mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
data/mlx/mlx/einsum.cpp
ADDED
|
@@ -0,0 +1,941 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
#include <numeric>
|
|
3
|
+
#include <sstream>
|
|
4
|
+
#include <unordered_map>
|
|
5
|
+
#include <unordered_set>
|
|
6
|
+
|
|
7
|
+
#include "mlx/einsum.h"
|
|
8
|
+
#include "mlx/ops.h"
|
|
9
|
+
|
|
10
|
+
namespace mlx::core {
|
|
11
|
+
|
|
12
|
+
namespace {
|
|
13
|
+
|
|
14
|
+
// The MLX einsum implementation is based on NumPy (which is based on
|
|
15
|
+
// opt_einsum):
|
|
16
|
+
// https://github.com/numpy/numpy/blob/1d49c7f7ff527c696fc26ab2278ad51632a66660/numpy/_core/einsumfunc.py#L743
|
|
17
|
+
// https://github.com/dgasmith/opt_einsum
|
|
18
|
+
|
|
19
|
+
using CharSet = std::unordered_set<char>;
|
|
20
|
+
|
|
21
|
+
// A helper struct to hold the string and set
|
|
22
|
+
// representation of a subscript to avoid needing
|
|
23
|
+
// to recompute the set
|
|
24
|
+
struct Subscript {
|
|
25
|
+
Subscript(std::string str, CharSet set)
|
|
26
|
+
: str(std::move(str)), set(std::move(set)) {};
|
|
27
|
+
std::string str;
|
|
28
|
+
CharSet set;
|
|
29
|
+
};
|
|
30
|
+
|
|
31
|
+
struct PathInfo {
|
|
32
|
+
size_t naive_cost;
|
|
33
|
+
size_t naive_scaling;
|
|
34
|
+
size_t optimized_cost;
|
|
35
|
+
size_t optimized_scaling;
|
|
36
|
+
size_t largest_term;
|
|
37
|
+
};
|
|
38
|
+
|
|
39
|
+
struct PathNode {
|
|
40
|
+
PathNode(
|
|
41
|
+
std::vector<Subscript> inputs,
|
|
42
|
+
Subscript output,
|
|
43
|
+
std::vector<int> positions)
|
|
44
|
+
: inputs(std::move(inputs)),
|
|
45
|
+
output(std::move(output)),
|
|
46
|
+
positions(std::move(positions)) {};
|
|
47
|
+
|
|
48
|
+
std::vector<Subscript> inputs;
|
|
49
|
+
Subscript output;
|
|
50
|
+
|
|
51
|
+
std::vector<int> positions;
|
|
52
|
+
};
|
|
53
|
+
|
|
54
|
+
// Parse the comma separated subscripts into a vector of strings. If the
|
|
55
|
+
// output subscripts are missing they are inferred.
|
|
56
|
+
//
|
|
57
|
+
// For example:
|
|
58
|
+
// "ij,jk -> ik" becomes {{"ij", "jk"}, "ik"}
|
|
59
|
+
// "ij,jk" becomes {{"ij", "jk"}, "ik"}
|
|
60
|
+
std::pair<std::vector<std::string>, std::string> parse(std::string subscripts) {
|
|
61
|
+
std::string lhs, rhs;
|
|
62
|
+
|
|
63
|
+
// Start by removing all white space
|
|
64
|
+
subscripts.erase(
|
|
65
|
+
std::remove(subscripts.begin(), subscripts.end(), ' '), subscripts.end());
|
|
66
|
+
|
|
67
|
+
if (auto pos = subscripts.find("->"); pos != std::string::npos) {
|
|
68
|
+
// Explicit mode
|
|
69
|
+
lhs = subscripts.substr(0, pos);
|
|
70
|
+
rhs = subscripts.substr(pos + 2);
|
|
71
|
+
} else {
|
|
72
|
+
// Implicit mode:
|
|
73
|
+
// - repeats are summed
|
|
74
|
+
// - ellipses are placed in the beginning of the output
|
|
75
|
+
// - remaining output axes are ordered alphabetically
|
|
76
|
+
lhs = subscripts;
|
|
77
|
+
std::unordered_map<char, int> temp;
|
|
78
|
+
for (auto& c : subscripts) {
|
|
79
|
+
if (c == ',') {
|
|
80
|
+
continue;
|
|
81
|
+
}
|
|
82
|
+
if (c == '.' && rhs.empty()) {
|
|
83
|
+
rhs += "...";
|
|
84
|
+
continue;
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
auto inserted = temp.insert({c, 0});
|
|
88
|
+
inserted.first->second++;
|
|
89
|
+
}
|
|
90
|
+
for (auto& k : temp) {
|
|
91
|
+
if (k.second == 1) {
|
|
92
|
+
rhs += k.first;
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
std::sort(rhs.begin(), rhs.end());
|
|
96
|
+
}
|
|
97
|
+
std::vector<std::string> input_list;
|
|
98
|
+
std::stringstream ss(lhs);
|
|
99
|
+
std::string token;
|
|
100
|
+
while (getline(ss, token, ',')) {
|
|
101
|
+
input_list.push_back(token);
|
|
102
|
+
}
|
|
103
|
+
return {input_list, rhs};
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
// Check if two sets are disjoint
|
|
107
|
+
bool disjoint(const CharSet& x, const CharSet& y) {
|
|
108
|
+
for (auto& c : x) {
|
|
109
|
+
if (y.find(c) != y.end()) {
|
|
110
|
+
return false;
|
|
111
|
+
}
|
|
112
|
+
}
|
|
113
|
+
return true;
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
template <typename T>
|
|
117
|
+
size_t term_size(const T& term, std::unordered_map<char, ShapeElem> dict) {
|
|
118
|
+
size_t size = 1;
|
|
119
|
+
for (auto c : term) {
|
|
120
|
+
size *= dict[c];
|
|
121
|
+
}
|
|
122
|
+
return size;
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
size_t flop_count(
|
|
126
|
+
const CharSet& term,
|
|
127
|
+
bool inner,
|
|
128
|
+
int num_terms,
|
|
129
|
+
std::unordered_map<char, ShapeElem> dict) {
|
|
130
|
+
size_t size = term_size(term, dict);
|
|
131
|
+
auto op_factor = 1;
|
|
132
|
+
if ((num_terms - 1) > op_factor) {
|
|
133
|
+
op_factor = num_terms - 1;
|
|
134
|
+
}
|
|
135
|
+
if (inner) {
|
|
136
|
+
op_factor += 1;
|
|
137
|
+
}
|
|
138
|
+
return size * op_factor;
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
std::pair<size_t, int> compute_cost_and_scaling(
|
|
142
|
+
const std::vector<Subscript>& inputs,
|
|
143
|
+
const Subscript& output,
|
|
144
|
+
std::unordered_map<char, ShapeElem> dim_map) {
|
|
145
|
+
CharSet contractions;
|
|
146
|
+
for (auto& in : inputs) {
|
|
147
|
+
contractions.insert(in.set.begin(), in.set.end());
