mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,167 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class PoolBase < Module
|
|
6
|
+
def initialize(pooling_symbol, kernel_size, stride, padding, padding_value)
|
|
7
|
+
super()
|
|
8
|
+
@pooling_symbol = pooling_symbol
|
|
9
|
+
@kernel_size = kernel_size
|
|
10
|
+
@stride = stride
|
|
11
|
+
@padding = padding
|
|
12
|
+
@padding_value = padding_value
|
|
13
|
+
end
|
|
14
|
+
|
|
15
|
+
def call(x)
|
|
16
|
+
if @padding.any? { |p| p[0] > 0 }
|
|
17
|
+
x = MLX::Core.pad(x, [[0, 0], *@padding, [0, 0]], nil, @padding_value)
|
|
18
|
+
end
|
|
19
|
+
windows = sliding_windows(x, @kernel_size, @stride)
|
|
20
|
+
reduce_windows(windows)
|
|
21
|
+
end
|
|
22
|
+
|
|
23
|
+
private
|
|
24
|
+
|
|
25
|
+
def value_or_list(value, n, message)
|
|
26
|
+
if value.is_a?(Array)
|
|
27
|
+
unless value.length == n && value.all? { |v| v.is_a?(Integer) }
|
|
28
|
+
raise ArgumentError, message
|
|
29
|
+
end
|
|
30
|
+
return value
|
|
31
|
+
end
|
|
32
|
+
|
|
33
|
+
unless value.is_a?(Integer)
|
|
34
|
+
raise ArgumentError, message
|
|
35
|
+
end
|
|
36
|
+
Array.new(n, value)
|
|
37
|
+
end
|
|
38
|
+
|
|
39
|
+
def reduce_windows(windows)
|
|
40
|
+
result = windows
|
|
41
|
+
window_dims = @kernel_size.length
|
|
42
|
+
window_dims.times do
|
|
43
|
+
axis = result.ndim - 2
|
|
44
|
+
result = if @pooling_symbol == :max
|
|
45
|
+
MLX::Core.max(result, axis)
|
|
46
|
+
else
|
|
47
|
+
MLX::Core.mean(result, axis)
|
|
48
|
+
end
|
|
49
|
+
end
|
|
50
|
+
result
|
|
51
|
+
end
|
|
52
|
+
|
|
53
|
+
def sliding_windows(x, window_shape, window_strides)
|
|
54
|
+
if x.ndim < 3
|
|
55
|
+
raise ArgumentError,
|
|
56
|
+
"To extract sliding windows at least 1 spatial dimension (3 total) is needed but the input only has #{x.ndim} dimensions."
|
|
57
|
+
end
|
|
58
|
+
|
|
59
|
+
spatial_dims = x.shape[1...-1]
|
|
60
|
+
unless spatial_dims.length == window_shape.length && window_shape.length == window_strides.length
|
|
61
|
+
raise ArgumentError,
|
|
62
|
+
"To extract sliding windows the window shapes and strides must have the same number of spatial dimensions as the signal."
|
|
63
|
+
end
|
|
64
|
+
|
|
65
|
+
shape = x.shape
|
|
66
|
+
strides = Array.new(shape.length)
|
|
67
|
+
running = 1
|
|
68
|
+
(shape.length - 1).downto(0) do |i|
|
|
69
|
+
strides[i] = running
|
|
70
|
+
running *= shape[i]
|
|
71
|
+
end
|
|
72
|
+
|
|
73
|
+
final_shape = [shape[0]]
|
|
74
|
+
spatial_dims.each_with_index do |size, i|
|
|
75
|
+
window = window_shape[i]
|
|
76
|
+
stride = window_strides[i]
|
|
77
|
+
final_shape << ((size - window) / stride + 1)
|
|
78
|
+
end
|
|
79
|
+
final_shape.concat(window_shape)
|
|
80
|
+
final_shape << shape[-1]
|
|
81
|
+
|
|
82
|
+
final_strides = [strides[0]]
|
|
83
|
+
spatial_dims.each_with_index do |_size, i|
|
|
84
|
+
