ einsum_path_helper(subscripts, operands, "einsum_path");
832
+
833
+ std::vector<std::vector<int>> pos_path;
834
+ for (auto& p : path) {
835
+ pos_path.push_back(p.positions);
836
+ }
837
+
838
+ std::ostringstream path_print;
839
+ path_print << " Complete contraction: " << subscripts << "\n"
840
+ << " Naive scaling: " << path_info.naive_scaling << "\n"
841
+ << " Optimized scaling: " << path_info.optimized_scaling
842
+ << "\n"
843
+ << " Naive FLOP count: " << path_info.naive_cost << "\n"
844
+ << " Optimized FLOP count: " << path_info.optimized_cost << "\n";
845
+ // TODO add more info here
846
+ return {pos_path, path_print.str()};
847
+ }
848
+
849
+ array einsum(
850
+ const std::string& subscripts,
851
+ const std::vector<array>& operands,
852
+ StreamOrDevice s /* = {} */) {
853
+ auto [path, path_info] = einsum_path_helper(subscripts, operands, "einsum");
854
+ auto inputs = operands;
855
+ for (auto& node : path) {
856
+ preprocess_einsum_inputs(
857
+ node.inputs, node.output, node.positions, inputs, s);
858
+
859
+ if (can_dot(node.inputs, node.output)) {
860
+ auto& in_a = node.inputs[0];
861
+ auto& in_b = node.inputs[1];
862
+ auto& out = node.output;
863
+
864
+ std::vector<int> a_contract;
865
+ std::vector<int> a_batch;
866
+ std::vector<int> a_concat;
867
+ for (int i = 0; i < in_a.str.size(); ++i) {
868
+ auto c = in_a.str[i];
869
+ if (out.set.find(c) == out.set.end()) {
870
+ // Not in the output, contraction
871
+ a_contract.push_back(i);
872
+ } else if (in_b.set.find(c) != in_b.set.end()) {
873
+ // Not a contraction but in both inputs, batch dim
874
+ a_batch.push_back(i);
875
+ } else {
876
+ // Not a batch dim or contract dim, so concat dim
877
+ a_concat.push_back(i);
878
+ }
879
+ }
880
+
881
+ std::vector<int> b_contract;
882
+ std::vector<int> b_batch;
883
+ std::vector<int> b_concat;
884
+ for (auto a_i : a_contract) {
885
+ b_contract.push_back(in_b.str.find(in_a.str[a_i]));
886
+ }
887
+ for (auto a_i : a_batch) {
888
+ b_batch.push_back(in_b.str.find(in_a.str[a_i]));
889
+ }
890
+ for (int i = 0; i < in_b.str.size(); ++i) {
891
+ auto c = in_b.str[i];
892
+ if (out.set.find(c) != out.set.end() &&
893
+ in_a.set.find(c) == in_a.set.end()) {
894
+ b_concat.push_back(i);
895
+ }
896
+ }
897
+
898
+ auto& a = inputs[node.positions[0]];
899
+ auto& b = inputs[node.positions[1]];
900
+
901
+ std::unordered_map<char, int> char_map;
902
+ for (auto i : a_batch) {
903
+ char_map.insert({in_a.str[i], char_map.size()});
904
+ }
905
+ for (auto i : a_concat) {
906
+ char_map.insert({in_a.str[i], char_map.size()});
907
+ }
908
+ for (auto i : b_concat) {
909
+ char_map.insert({in_b.str[i], char_map.size()});
910
+ }
911
+ inputs.emplace_back(batch_tensordot(
912
+ a,
913
+ b,
914
+ std::move(a_contract),
915
+ std::move(a_batch),
916
+ std::move(a_concat),
917
+ std::move(b_contract),
918
+ std::move(b_batch),
919
+ std::move(b_concat),
920
+ s));
921
+
922
+ std::vector<int> reorder;
923
+ for (auto c : node.output.str) {
924
+ reorder.push_back(char_map[c]);
925
+ }
926
+ inputs.back() = transpose(inputs.back(), reorder, s);
927
+
928
+ } else {
929
+ inputs.emplace_back(
930
+ einsum_naive(node.inputs, node.output, node.positions, inputs, s));
931
+ }
932
+
933
+ // Positions are always sorted increasing, so start from the back
934
+ for (auto it = node.positions.rbegin(); it != node.positions.rend(); ++it) {
935
+ inputs.erase(inputs.begin() + *it);
936
+ }
937
+ }
938
+ return inputs.front();
939
+ }
940
+
941
+ } // namespace mlx::core