|
|
148
|
+
}
|
|
149
|
+
|
|
150
|
+
bool inner = false;
|
|
151
|
+
for (auto c : contractions) {
|
|
152
|
+
if (output.set.find(c) == output.set.end()) {
|
|
153
|
+
inner = true;
|
|
154
|
+
break;
|
|
155
|
+
}
|
|
156
|
+
}
|
|
157
|
+
auto cost = flop_count(contractions, inner, inputs.size(), dim_map);
|
|
158
|
+
return {cost, contractions.size()};
|
|
159
|
+
}
|
|
160
|
+
|
|
161
|
+
std::tuple<std::vector<PathNode>, size_t, int> greedy_path(
|
|
162
|
+
std::vector<Subscript> inputs,
|
|
163
|
+
const Subscript& output,
|
|
164
|
+
std::unordered_map<char, ShapeElem> dim_map,
|
|
165
|
+
size_t cost_limit,
|
|
166
|
+
size_t memory_limit) {
|
|
167
|
+
// Helper struct for building the greedy path
|
|
168
|
+
struct Contraction {
|
|
169
|
+
Contraction(
|
|
170
|
+
size_t size,
|
|
171
|
+
size_t cost,
|
|
172
|
+
CharSet output,
|
|
173
|
+
int dims,
|
|
174
|
+
int x,
|
|
175
|
+
int y)
|
|
176
|
+
: size(size),
|
|
177
|
+
cost(cost),
|
|
178
|
+
output(std::move(output)),
|
|
179
|
+
dims(dims),
|
|
180
|
+
x(x),
|
|
181
|
+
y(y) {};
|
|
182
|
+
|
|
183
|
+
int64_t size; // Size difference, can be negative
|
|
184
|
+
size_t cost;
|
|
185
|
+
CharSet output;
|
|
186
|
+
int dims; // Number of dimensions in the contraction
|
|
187
|
+
int x;
|
|
188
|
+
int y;
|
|
189
|
+
};
|
|
190
|
+
|
|
191
|
+
// Start by iterating over all possible combinations
|
|
192
|
+
std::vector<std::pair<int, int>> pos_pairs;
|
|
193
|
+
for (int i = 0; i < inputs.size(); ++i) {
|
|
194
|
+
for (int j = i + 1; j < inputs.size(); ++j) {
|
|
195
|
+
pos_pairs.emplace_back(i, j);
|
|
196
|
+
}
|
|
197
|
+
}
|
|
198
|
+
|
|
199
|
+
std::vector<PathNode> path;
|
|
200
|
+
std::vector<Contraction> possible_contractions;
|
|
201
|
+
size_t path_cost = 0;
|
|
202
|
+
int path_scaling = 0;
|
|
203
|
+
auto num_in = inputs.size();
|
|
204
|
+
for (int i = 0; i < num_in - 1; ++i) {
|
|
205
|
+
auto add_contraction = [&](int p1, int p2) {
|
|
206
|
+
CharSet new_term;
|
|
207
|
+
CharSet contractions(inputs[p1].set.begin(), inputs[p1].set.end());
|
|
208
|
+
contractions.insert(inputs[p2].set.begin(), inputs[p2].set.end());
|
|
209
|
+
for (int i = 0; i < inputs.size(); i++) {
|
|
210
|
+
if (i == p1 || i == p2) {
|
|
211
|
+
continue;
|
|
212
|
+
}
|
|
213
|
+
auto& in = inputs[i].set;
|
|
214
|
+
for (auto c : in) {
|
|
215
|
+
if (contractions.find(c) != contractions.end()) {
|
|
216
|
+
new_term.insert(c);
|
|
217
|
+
}
|
|
218
|
+
}
|
|
219
|
+
}
|
|
220
|
+
for (auto c : output.set) {
|
|
221
|
+
if (contractions.find(c) != contractions.end()) {
|
|
222
|
+
new_term.insert(c);
|
|
223
|
+
}
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
// Ignore if:
|
|
227
|
+
// - The size of the new result is greater than the memory limit
|
|
228
|
+
// - The cost is larger than the naive cost
|
|
229
|
+
auto new_size = term_size(new_term, dim_map);
|
|
230
|
+
if (new_size > memory_limit) {
|
|
231
|
+
return;
|
|
232
|
+
}
|
|
233
|
+
int64_t removed_size = term_size(inputs[p1].set, dim_map) +
|
|
234
|
+
term_size(inputs[p2].set, dim_map) - new_size;
|
|
235
|
+
|
|
236
|
+
bool inner = contractions.size() > new_term.size();
|
|
237
|
+
auto cost = flop_count(contractions, inner, 2, dim_map);
|
|
238
|
+
if (path_cost + cost > cost_limit) {
|
|
239
|
+
return;
|
|
240
|
+
}
|
|
241
|
+
possible_contractions.emplace_back(
|
|
242
|
+
removed_size, cost, std::move(new_term), contractions.size(), p1, p2);
|
|
243
|
+
};
|
|
244
|
+
|
|
245
|
+
for (auto& [p1, p2] : pos_pairs) {
|
|
246
|
+
// Ignore outer products
|
|
247
|
+
if (!disjoint(inputs[p1].set, inputs[p2].set)) {
|
|
248
|
+
add_contraction(p1, p2);
|
|
249
|
+
}
|
|
250
|
+
}
|
|
251
|
+
|
|
252
|
+
// If there's nothing in the contraction list,
|
|
253
|
+
// go over the pairs again without ignoring outer products
|
|
254
|
+
if (possible_contractions.empty()) {
|
|
255
|
+
for (auto& [p1, p2] : pos_pairs) {
|
|
256
|
+
add_contraction(p1, p2);
|
|
257
|
+
}
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
if (possible_contractions.empty()) {
|
|
261
|
+
// Default to naive einsum for the remaining inputs
|
|
262
|
+
std::vector<int> positions(inputs.size());
|
|
263
|
+
std::iota(positions.begin(), positions.end(), 0);
|
|
264
|
+
auto [cost, scale] = compute_cost_and_scaling(inputs, output, dim_map);
|
|
265
|
+
path.emplace_back(std::move(inputs), output, std::move(positions));
|
|
266
|
+
|
|
267
|
+
path_cost += cost;
|
|
268
|
+
path_scaling = std::max(scale, path_scaling);
|
|
269
|
+
break;
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
// Find the best contraction
|
|
273
|
+
auto& best = *std::min_element(
|
|
274
|
+
possible_contractions.begin(),
|
|
275
|
+
possible_contractions.end(),
|
|
276
|
+
[](const auto& x, const auto& y) {
|
|
277
|
+
return x.size > y.size || (x.size == y.size && x.cost < y.cost);
|
|
278
|
+
});
|
|
279
|
+
path_scaling = std::max(best.dims, path_scaling);
|
|
280
|
+
|
|
281
|
+
// Construct the output subscripts
|
|
282
|
+
std::string out_str(best.output.begin(), best.output.end());
|
|
283
|
+
// TODO, sorting by dimension size seems suboptimal?