final_strides << (strides[i + 1] * window_strides[i])
|
|
85
|
+
end
|
|
86
|
+
final_strides.concat(strides[1...-1])
|
|
87
|
+
final_strides << strides[-1]
|
|
88
|
+
|
|
89
|
+
MLX::Core.as_strided(x, final_shape, final_strides)
|
|
90
|
+
end
|
|
91
|
+
end
|
|
92
|
+
|
|
93
|
+
class Pool1dBase < PoolBase
|
|
94
|
+
def initialize(pooling_symbol, padding_value, kernel_size, stride = nil, padding = 0)
|
|
95
|
+
class_name = self.class.name.split("::").last
|
|
96
|
+
msg = "[#{class_name}] '%s' must be an integer or a tuple containing 1 integer"
|
|
97
|
+
kernel_size = value_or_list(kernel_size, 1, format(msg, "kernel_size"))
|
|
98
|
+
stride = stride.nil? ? kernel_size : value_or_list(stride, 1, format(msg, "stride"))
|
|
99
|
+
padding = value_or_list(padding, 1, format(msg, "padding")).map { |p| [p, p] }
|
|
100
|
+
super(pooling_symbol, kernel_size, stride, padding, padding_value)
|
|
101
|
+
end
|
|
102
|
+
end
|
|
103
|
+
|
|
104
|
+
class Pool2dBase < PoolBase
|
|
105
|
+
def initialize(pooling_symbol, padding_value, kernel_size, stride = nil, padding = 0)
|
|
106
|
+
class_name = self.class.name.split("::").last
|
|
107
|
+
msg = "[#{class_name}] '%s' must be an integer or a tuple containing 2 integers"
|
|
108
|
+
kernel_size = value_or_list(kernel_size, 2, format(msg, "kernel_size"))
|
|
109
|
+
stride = stride.nil? ? kernel_size : value_or_list(stride, 2, format(msg, "stride"))
|
|
110
|
+
padding = value_or_list(padding, 2, format(msg, "padding")).map { |p| [p, p] }
|
|
111
|
+
super(pooling_symbol, kernel_size, stride, padding, padding_value)
|
|
112
|
+
end
|
|
113
|
+
end
|
|
114
|
+
|
|
115
|
+
class Pool3dBase < PoolBase
|
|
116
|
+
def initialize(pooling_symbol, padding_value, kernel_size, stride = nil, padding = 0)
|
|
117
|
+
class_name = self.class.name.split("::").last
|
|
118
|
+
msg = "[#{class_name}] '%s' must be an integer or a tuple containing 3 integers"
|
|
119
|
+
kernel_size = value_or_list(kernel_size, 3, format(msg, "kernel_size"))
|
|
120
|
+
stride = stride.nil? ? kernel_size : value_or_list(stride, 3, format(msg, "stride"))
|
|
121
|
+
padding = value_or_list(padding, 3, format(msg, "padding")).map { |p| [p, p] }
|
|
122
|
+
super(pooling_symbol, kernel_size, stride, padding, padding_value)
|
|
123
|
+
end
|
|
124
|
+
end
|
|
125
|
+
|
|
126
|
+
class MaxPool1d < Pool1dBase
|
|
127
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
128
|
+
super(:max, -Float::INFINITY, kernel_size, stride, padding)
|
|
129
|
+
end
|
|
130
|
+
end
|
|
131
|
+
|
|
132
|
+
class AvgPool1d < Pool1dBase
|
|
133
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
134
|
+
super(:mean, 0.0, kernel_size, stride, padding)
|
|
135
|
+
end
|
|
136
|
+
end
|
|
137
|
+
|
|
138
|
+
class MaxPool2d < Pool2dBase
|
|
139
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
140
|
+