|
|
284
|
+
std::sort(out_str.begin(), out_str.end(), [&dim_map](auto x, auto y) {
|
|
285
|
+
return dim_map[x] < dim_map[y];
|
|
286
|
+
});
|
|
287
|
+
Subscript new_output(std::move(out_str), std::move(best.output));
|
|
288
|
+
|
|
289
|
+
// Add the chosen contraction to the path
|
|
290
|
+
{
|
|
291
|
+
std::vector<Subscript> in_terms;
|
|
292
|
+
in_terms.push_back(std::move(inputs[best.x]));
|
|
293
|
+
in_terms.push_back(std::move(inputs[best.y]));
|
|
294
|
+
path.emplace_back(
|
|
295
|
+
std::move(in_terms), new_output, std::vector<int>{best.x, best.y});
|
|
296
|
+
}
|
|
297
|
+
// Remove used terms
|
|
298
|
+
inputs.erase(inputs.begin() + best.y);
|
|
299
|
+
inputs.erase(inputs.begin() + best.x);
|
|
300
|
+
|
|
301
|
+
// Add the new result
|
|
302
|
+
inputs.push_back(std::move(new_output));
|
|
303
|
+
|
|
304
|
+
// Update the existing contractions based on the selected one
|
|
305
|
+
std::vector<Contraction> updated_contractions;
|
|
306
|
+
for (auto& contraction : possible_contractions) {
|
|
307
|
+
// Drop contractions which contain either selected term
|
|
308
|
+
if (contraction.x == best.x || contraction.x == best.y ||
|
|
309
|
+
contraction.y == best.x || contraction.y == best.y) {
|
|
310
|
+
continue;
|
|
311
|
+
}
|
|
312
|
+
|
|
313
|
+
// Update the positions of other contractions
|
|
314
|
+
int x =
|
|
315
|
+
contraction.x - (contraction.x > best.x) - (contraction.x > best.y);
|
|
316
|
+
int y =
|
|
317
|
+
contraction.y - (contraction.y > best.x) - (contraction.y > best.y);
|
|
318
|
+
contraction.x = x;
|
|
319
|
+
contraction.y = y;
|
|
320
|
+
updated_contractions.push_back(std::move(contraction));
|
|
321
|
+
}
|
|
322
|
+
|
|
323
|
+
pos_pairs.clear();
|
|
324
|
+
for (int i = 0; i < inputs.size() - 1; ++i) {
|
|
325
|
+
pos_pairs.emplace_back(i, inputs.size() - 1);
|
|
326
|
+
}
|
|
327
|
+
path_cost += best.cost;
|
|
328
|
+
|
|
329
|
+
possible_contractions = std::move(updated_contractions);
|
|
330
|
+
}
|
|
331
|
+
return {path, path_cost, path_scaling};
|
|
332
|
+
}
|
|
333
|
+
|
|
334
|
+
// Assumes inputs have already have had repeats and single axis sums collapsed
|
|
335
|
+
bool can_dot(const std::vector<Subscript>& inputs, const Subscript& output) {
|
|
336
|
+
if (inputs.size() != 2) {
|
|
337
|
+
return false;
|
|
338
|
+
}
|
|
339
|
+
|
|
340
|
+
for (auto c : inputs[0].set) {
|
|
341
|
+
// Use batched tensordot if anything is being contracted
|
|
342
|
+
if (output.set.find(c) == output.set.end()) {
|
|
343
|
+
return true;
|
|
344
|
+
}
|
|
345
|
+
}
|
|
346
|
+
return false;
|
|
347
|
+
}
|
|
348
|
+
|
|
349
|
+
array batch_tensordot(
|
|
350
|
+
array a,
|
|
351
|
+
array b,
|
|
352
|
+
std::vector<int> a_contract,
|
|
353
|
+
std::vector<int> a_batch,
|
|
354
|
+
std::vector<int> a_concat,
|
|
355
|
+
std::vector<int> b_contract,
|
|
356
|
+
std::vector<int> b_batch,
|
|
357
|
+
std::vector<int> b_concat,
|
|
358
|
+
StreamOrDevice s) {
|
|
359
|
+
// Broadcast contracting dimensions
|
|
360
|
+
{
|
|
361
|
+
auto a_shape = a.shape();
|
|
362
|
+
auto b_shape = b.shape();
|
|
363
|
+
for (int i = 0; i < a_contract.size(); ++i) {
|
|
364
|
+
auto d = std::max(a.shape(a_contract[i]), b.shape(b_contract[i]));
|
|
365
|
+
a_shape[a_contract[i]] = d;
|
|
366
|
+
b_shape[b_contract[i]] = d;
|
|
367
|
+
}
|
|
368
|
+
a = broadcast_to(a, a_shape, s);
|
|
369
|
+
b = broadcast_to(b, b_shape, s);
|
|
370
|
+
}
|
|
371
|
+
auto transpose_reshape = [&s](
|
|
372
|
+
const array& x,
|
|
373
|
+
const std::vector<int>& i,
|
|
374
|
+
const std::vector<int>& j,
|
|
375
|
+
const std::vector<int>& k) {
|
|
376
|
+
std::vector<int> reorder(i.begin(), i.end());
|
|
377
|
+
reorder.insert(reorder.end(), j.begin(), j.end());
|
|
378
|
+
reorder.insert(reorder.end(), k.begin(), k.end());
|
|
379
|
+
|
|
380
|
+
int size1 = 1;
|
|
381
|
+
for (auto s : j) {
|
|
382
|
+
size1 *= x.shape(s);
|
|
383
|
+
}
|
|
384
|
+
|
|
385
|
+
int size2 = 1;
|
|
386
|
+
for (auto s : k) {
|
|
387
|
+
size2 *= x.shape(s);
|
|
388
|
+
}
|
|
389
|
+
|
|
390
|
+
Shape shape;
|
|
391
|
+
for (auto ax : i) {
|
|
392
|
+
shape.push_back(x.shape(ax));
|
|
393
|
+
}
|
|
394
|
+
shape.push_back(size1);
|
|
395
|
+
shape.push_back(size2);
|
|
396
|
+
|
|
397
|
+
return reshape(transpose(x, reorder, s), std::move(shape), s);
|
|
398
|
+
};
|
|
399
|
+
|
|
400
|
+
Shape out_shape;
|
|
401
|
+
for (auto ax : a_batch) {
|
|
402
|
+
out_shape.push_back(a.shape(ax));
|
|
403
|
+
}
|
|
404
|
+
for (auto ax : a_concat) {
|
|
405
|
+
out_shape.push_back(a.shape(ax));
|
|
406
|
+
}
|
|
407
|
+
for (auto ax : b_concat) {
|
|
408
|
+
out_shape.push_back(b.shape(ax));
|
|
409
|
+
}
|
|
410
|
+
|
|
411
|
+
a = transpose_reshape(a, a_batch, a_concat, a_contract);
|
|
412
|
+
b = transpose_reshape(b, b_batch, b_contract, b_concat);
|
|
413
|
+
|
|
414
|
+
return reshape(matmul(a, b, s), std::move(out_shape), s);
|
|
415
|
+
}
|
|
416
|
+
|
|
417
|
+
// Collapse repeated subscripts and return the resulting array. The subscript
|
|
418
|
+
// is also updated in place. For example:
|
|
419
|
+
// - Given an input with shape (4, 4) and subscript "ii", returns
|
|
420
|
+
// the diagonal of shape (4,) and updates the subscript to "i".
|
|
421
|
+
// - Given an input with shape (4, 2, 4, 2) and subscript "ijij",
|
|
422
|
+
// returns an output with shape (4, 2) and updates the subscript
|
|
423
|
+
// to "ij".
|
|
424
|
+
array collapse_repeats(array in, Subscript& subscript, StreamOrDevice s) {
|
|
425
|
+
// Build a list of (repeat chars, num repeats)
|
|
426
|
+
auto& str = subscript.str;
|
|
427
|
+
std::vector<std::pair<char, int>> repeats;
|
|
428
|
+
std::string new_str;
|
|
429
|
+
{
|
|
430
|
+
std::string repeat_str;
|
|
431
|
+
std::string no_repeat_str;
|
|
432
|
+
std::unordered_map<char, int> counts;
|
|
433
|
+
for (int i = 0; i < str.size(); ++i) {
|
|
434
|
+
auto [it, _] = counts.insert({str[i], 0});
|
|
435
|
+
it->second++;
|
|
436
|
+
}
|
|
437
|
+
|
|
438
|
+
for (auto& v : counts) {
|
|
439
|
+
if (v.second > 1) {
|
|
440
|
+
repeats.emplace_back(v.first, v.second);
|
|
441
|
+
repeat_str += v.first;
|
|
442
|
+
}
|
|
443
|
+
}
|
|
444
|
+
for (auto& c : str) {
|
|
445
|
+
if (counts[c] == 1) {
|
|
446
|
+
no_repeat_str += c;
|
|
447
|
+
}
|
|
448
|
+
}
|
|
449
|
+
new_str = repeat_str + no_repeat_str;
|
|
450
|
+
}
|
|
451
|
+
|
|
452
|
+
// Build the inputs for gather
|
|
453
|
+
auto slice_sizes = in.shape();
|
|
454
|
+
std::vector<int> axes;
|
|
455
|
+
std::vector<array> indices;
|
|
456
|
+
int n_expand = repeats.size();
|
|
457
|
+
for (auto [c, v] : repeats) {
|
|
458
|
+
for (int i = 0; i < str.size(); ++i) {
|
|
459
|
+
if (str[i] == c) {
|
|
460
|
+
slice_sizes[i] = 1;
|
|
461
|
+
axes.push_back(i);
|
|
462
|
+
}
|
|
463
|
+
}
|
|
464
|
+
Shape idx_shape(n_expand--, 1);
|
|
465
|
+
idx_shape[0] = in.shape(axes.back());
|
|
466
|
+
auto idx = reshape(
|
|
467
|
+
arange(static_cast<ShapeElem>(in.shape(axes.back())), s), idx_shape, s);
|
|
468
|
+
for (int i = 0; i < v; ++i) {
|
|
469
|
+
indices.push_back(idx);
|
|
470
|
+
}
|
|
471
|
+
}
|
|
472
|
+
|
|
473
|
+
in = gather(in, indices, axes, slice_sizes, s);
|
|
474
|
+
|
|
475
|
+
// Update subscript string with removed dups
|
|
476
|
+
str = new_str;
|
|
477
|
+
|
|
478
|
+
// Squeeze singleton dimensions left over from the gather
|
|
479
|
+
for (auto& ax : axes) {
|
|
480
|
+
ax += indices[0].ndim();
|
|
481
|
+
}
|
|
482
|
+
|
|
483
|
+
return squeeze(in, axes, s);
|
|
484
|
+
}
|
|
485
|
+
|
|
486
|
+
// Collapse repeat indices and sum single dimensions.