super(:max, -Float::INFINITY, kernel_size, stride, padding)
|
|
141
|
+
end
|
|
142
|
+
end
|
|
143
|
+
|
|
144
|
+
class AvgPool2d < Pool2dBase
|
|
145
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
146
|
+
super(:mean, 0.0, kernel_size, stride, padding)
|
|
147
|
+
end
|
|
148
|
+
end
|
|
149
|
+
|
|
150
|
+
class MaxPool3d < Pool3dBase
|
|
151
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
152
|
+
super(:max, -Float::INFINITY, kernel_size, stride, padding)
|
|
153
|
+
end
|
|
154
|
+
end
|
|
155
|
+
|
|
156
|
+
class AvgPool3d < Pool3dBase
|
|
157
|
+
def initialize(kernel_size, stride: nil, padding: 0)
|
|
158
|
+
super(:mean, 0.0, kernel_size, stride, padding)
|
|
159
|
+
end
|
|
160
|
+
end
|
|
161
|
+
|
|
162
|
+
remove_const(:Pool1dBase)
|
|
163
|
+
remove_const(:Pool2dBase)
|
|
164
|
+
remove_const(:Pool3dBase)
|
|
165
|
+
remove_const(:PoolBase)
|
|
166
|
+
end
|
|
167
|
+
end
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class RoPE < Module
|
|
6
|
+
def initialize(dims, traditional: false, base: 10_000.0, scale: 1.0)
|
|
7
|
+
super()
|
|
8
|
+
@dims = dims
|
|
9
|
+
@traditional = traditional
|
|
10
|
+
@base = base
|
|
11
|
+
@scale = scale
|
|
12
|
+
end
|
|
13
|
+
|
|
14
|
+
def call(x, offset: 0)
|
|
15
|
+
MLX::Core.rope(x, @dims, @traditional, @base, @scale, offset)
|
|
16
|
+
end
|
|
17
|
+
end
|
|
18
|
+
|
|
19
|
+
class SinusoidalPositionalEncoding < Module
|
|
20
|
+
def initialize(
|
|
21
|
+
dims,
|
|
22
|
+
min_freq: 0.0001,
|
|
23
|
+
max_freq: 1.0,
|
|
24
|
+
scale: nil,
|
|
25
|
+
cos_first: false,
|
|
26
|
+
full_turns: false
|
|
27
|
+
)
|
|
28
|
+
super()
|
|
29
|
+
|
|
30
|
+
half_dims = dims / 2
|
|
31
|
+
one_zero = MLX::Core.subtract(
|
|
32
|
+
1.0,
|
|
33
|
+
MLX::Core.divide(
|
|
34
|
+
MLX::Core.arange(0, half_dims, 1, MLX::Core.float32),
|
|
35
|
+
(half_dims - 1).to_f
|
|
36
|
+
)
|
|
37
|
+
)
|
|
38
|
+
min_log = Math.log(min_freq)
|
|
39
|
+
max_log = Math.log(max_freq)
|
|
40
|
+
|
|
41
|
+
self._sigmas = MLX::Core.exp(
|
|
42
|
+
MLX::Core.add(MLX::Core.multiply(one_zero, max_log - min_log), min_log)
|
|
43
|
+
)
|
|
44
|
+
self._sigmas = MLX::Core.multiply(_sigmas, 2.0 * Math::PI) if full_turns
|
|
45
|
+
|
|
46
|
+
@scale = scale || Math.sqrt(2.0 / dims)
|
|
47
|
+
@cos_first = cos_first
|
|
48
|
+
end
|
|
49
|
+
|
|
50
|
+
def call(x)
|
|
51
|
+
y = MLX::Core.multiply(MLX::Core.expand_dims(x, -1), _sigmas)
|
|
52
|
+
cosy = MLX::Core.cos(y)
|
|
53
|
+
siny = MLX::Core.sin(y)
|
|
54
|
+
y = if @cos_first
|
|
55
|
+
MLX::Core.concatenate([cosy, siny], -1)
|
|
56
|
+
else
|
|
57
|
+
MLX::Core.concatenate([siny, cosy], -1)
|
|
58
|
+
end
|
|
59
|
+
|
|
60
|
+
if @scale != 1.0
|
|
61
|
+
MLX::Core.multiply(y, @scale)
|
|
62
|
+
else
|
|
63
|
+
y
|
|
64
|
+
end
|
|
65
|
+
end
|
|
66
|
+
end
|
|
67
|
+
|
|
68
|
+
class ALiBi < Module
|
|
69
|
+