|
|
487
|
+
// For example:
|
|
488
|
+
// - "aa" becomes "a"
|
|
489
|
+
// - "ij,jk->k" becoms "j,jk->k"
|
|
490
|
+
void preprocess_einsum_inputs(
|
|
491
|
+
std::vector<Subscript>& inputs,
|
|
492
|
+
const Subscript& output,
|
|
493
|
+
const std::vector<int>& positions,
|
|
494
|
+
std::vector<array>& operands,
|
|
495
|
+
StreamOrDevice s) {
|
|
496
|
+
// Collapse repeat indices
|
|
497
|
+
for (int i = 0; i < inputs.size(); ++i) {
|
|
498
|
+
auto& in = inputs[i];
|
|
499
|
+
if (in.set.size() < in.str.size()) {
|
|
500
|
+
operands[positions[i]] = collapse_repeats(operands[positions[i]], in, s);
|
|
501
|
+
}
|
|
502
|
+
}
|
|
503
|
+
|
|
504
|
+
// Sum indices that are only in a single input
|
|
505
|
+
{
|
|
506
|
+
std::unordered_map<char, int> counts;
|
|
507
|
+
for (auto& in : inputs) {
|
|
508
|
+
for (auto c : in.set) {
|
|
509
|
+
auto inserted = counts.insert({c, 0});
|
|
510
|
+
inserted.first->second++;
|
|
511
|
+
}
|
|
512
|
+
}
|
|
513
|
+
for (auto c : output.set) {
|
|
514
|
+
auto inserted = counts.insert({c, 0});
|
|
515
|
+
inserted.first->second++;
|
|
516
|
+
}
|
|
517
|
+
for (int i = 0; i < inputs.size(); ++i) {
|
|
518
|
+
auto& in = inputs[i];
|
|
519
|
+
std::vector<int> sum_axes;
|
|
520
|
+
for (int ax = 0; ax < in.str.size(); ++ax) {
|
|
521
|
+
if (counts[in.str[ax]] == 1) {
|
|
522
|
+
sum_axes.push_back(ax);
|
|
523
|
+
}
|
|
524
|
+
}
|
|
525
|
+
if (!sum_axes.empty()) {
|
|
526
|
+
operands[positions[i]] =
|
|
527
|
+
sum(operands[positions[i]], sum_axes, false, s);
|
|
528
|
+
}
|
|
529
|
+
for (auto it = sum_axes.rbegin(); it != sum_axes.rend(); ++it) {
|
|
530
|
+
in.set.erase(in.str[*it]);
|
|
531
|
+
in.str.erase(in.str.begin() + *it);
|
|
532
|
+
}
|
|
533
|
+
}
|
|
534
|
+
}
|
|
535
|
+
}
|
|
536
|
+
|
|
537
|
+
array einsum_naive(
|
|
538
|
+
std::vector<Subscript> inputs,
|
|
539
|
+
const Subscript& output,
|
|
540
|
+
const std::vector<int>& positions,
|
|
541
|
+
std::vector<array> operands,
|
|
542
|
+
StreamOrDevice s) {
|
|
543
|
+
// Map each character to an axis
|
|
544
|
+
std::unordered_map<char, int> char_to_ax;
|
|
545
|
+
for (auto& in : inputs) {
|
|
546
|
+
for (auto c : in.str) {
|
|
547
|
+
char_to_ax.insert({c, char_to_ax.size()});
|
|
548
|
+
}
|
|
549
|
+
}
|
|
550
|
+
|
|
551
|
+
// Expand and transpose inputs as needed
|
|
552
|
+
for (int i = 0; i < inputs.size(); ++i) {
|
|
553
|
+
int pos = positions[i];
|
|
554
|
+
auto& op = operands[pos];
|
|
555
|
+
|
|
556
|
+
// Add missing dimensions at the end
|
|
557
|
+
if (op.ndim() != char_to_ax.size()) {
|
|
558
|
+
auto shape = op.shape();
|
|
559
|
+
shape.insert(shape.end(), char_to_ax.size() - shape.size(), 1);
|
|
560
|
+
op = reshape(op, std::move(shape), s);
|
|
561
|
+
}
|
|
562
|
+
|
|
563
|
+
// Transpose:
|
|
564
|
+
// - Build a vector of (char, ax) pairs for the current input
|
|
565
|
+
// - Sort the vector by the canonical axis in char_to_ax
|
|
566
|
+
// - Extract the sorted axis to get transpose order
|
|
567
|
+
std::vector<std::pair<char, int>> str_ax;
|
|
568
|
+
for (auto c : inputs[i].str) {
|
|
569
|
+
str_ax.emplace_back(c, str_ax.size());
|
|
570
|
+
}
|
|
571
|
+
for (auto [c, ax] : char_to_ax) {
|
|
572
|
+
if (inputs[i].set.find(c) == inputs[i].set.end()) {
|
|
573
|
+
str_ax.emplace_back(c, str_ax.size());
|
|
574
|
+
}
|
|
575
|
+
}
|
|
576
|
+
std::sort(
|
|
577
|
+
str_ax.begin(),
|
|
578
|
+
str_ax.end(),
|
|
579
|
+
[&char_to_ax](const auto& x, const auto& y) {
|
|
580
|
+
return char_to_ax[x.first] < char_to_ax[y.first];
|
|
581
|
+
});
|
|
582
|
+
|
|
583
|
+
// Skip the transpose if not needed
|
|
584
|
+
if (std::is_sorted(
|
|
585
|
+
str_ax.begin(), str_ax.end(), [](const auto& x, const auto& y) {
|
|
586
|
+
return x.second < y.second;
|
|
587
|
+
})) {
|
|
588
|
+
continue;
|
|
589
|
+
}
|
|
590
|
+
|
|
591
|
+
std::vector<int> reorder;
|
|
592
|
+
for (auto [c, ax] : str_ax) {
|
|
593
|
+
reorder.push_back(ax);
|
|
594
|
+
}
|
|
595
|
+
op = transpose(op, reorder, s);
|
|
596
|
+
}
|
|
597
|
+
|
|
598
|
+
// Multiply and sum
|
|
599
|
+
auto out = operands[positions[0]];
|
|
600
|
+
for (int i = 1; i < positions.size(); ++i) {
|
|
601
|
+
out = multiply(out, operands[positions[i]], s);
|
|
602
|
+
}
|
|
603
|
+
std::vector<int> sum_axes;
|
|
604
|
+
for (auto [c, ax] : char_to_ax) {
|
|
605
|
+
if (output.set.find(c) == output.set.end()) {
|
|
606
|
+
sum_axes.push_back(ax);
|
|
607
|
+
}
|
|
608
|
+
}
|
|
609
|
+
if (!sum_axes.empty()) {
|
|
610
|
+
out = sum(out, sum_axes, false, s);
|
|
611
|
+
}
|
|
612
|
+
|
|
613
|
+
// Transpose output if needed
|
|
614
|
+
std::vector<int> reorder;
|
|
615
|
+
for (auto c : output.str) {
|
|
616
|
+
reorder.push_back(char_to_ax[c]);
|
|
617
|
+
}
|
|
618
|
+
for (auto& r : reorder) {
|
|
619
|
+
int offset = 0;
|
|
620
|
+
for (auto s : sum_axes) {
|
|
621
|
+
if (r > s) {
|
|
622
|
+
offset++;
|
|
623
|
+
}
|
|
624
|
+
}
|
|
625
|
+
r -= offset;
|
|
626
|
+
}
|
|
627
|
+
return transpose(out, reorder, s);
|
|
628
|
+
}
|
|
629
|
+
|
|
630
|
+
std::pair<std::vector<PathNode>, PathInfo> einsum_path_helper(
|
|
631
|
+
const std::string& subscripts,
|
|
632
|
+
const std::vector<array>& operands,
|
|
633
|
+
const std::string& fn_name) {
|
|
634
|
+
if (operands.size() == 0) {
|
|
635
|
+
std::ostringstream msg;
|
|
636
|
+
msg << "[" << fn_name << "] At least one operand is required.";
|
|
637
|
+
throw std::invalid_argument(msg.str());
|
|
638
|
+
}
|
|
639
|
+
|
|
640
|
+
auto [in_subscripts, out_subscript] = parse(subscripts);
|
|
641
|
+
|
|
642
|
+
if (operands.size() != in_subscripts.size()) {
|
|
643
|
+
std::ostringstream msg;
|
|
644
|
+
msg << "[" << fn_name << "] Number of operands, " << operands.size()
|
|
645
|
+
<< ", does not match number of input subscripts, "
|
|
646
|
+
<< in_subscripts.size();
|
|
647
|
+
throw std::invalid_argument(msg.str());
|
|
648
|
+
}
|
|
649
|
+
|
|
650
|
+
// Expand ellipses
|
|
651
|
+
// 1. Collect all the characters we can use for the missing axes.
|
|
652
|
+
// 2. Go over each subscript and check if all the characters are either
|
|
653
|
+
// alphanumeric or an ellipsis.
|
|
654
|
+
// 3. Expand the ellipsis with as many characters from the unused ones as
|
|
655
|
+
// necessary. We use the last N characters effectively prepending with
|
|
656
|
+
// singleton dims for inputs with fewer dimensions.
|
|
657
|
+
// 4. For the output use the maximum size of ellipsis that we encountered in
|
|
658
|
+
// the input.
|
|
659
|
+
CharSet used_chars(subscripts.begin(), subscripts.end());
|
|
660
|
+
std::string remaining_chars;
|
|
661
|
+
remaining_chars.reserve(52 - used_chars.size());
|
|
662
|
+
for (char c = 'a'; c <= 'z'; c++) {
|
|
663
|
+
if (used_chars.find(c) == used_chars.end()) {
|
|
664
|
+
remaining_chars += c;
|
|
665
|
+
}
|
|
666
|
+
}
|
|
667
|
+
for (char c = 'A'; c <= 'Z'; c++) {
|
|
668
|
+
if (used_chars.find(c) == used_chars.end()) {
|
|
669
|
+
remaining_chars += c;
|
|
670
|
+
}
|
|
671
|
+
}
|
|
672
|
+
int max_ellipsis_length = 0;
|
|
673
|
+
auto check_letters_and_expand_ellipsis = [&](auto& subscript,
|
|
674
|
+
const array* operand,
|
|
675
|
+
int operand_idx) {
|
|
676
|
+
bool have_ellipsis = false;
|
|
677
|
+
int cnt_before = 0, cnt_after = 0;
|
|
678
|
+
for (int i = 0; i < subscript.size(); i++) {
|
|
679
|
+
if (!isalpha(subscript[i])) {
|
|
680
|
+
if (i + 2 >= subscript.size() || subscript[i] != '.' ||
|
|
681
|
+
subscript[i + 1] != '.' || subscript[i + 2] != '.') {
|
|
682
|
+
std::ostringstream msg;
|
|
683
|
+
msg << "[" << fn_name << "] Subscripts must be letters, but got '"
|
|
684
|
+
<< subscript[i] << "'.";
|
|
685
|
+
throw std::invalid_argument(msg.str());
|
|
686
|
+
}
|
|
687
|
+
|
|
688
|
+
if (have_ellipsis) {
|
|
689
|
+
std::ostringstream msg;
|
|
690
|
+
msg << "[" << fn_name
|
|
691
|
+
<< "] Only one ellipsis per subscript is allowed but found more in '"
|
|
692
|
+
<< subscript << "'.";
|
|
693
|
+
throw std::invalid_argument(msg.str());
|
|
694
|
+
}
|
|
695
|
+
|
|
696
|
+
have_ellipsis = true;
|
|
697
|
+
i += 2;
|
|
698
|
+
continue;
|
|
699
|
+
}
|
|
700
|
+
|
|
701
|
+
if (have_ellipsis) {
|
|
702
|
+
cnt_after++;
|
|
703
|
+
} else {
|
|
704
|
+
cnt_before++;
|
|
705
|
+
}
|
|
706
|
+
}
|
|
707
|
+
|
|
708
|
+
if (have_ellipsis) {
|
|
709
|
+
int ellipsis_length;
|
|
710
|
+
if (operand != nullptr) {
|
|
711
|
+
ellipsis_length = operand->ndim() - cnt_before - cnt_after;
|
|
712
|
+
if (ellipsis_length < 0) {
|
|
713
|
+
std::ostringstream msg;
|
|
714
|
+
msg << "[" << fn_name << "] Operand " << operand_idx << " with shape "
|
|
715
|
+
<< operand->shape()
|
|
716
|
+
<< " has insufficient dimensions for subscript '" << subscript
|
|
717
|
+
<< "'. The ellipsis requires at least "
|
|
718
|
+
<< (cnt_before + cnt_after) << " dimensions but the operand has "
|
|
719
|
+