class << self
|
|
70
|
+
def create_alibi_matrix(
|
|
71
|
+
q_sequence_length:,
|
|
72
|
+
k_sequence_length:,
|
|
73
|
+
num_heads:,
|
|
74
|
+
offset:,
|
|
75
|
+
dtype: MLX::Core.float32
|
|
76
|
+
)
|
|
77
|
+
x1 = MLX::Core.arange(offset, q_sequence_length, 1)
|
|
78
|
+
x2 = MLX::Core.arange(0, k_sequence_length, 1)
|
|
79
|
+
x1_col = MLX::Core.reshape(x1, [x1.shape[0], 1])
|
|
80
|
+
x2_row = MLX::Core.reshape(x2, [1, x2.shape[0]])
|
|
81
|
+
distance = MLX::Core.multiply(MLX::Core.abs(MLX::Core.subtract(x1_col, x2_row)), -1.0)
|
|
82
|
+
distance = MLX::Core.expand_dims(MLX::Core.expand_dims(distance, 0), 1)
|
|
83
|
+
|
|
84
|
+
slope = create_alibi_slope(num_heads: num_heads, dtype: dtype)
|
|
85
|
+
MLX::Core.multiply(distance, slope).astype(dtype)
|
|
86
|
+
end
|
|
87
|
+
|
|
88
|
+
def create_alibi_slope(num_heads:, dtype:)
|
|
89
|
+
slopes = get_slopes(num_heads)
|
|
90
|
+
out = MLX::Core.array(slopes, dtype)
|
|
91
|
+
MLX::Core.expand_dims(MLX::Core.expand_dims(out, -1), -1)
|
|
92
|
+
end
|
|
93
|
+
|
|
94
|
+
private
|
|
95
|
+
|
|
96
|
+
def get_slopes(n)
|
|
97
|
+
if integer_log2?(n)
|
|
98
|
+
start = 2.0**(-(2.0**(-(Math.log2(n) - 3.0))))
|
|
99
|
+
Array.new(n) { |i| start * (start**i) }
|
|
100
|
+
else
|
|
101
|
+
closest_power_of_2 = 2**Math.log2(n).floor
|
|
102
|
+
base = get_slopes(closest_power_of_2)
|
|
103
|
+
extras = get_slopes(2 * closest_power_of_2).each_with_index.select { |_, i| i.even? }.map(&:first)
|
|
104
|
+
base + extras.first(n - closest_power_of_2)
|
|
105
|
+
end
|
|
106
|
+
end
|
|
107
|
+
|
|
108
|
+
def integer_log2?(n)
|
|
109
|
+
Math.log2(n).to_i == Math.log2(n)
|
|
110
|
+
end
|
|
111
|
+
end
|
|
112
|
+
|
|
113
|
+
def call(attention_scores, offset: 0, mask: nil)
|
|
114
|
+
alibi_mask = self.class.create_alibi_matrix(
|
|
115
|
+
q_sequence_length: attention_scores.shape[-2] + offset,
|
|
116
|
+
k_sequence_length: attention_scores.shape[-1],
|
|
117
|
+
num_heads: attention_scores.shape[1],
|
|
118
|
+
offset: offset,
|
|
119
|
+
dtype: attention_scores.dtype
|
|
120
|
+
)
|
|
121
|
+
alibi_mask = MLX::Core.add(alibi_mask, mask) unless mask.nil?
|
|
122
|
+
MLX::Core.add(attention_scores, alibi_mask)
|
|
123
|
+
end
|
|
124
|
+
end
|
|
125
|
+
end
|
|
126
|
+
end
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class << self
|
|
6
|
+
def quantize(
|
|
7
|
+
model,
|
|
8
|
+
group_size: nil,
|
|
9
|
+
bits: nil,
|
|
10
|
+
mode: "affine",
|
|
11
|
+
quantize_input: false,
|
|
12
|
+
class_predicate: nil
|
|
13
|
+
)
|
|
14
|
+
class_predicate ||= lambda do |_path, module_obj|
|
|
15
|
+
module_obj.respond_to?(:to_quantized)
|
|
16
|
+
end
|
|
17
|
+
|
|
18
|
+
maybe_quantize = lambda do |path, module_obj|
|
|
19
|
+
decision = class_predicate.call(path, module_obj)
|
|
20
|
+
decision = false if decision.respond_to?(:empty?) && decision.empty?