<< operand->ndim() << " dimensions.";
|
|
720
|
+
throw std::invalid_argument(msg.str());
|
|
721
|
+
}
|
|
722
|
+
max_ellipsis_length = std::max(ellipsis_length, max_ellipsis_length);
|
|
723
|
+
} else {
|
|
724
|
+
ellipsis_length = max_ellipsis_length;
|
|
725
|
+
}
|
|
726
|
+
|
|
727
|
+
subscript.replace(
|
|
728
|
+
subscript.begin() + cnt_before,
|
|
729
|
+
subscript.begin() + cnt_before + 3,
|
|
730
|
+
remaining_chars.end() - ellipsis_length,
|
|
731
|
+
remaining_chars.end());
|
|
732
|
+
}
|
|
733
|
+
};
|
|
734
|
+
|
|
735
|
+
for (int i = 0; i < operands.size(); i++) {
|
|
736
|
+
check_letters_and_expand_ellipsis(in_subscripts[i], &operands[i], i);
|
|
737
|
+
}
|
|
738
|
+
check_letters_and_expand_ellipsis(out_subscript, nullptr, -1);
|
|
739
|
+
|
|
740
|
+
CharSet out_set(out_subscript.begin(), out_subscript.end());
|
|
741
|
+
if (out_set.size() != out_subscript.size()) {
|
|
742
|
+
std::ostringstream msg;
|
|
743
|
+
msg << "[" << fn_name << "] Repeat indices not allowed in output.";
|
|
744
|
+
throw std::invalid_argument(msg.str());
|
|
745
|
+
}
|
|
746
|
+
Subscript output(out_subscript, std::move(out_set));
|
|
747
|
+
|
|
748
|
+
std::unordered_map<char, ShapeElem> dim_map;
|
|
749
|
+
std::vector<Subscript> inputs;
|
|
750
|
+
for (int i = 0; i < in_subscripts.size(); ++i) {
|
|
751
|
+
auto& in = in_subscripts[i];
|
|
752
|
+
CharSet in_set(in.begin(), in.end());
|
|
753
|
+
inputs.emplace_back(in, in_set);
|
|
754
|
+
|
|
755
|
+
if (in.size() != operands[i].ndim()) {
|
|
756
|
+
std::ostringstream msg;
|
|
757
|
+
msg << "[" << fn_name << "] Invalid number of subscripts " << in.size()
|
|
758
|
+
<< " for input " << i << " with " << operands[i].ndim()
|
|
759
|
+
<< " dimensions.";
|
|
760
|
+
throw std::invalid_argument(msg.str());
|
|
761
|
+
}
|
|
762
|
+
|
|
763
|
+
// Check repeat subscripts are valid
|
|
764
|
+
if (in_set.size() < in.size()) {
|
|
765
|
+
std::unordered_map<char, ShapeElem> local_dims;
|
|
766
|
+
for (int j = 0; j < in.size(); ++j) {
|
|
767
|
+
auto dim = operands[i].shape(j);
|
|
768
|
+
auto inserted = local_dims.insert({in[j], dim});
|
|
769
|
+
if (!inserted.second) {
|
|
770
|
+
if (inserted.first->second != dim) {
|
|
771
|
+
std::ostringstream msg;
|
|
772
|
+
msg << "[" << fn_name << "] Dimensions of repeated subscripts "
|
|
773
|
+
<< "do not have the same size (" << inserted.first->second
|
|
774
|
+
<< " != " << dim << ").";
|
|
775
|
+
throw std::invalid_argument(msg.str());
|
|
776
|
+
}
|
|
777
|
+
}
|
|
778
|
+
}
|
|
779
|
+
}
|
|
780
|
+
|
|
781
|
+
for (int j = 0; j < in.size(); j++) {
|
|
782
|
+
auto c = in[j];
|
|
783
|
+
auto dim = operands[i].shape(j);
|
|
784
|
+
auto inserted = dim_map.insert({c, dim});
|
|
785
|
+
auto& in_dim = inserted.first->second;
|
|
786
|
+
if (dim != 1 && in_dim != 1 && in_dim != dim) {
|
|
787
|
+
std::ostringstream msg;
|
|
788
|
+
msg << "[" << fn_name << "] Cannot broadcast dimension " << j
|
|
789
|
+
<< " of input " << i << " with shape " << operands[i].shape()
|
|
790
|
+
<< " to size " << in_dim << ".";
|
|
791
|
+
throw std::invalid_argument(msg.str());
|
|
792
|
+
}
|
|
793
|
+
// Ensure the broadcasted size is used
|
|
794
|
+
in_dim = std::max(in_dim, dim);
|
|
795
|
+
}
|
|
796
|
+
}
|
|
797
|
+
|
|
798
|
+
size_t max_size = term_size(out_subscript, dim_map);
|
|
799
|
+
for (auto& in : in_subscripts) {
|
|
800
|
+
max_size = std::max(max_size, term_size(in, dim_map));
|
|
801
|
+
}
|
|
802
|
+
|
|
803
|
+
PathInfo path_info;
|
|
804
|
+
|
|
805
|
+
// Get the full naive cost
|
|
806
|
+
std::tie(path_info.naive_cost, path_info.naive_scaling) =
|
|
807
|
+
compute_cost_and_scaling(inputs, output, dim_map);
|
|
808
|
+
|
|
809
|
+
// Calculate the path
|
|
810
|
+
std::vector<PathNode> path;
|
|
811
|
+
if (inputs.size() <= 2) {
|
|
812
|
+
std::vector<int> positions(in_subscripts.size());
|
|
813
|
+
std::iota(positions.begin(), positions.end(), 0);
|
|
814
|
+
path.emplace_back(
|
|
815
|
+
std::move(inputs), std::move(output), std::move(positions));
|
|
816
|
+
} else {
|
|
817
|
+
std::tie(path, path_info.optimized_cost, path_info.optimized_scaling) =
|
|
818
|
+
greedy_path(inputs, output, dim_map, path_info.naive_cost, max_size);
|
|
819
|
+
// Set the final output subscript to the actual output
|
|
820
|
+
path.back().output = std::move(output);
|
|
821
|
+
}
|
|
822
|
+
return {path, path_info};
|
|
823
|
+
}
|
|
824
|
+
|
|
825
|
+