|
|
21
|
+
|
|
22
|
+
return module_obj unless decision
|
|
23
|
+
|
|
24
|
+
unless module_obj.respond_to?(:to_quantized)
|
|
25
|
+
raise ArgumentError, "Unable to quantize model of type #{module_obj.class}"
|
|
26
|
+
end
|
|
27
|
+
|
|
28
|
+
if decision == true
|
|
29
|
+
kwargs = { group_size: group_size, bits: bits, mode: mode }
|
|
30
|
+
kwargs[:quantize_input] = true if quantize_input
|
|
31
|
+
module_obj.to_quantized(**kwargs)
|
|
32
|
+
elsif decision.is_a?(Hash)
|
|
33
|
+
kwargs = symbolize_hash(decision.dup)
|
|
34
|
+
kwargs.delete(:quantize_input) if kwargs[:quantize_input] == false
|
|
35
|
+
module_obj.to_quantized(**kwargs)
|
|
36
|
+
else
|
|
37
|
+
raise ArgumentError, "class_predicate must return a bool or a hash of quantization kwargs"
|
|
38
|
+
end
|
|
39
|
+
end
|
|
40
|
+
|
|
41
|
+
leaves = model.leaf_modules
|
|
42
|
+
updated = MLX::Utils.tree_map_with_path(
|
|
43
|
+
maybe_quantize,
|
|
44
|
+
leaves,
|
|
45
|
+
is_leaf: lambda { |v| v.is_a?(MLX::NN::Module) }
|
|
46
|
+
)
|
|
47
|
+
model.update_modules(updated)
|
|
48
|
+
model
|
|
49
|
+
end
|
|
50
|
+
|
|
51
|
+
private
|
|
52
|
+
|
|
53
|
+
def defaults_for_mode(mode, group_size, bits)
|
|
54
|
+
defaults = {
|
|
55
|
+
"affine" => [64, 4],
|
|
56
|
+
"mxfp4" => [32, 4],
|
|
57
|
+
"nvfp4" => [16, 4],
|
|
58
|
+
"mxfp8" => [32, 8]
|
|
59
|
+
}
|
|
60
|
+
default_group_size, default_bits = defaults.fetch(mode.to_s) do
|
|
61
|
+
raise ArgumentError, "Unsupported quantization mode #{mode}"
|
|
62
|
+
end
|
|
63
|
+
[group_size || default_group_size, bits || default_bits]
|
|
64
|
+
end
|
|
65
|
+
|
|
66
|
+
def symbolize_hash(hash)
|
|
67
|
+
hash.each_with_object({}) do |(key, value), out|
|
|
68
|
+
out[key.to_sym] = value
|
|
69
|
+
end
|
|
70
|
+
end
|
|
71
|
+
end
|
|
72
|
+
|
|
73
|
+
class QuantizedEmbedding < Module
|
|
74
|
+
attr_reader :group_size, :bits, :mode, :num_embeddings, :dims
|
|
75
|
+
|
|
76
|
+
def initialize(num_embeddings, dims, group_size = nil, bits = nil, mode: "affine")
|
|
77
|
+
super()
|
|
78
|
+
@group_size, @bits = MLX::NN.__send__(:defaults_for_mode, mode, group_size, bits)
|
|
79
|
+
@mode = mode
|
|
80
|
+
|
|
81
|
+
scale = Math.sqrt(1.0 / dims)
|
|
82
|
+
weight = MLX::Core.normal([num_embeddings, dims], 0.0, scale)
|
|
83
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(weight, group_size, bits, mode)
|
|
84
|
+
self.weight = q_weight
|
|
85
|
+
self.scales = q_scales
|
|
86
|
+
self.biases = q_biases.empty? ? nil : q_biases[0]
|
|
87
|
+
|
|
88
|
+
@num_embeddings = num_embeddings
|
|
89
|
+
@dims = dims
|
|
90
|
+
freeze
|
|
91
|
+
end
|
|
92
|
+
|
|
93
|
+
def call(x)
|
|
94
|
+
gathered_weight = MLX::Core.take(weight, x, 0)
|
|
95
|
+
gathered_scales = MLX::Core.take(scales, x, 0)
|
|
96
|
+
gathered_biases = biases.nil? ? nil : MLX::Core.take(biases, x, 0)
|
|
97
|
+
MLX::Core.dequantize(gathered_weight, gathered_scales, gathered_biases, group_size, bits, mode)
|
|
98
|
+
end
|
|
99
|
+
|
|
100
|
+
def as_linear(x)
|
|
101
|
+
MLX::Core.quantized_matmul(x, weight, scales, biases, true, group_size, bits, mode)
|
|
102
|
+
end
|
|
103
|
+
|
|
104
|
+
def self.from_embedding(embedding_layer, group_size = nil, bits = nil, mode: "affine")
|
|
105
|
+
num_embeddings, dims = embedding_layer.weight.shape
|
|
106
|
+
out = new(num_embeddings, dims, group_size, bits, mode: mode)
|
|
107
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(embedding_layer.weight, group_size, bits, mode)
|
|
108
|
+
out.weight = q_weight
|
|
109
|
+
out.scales = q_scales
|
|
110
|
+
out.biases = q_biases.empty? ? nil : q_biases[0]
|
|
111
|
+
out
|
|
112
|
+
end
|
|
113
|
+
end
|
|
114
|
+
|
|
115
|
+
class QuantizedLinear < Module
|
|
116
|
+
attr_reader :group_size, :bits, :mode
|
|
117
|
+
|
|
118
|
+
def initialize(input_dims, output_dims, bias = true, group_size = nil, bits = nil, mode: "affine")
|
|
119
|
+
super()
|
|
120
|
+
@group_size, @bits = MLX::NN.__send__(:defaults_for_mode, mode, group_size, bits)
|
|
121
|
+
@mode = mode
|
|
122
|
+
|
|
123
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
124
|
+
weight = MLX::Core.uniform([output_dims, input_dims], -scale, scale)
|
|
125
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(weight, group_size, bits, mode)
|
|
126
|
+
self.weight = q_weight
|
|
127
|
+
self.scales = q_scales
|
|
128
|
+
self.biases = q_biases.empty? ? nil : q_biases[0]
|
|
129
|
+
self.bias = MLX::Core.zeros([output_dims], MLX::Core.float32) if bias
|
|
130
|
+
|
|
131
|
+
freeze
|
|
132
|
+
end
|
|
133
|
+
|
|
134
|
+
def call(x)
|
|
135
|
+
out = MLX::Core.quantized_matmul(x, weight, scales, biases, true, group_size, bits, mode)
|
|
136
|
+
if state.key?("bias")
|
|
137
|
+
MLX::Core.add(out, bias)
|
|
138
|
+
else
|
|
139
|
+
out
|
|
140
|
+
end
|
|
141
|
+
end
|
|
142
|
+
|
|
143
|
+
def self.from_linear(linear_layer, group_size = nil, bits = nil, mode: "affine")
|
|
144
|
+
output_dims, input_dims = linear_layer.weight.shape
|
|
145
|
+
out = new(input_dims, output_dims, false, group_size, bits, mode: mode)
|
|
146
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(linear_layer.weight, group_size, bits, mode)
|
|
147
|
+
out.weight = q_weight
|
|
148
|
+
out.scales = q_scales
|
|
149
|
+
out.biases = q_biases.empty? ? nil : q_biases[0]
|
|
150
|
+
out.bias = linear_layer.bias if linear_layer.state.key?("bias")
|
|
151
|
+
out
|
|
152
|
+
end
|
|
153
|
+
end
|
|
154
|
+
|
|
155
|
+
class QQLinear < Module
|
|
156
|
+
attr_reader :group_size, :bits, :mode
|
|
157
|
+
|
|
158
|
+
def initialize(input_dims, output_dims, group_size = nil, bits = nil, mode: "nvfp4")
|
|
159
|
+
super()
|
|
160
|
+
@group_size, @bits = MLX::NN.__send__(:defaults_for_mode, mode, group_size, bits)
|
|
161
|
+
@mode = mode
|
|
162
|
+
|
|
163
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
164
|
+
self.weight = MLX::Core.uniform([output_dims, input_dims], -scale, scale)
|
|
165
|
+
@_quantized = false
|
|
166
|
+
end
|
|
167
|
+
|
|
168
|
+
def quantize
|
|
169
|
+
return self if @_quantized
|
|
170
|
+
|
|
171
|
+
q_weight, q_scales, *_ = MLX::Core.quantize(weight, group_size, bits, mode)
|
|
172
|
+
self.weight = q_weight
|
|
173
|
+
self.scales = q_scales
|
|
174
|
+
@_quantized = true
|
|
175
|
+
self
|
|
176
|
+
end
|
|
177
|
+
|
|
178
|
+
def dequantize
|
|
179
|
+
return self unless @_quantized
|
|
180
|
+
|
|
181
|
+
self.weight = MLX::Core.dequantize(weight, scales, nil, group_size, bits, mode)
|
|
182
|
+
state.delete("scales")
|
|
183
|
+
@_quantized = false
|
|
184
|
+
self
|
|
185
|
+
end
|
|
186
|
+
|
|
187
|
+
def train(mode = true)
|
|
188
|
+
super
|
|
189
|
+
if training
|
|
190
|
+
dequantize
|
|
191
|
+
else
|
|
192
|
+
quantize
|
|
193
|
+
end
|
|
194
|
+
self
|
|
195
|
+
end
|
|
196
|
+
|
|
197
|
+
def call(x)
|
|
198
|
+
q_scales = state["scales"]
|
|
199
|
+
MLX::Core.qqmm(x, weight, q_scales, group_size, bits, mode)
|
|
200
|
+
end
|
|
201
|
+
|
|
202
|
+
def self.from_linear(linear_layer, group_size = nil, bits = nil, mode: "nvfp4")
|
|
203
|
+
if linear_layer.state.key?("bias")
|
|
204
|
+
raise NotImplementedError, "QQLinear does not support bias yet."