} // namespace
|
|
826
|
+
|
|
827
|
+
std::pair<std::vector<std::vector<int>>, std::string> einsum_path(
|
|
828
|
+
const std::string& subscripts,
|
|
829
|
+
const std::vector<array>& operands) {
|
|
830
|
+
auto [path, path_info] =
|
|
831
|
+
einsum_path_helper(subscripts, operands, "einsum_path");
|
|
832
|
+
|
|
833
|
+
std::vector<std::vector<int>> pos_path;
|
|
834
|
+
for (auto& p : path) {
|
|
835
|
+
pos_path.push_back(p.positions);
|
|
836
|
+
}
|
|
837
|
+
|
|
838
|
+
std::ostringstream path_print;
|
|
839
|
+
path_print << " Complete contraction: " << subscripts << "\n"
|
|
840
|
+
<< " Naive scaling: " << path_info.naive_scaling << "\n"
|
|
841
|
+
<< " Optimized scaling: " << path_info.optimized_scaling
|
|
842
|
+
<< "\n"
|
|
843
|
+
<< " Naive FLOP count: " << path_info.naive_cost << "\n"
|
|
844
|
+
<< " Optimized FLOP count: " << path_info.optimized_cost << "\n";
|
|
845
|
+
// TODO add more info here
|
|
846
|
+
return {pos_path, path_print.str()};
|
|
847
|
+
}
|
|
848
|
+
|
|
849
|
+
array einsum(
|
|
850
|
+
const std::string& subscripts,
|
|
851
|
+
const std::vector<array>& operands,
|
|
852
|
+
StreamOrDevice s /* = {} */) {
|
|
853
|
+
auto [path, path_info] = einsum_path_helper(subscripts, operands, "einsum");
|
|
854
|
+
auto inputs = operands;
|
|
855
|
+
for (auto& node : path) {
|
|
856
|
+
preprocess_einsum_inputs(
|
|
857
|
+
node.inputs, node.output, node.positions, inputs, s);
|
|
858
|
+
|
|
859
|
+
if (can_dot(node.inputs, node.output)) {
|
|
860
|
+
auto& in_a = node.inputs[0];
|
|
861
|
+
auto& in_b = node.inputs[1];
|
|
862
|
+
auto& out = node.output;
|
|
863
|
+
|
|
864
|
+
std::vector<int> a_contract;
|
|
865
|
+
std::vector<int> a_batch;
|
|
866
|
+
std::vector<int> a_concat;
|
|
867
|
+
for (int i = 0; i < in_a.str.size(); ++i) {
|
|
868
|
+
auto c = in_a.str[i];
|
|
869
|
+
if (out.set.find(c) == out.set.end()) {
|
|
870
|
+
// Not in the output, contraction
|
|
871
|
+
a_contract.push_back(i);
|
|
872
|
+
} else if (in_b.set.find(c) != in_b.set.end()) {
|
|
873
|
+
// Not a contraction but in both inputs, batch dim
|
|
874
|
+
a_batch.push_back(i);
|
|
875
|
+
} else {
|
|
876
|
+
// Not a batch dim or contract dim, so concat dim
|
|
877
|
+
a_concat.push_back(i);
|
|
878
|
+
}
|
|
879
|
+
}
|
|
880
|
+
|
|
881
|
+
std::vector<int> b_contract;
|
|
882
|
+
std::vector<int> b_batch;
|
|
883
|
+
std::vector<int> b_concat;
|
|
884
|
+
for (auto a_i : a_contract) {
|
|
885
|
+
b_contract.push_back(in_b.str.find(in_a.str[a_i]));
|
|
886
|
+
}
|
|
887
|
+
for (auto a_i : a_batch) {
|
|
888
|
+
b_batch.push_back(in_b.str.find(in_a.str[a_i]));
|
|
889
|
+
}
|
|
890
|
+
for (int i = 0; i < in_b.str.size(); ++i) {
|
|
891
|
+
auto c = in_b.str[i];
|
|
892
|
+
if (out.set.find(c) != out.set.end() &&
|
|
893
|
+
in_a.set.find(c) == in_a.set.end()) {
|
|
894
|
+
b_concat.push_back(i);
|
|
895
|
+
}
|
|
896
|
+
}
|
|
897
|
+
|
|
898
|
+
auto& a = inputs[node.positions[0]];
|
|
899
|
+
auto& b = inputs[node.positions[1]];
|
|
900
|
+
|
|
901
|
+
std::unordered_map<char, int> char_map;
|
|
902
|
+
for (auto i : a_batch) {
|
|
903
|
+
char_map.insert({in_a.str[i], char_map.size()});
|
|
904
|
+
}
|
|
905
|
+
for (auto i : a_concat) {
|
|
906
|
+
char_map.insert({in_a.str[i], char_map.size()});
|
|
907
|
+
}
|
|
908
|
+
for (auto i : b_concat) {
|
|
909
|
+
char_map.insert({in_b.str[i], char_map.size()});
|
|
910
|
+
}
|
|
911
|
+
inputs.emplace_back(batch_tensordot(
|
|
912
|
+
a,
|
|
913
|
+
b,
|
|
914
|
+
std::move(a_contract),
|
|
915
|
+
std::move(a_batch),
|
|
916
|
+
std::move(a_concat),
|
|
917
|
+
std::move(b_contract),
|
|
918
|
+
std::move(b_batch),
|
|
919
|
+
std::move(b_concat),
|
|
920
|
+
s));
|
|
921
|
+
|
|
922
|
+
std::vector<int> reorder;
|
|
923
|
+
for (auto c : node.output.str) {
|
|
924
|
+
reorder.push_back(char_map[c]);
|
|
925
|
+
}
|
|
926
|
+
inputs.back() = transpose(inputs.back(), reorder, s);
|
|
927
|
+
|
|
928
|
+
} else {
|
|
929
|
+
inputs.emplace_back(
|
|
930
|
+
einsum_naive(node.inputs, node.output, node.positions, inputs, s));
|
|
931
|
+
}
|
|
932
|
+
|
|
933
|
+
// Positions are always sorted increasing, so start from the back
|
|
934
|
+
for (auto it = node.positions.rbegin(); it != node.positions.rend(); ++it) {
|
|
935
|
+
inputs.erase(inputs.begin() + *it);
|
|
936
|
+
}
|
|
937
|
+
}
|
|
938
|
+
return inputs.front();
|
|
939
|
+
}
|
|
940
|
+
|
|
941
|
+
} // namespace mlx::core
|