|
|
205
|
+
end
|
|
206
|
+
|
|
207
|
+
output_dims, input_dims = linear_layer.weight.shape
|
|
208
|
+
out = new(input_dims, output_dims, group_size, bits, mode: mode)
|
|
209
|
+
out.weight = linear_layer.weight
|
|
210
|
+
out.train(linear_layer.training)
|
|
211
|
+
out
|
|
212
|
+
end
|
|
213
|
+
end
|
|
214
|
+
end
|
|
215
|
+
end
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class RNN < Module
|
|
6
|
+
def initialize(input_size, hidden_size, bias: true, nonlinearity: nil)
|
|
7
|
+
super()
|
|
8
|
+
|
|
9
|
+
@nonlinearity = nonlinearity || lambda { |z| MLX::NN.tanh(z) }
|
|
10
|
+
unless @nonlinearity.respond_to?(:call)
|
|
11
|
+
raise ArgumentError, "Nonlinearity must be callable. Current value: #{nonlinearity}."
|
|
12
|
+
end
|
|
13
|
+
|
|
14
|
+
scale = 1.0 / Math.sqrt(hidden_size)
|
|
15
|
+
@hidden_size = hidden_size
|
|
16
|
+
self.Wxh = MLX::Core.uniform([hidden_size, input_size], -scale, scale)
|
|
17
|
+
self.Whh = MLX::Core.uniform([hidden_size, hidden_size], -scale, scale)
|
|
18
|
+
self.bias = bias ? MLX::Core.uniform([hidden_size], -scale, scale) : nil
|
|
19
|
+
end
|
|
20
|
+
|
|
21
|
+
def call(x, hidden = nil)
|
|
22
|
+
x = MLX::Core.matmul(x, self.Wxh.T)
|
|
23
|
+
x = MLX::Core.add(x, self.bias) unless self.bias.nil?
|
|
24
|
+
|
|
25
|
+
all_hidden = []
|
|
26
|
+
sequence_axis = x.ndim - 2
|
|
27
|
+
x.shape[sequence_axis].times do |idx|
|
|
28
|
+
step = MLX::Core.take(x, idx, sequence_axis)
|
|
29
|
+
step = MLX::Core.add(step, MLX::Core.matmul(hidden, self.Whh.T)) unless hidden.nil?
|
|
30
|
+
hidden = @nonlinearity.call(step)
|
|
31
|
+
all_hidden << hidden
|
|
32
|
+
end
|
|
33
|
+
|
|
34
|
+
MLX::Core.stack(all_hidden, -2)
|
|
35
|
+
end
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
class GRU < Module
|
|
39
|
+
def initialize(input_size, hidden_size, bias: true)
|
|
40
|
+
super()
|
|
41
|
+
|
|
42
|
+
@hidden_size = hidden_size
|
|
43
|
+
scale = 1.0 / Math.sqrt(hidden_size)
|
|
44
|
+
self.Wx = MLX::Core.uniform([3 * hidden_size, input_size], -scale, scale)
|
|
45
|
+
self.Wh = MLX::Core.uniform([3 * hidden_size, hidden_size], -scale, scale)
|
|
46
|
+
self.b = bias ? MLX::Core.uniform([3 * hidden_size], -scale, scale) : nil
|
|
47
|
+
self.bhn = bias ? MLX::Core.uniform([hidden_size], -scale, scale) : nil
|
|
48
|
+
end
|
|
49
|
+
|
|
50
|
+
def call(x, hidden = nil)
|
|
51
|
+
x = MLX::Core.matmul(x, self.Wx.T)
|
|
52
|
+
x = MLX::Core.add(x, self.b) unless self.b.nil?
|
|
53
|
+
|
|
54
|
+
x_rz, x_n = MLX::Core.split(x, [2 * @hidden_size], x.ndim - 1)
|
|
55
|
+
all_hidden = []
|
|
56
|
+
sequence_axis = x.ndim - 2
|
|
57
|
+
|
|
58
|
+
x.shape[sequence_axis].times do |idx|
|
|
59
|
+
rz = MLX::Core.take(x_rz, idx, sequence_axis)
|
|
60
|
+
h_proj_n = nil
|
|
61
|
+
|
|
62
|
+
unless hidden.nil?
|
|
63
|
+
h_proj = MLX::Core.matmul(hidden, self.Wh.T)
|
|
64
|
+
h_proj_rz, h_proj_n = MLX::Core.split(h_proj, [2 * @hidden_size], h_proj.ndim - 1)
|
|
65
|
+
h_proj_n = MLX::Core.add(h_proj_n, self.bhn) unless self.bhn.nil?
|
|
66
|
+
rz = MLX::Core.add(rz, h_proj_rz)
|
|
67
|
+
end
|
|
68
|
+
|
|
69
|
+
rz = MLX::Core.sigmoid(rz)
|
|
70
|
+
r, z = MLX::Core.split(rz, 2, rz.ndim - 1)
|
|
71
|
+
n = MLX::Core.take(x_n, idx, sequence_axis)
|
|
72
|
+
n = MLX::Core.add(n, MLX::Core.multiply(r, h_proj_n)) unless hidden.nil?
|
|
73
|
+
n = MLX::Core.tanh(n)
|
|
74
|
+
|
|
75
|
+
if hidden.nil?
|
|
76
|
+
hidden = MLX::Core.multiply(MLX::Core.subtract(1.0, z), n)
|
|
77
|
+
else
|
|
78
|
+
hidden = MLX::Core.add(
|
|
79
|
+
MLX::Core.multiply(MLX::Core.subtract(1.0, z), n),
|
|
80
|
+
MLX::Core.multiply(z, hidden)
|
|
81
|
+
)
|
|
82
|
+
end
|
|
83
|
+
|
|
84
|
+
all_hidden << hidden
|
|
85
|
+
end
|
|
86
|
+
|
|
87
|
+
MLX::Core.stack(all_hidden, -2)
|
|
88
|
+
end
|
|
89
|
+
end
|
|
90
|
+
|
|
91
|
+
class LSTM < Module
|
|
92
|
+
def initialize(input_size, hidden_size, bias: true)
|
|
93
|
+
super()
|
|
94
|
+
|
|
95
|
+
@hidden_size = hidden_size
|
|
96
|
+
scale = 1.0 / Math.sqrt(hidden_size)
|
|
97
|
+
self.Wx = MLX::Core.uniform([4 * hidden_size, input_size], -scale, scale)
|
|
98
|
+
self.Wh = MLX::Core.uniform([4 * hidden_size, hidden_size], -scale, scale)
|
|
99
|
+
self.bias = bias ? MLX::Core.uniform([4 * hidden_size], -scale, scale) : nil
|
|
100
|
+
end
|
|
101
|
+
|
|
102
|
+
def call(x, hidden = nil, cell = nil)
|
|
103
|
+
x = MLX::Core.matmul(x, self.Wx.T)
|
|
104
|
+
x = MLX::Core.add(x, self.bias) unless self.bias.nil?
|
|
105
|
+
|
|
106
|
+
all_hidden = []
|
|
107
|
+
all_cell = []
|
|
108
|
+
sequence_axis = x.ndim - 2
|
|
109
|
+
|
|
110
|
+
x.shape[sequence_axis].times do |idx|
|
|
111
|
+
ifgo = MLX::Core.take(x, idx, sequence_axis)
|
|
112
|
+
ifgo = MLX::Core.add(ifgo, MLX::Core.matmul(hidden, self.Wh.T)) unless hidden.nil?
|
|
113
|
+
|
|
114
|
+
i, f, g, o = MLX::Core.split(ifgo, 4, ifgo.ndim - 1)
|
|
115
|
+
i = MLX::Core.sigmoid(i)
|
|
116
|
+
f = MLX::Core.sigmoid(f)
|
|
117
|
+
g = MLX::Core.tanh(g)
|
|
118
|
+
o = MLX::Core.sigmoid(o)
|
|
119
|
+
|
|
120
|
+
cell = if cell.nil?
|
|
121
|
+
MLX::Core.multiply(i, g)
|
|
122
|
+
else
|
|
123
|
+
MLX::Core.add(MLX::Core.multiply(f, cell), MLX::Core.multiply(i, g))
|
|
124
|
+
end
|
|
125
|
+
hidden = MLX::Core.multiply(o, MLX::Core.tanh(cell))
|
|
126
|
+
|
|
127
|
+
all_cell << cell
|
|
128
|
+
all_hidden << hidden
|
|
129
|
+
end
|
|
130
|
+
|
|
131
|
+
[MLX::Core.stack(all_hidden, -2), MLX::Core.stack(all_cell, -2)]
|
|
132
|
+
end
|
|
133
|
+
end
|
|
134
|
+
end
|
|
135
|
+
end
|