mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1651 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+
3
+ #include "mlx/backend/common/broadcasting.h"
4
+ #include "mlx/backend/common/compiled.h"
5
+ #include "mlx/backend/gpu/copy.h"
6
+ #include "mlx/backend/metal/device.h"
7
+ #include "mlx/backend/metal/kernels.h"
8
+ #include "mlx/backend/metal/reduce.h"
9
+ #include "mlx/backend/metal/unary.h"
10
+ #include "mlx/backend/metal/utils.h"
11
+ #include "mlx/fast_primitives.h"
12
+ #include "mlx/primitives.h"
13
+ #include "mlx/utils.h"
14
+
15
+ namespace mlx::core {
16
+
17
+ namespace {
18
+
19
+ template <typename... Args>
20
+ auto get_quantized_kernel_wrapped(
21
+ metal::Device& d,
22
+ const std::string& name,
23
+ const std::string& func,
24
+ const std::string& mode,
25
+ const std::string& type,
26
+ int group_size,
27
+ int bits,
28
+ Args... args) {
29
+ std::string template_def;
30
+ std::string fname = ((mode == "affine") ? "affine_" : "fp_") + func;
31
+ template_def = get_template_definition(
32
+ name, fname, type, group_size, bits, std::forward<Args>(args)...);
33
+ return get_quantized_kernel(d, name, template_def, mode);
34
+ }
35
+
36
+ template <typename... Args>
37
+ auto get_qmm_nax_kernel_wrapped(
38
+ metal::Device& d,
39
+ const std::string& name,
40
+ const std::string& func,
41
+ const std::string& mode,
42
+ const std::string& type,
43
+ int group_size,
44
+ int bits,
45
+ Args... args) {
46
+ std::string template_def;
47
+ std::string fname = ((mode == "affine") ? "affine_" : "fp_") + func;
48
+ template_def = get_template_definition(
49
+ name, fname, type, group_size, bits, std::forward<Args>(args)...);
50
+ return get_qmm_nax_kernel(d, name, template_def, mode);
51
+ }
52
+
53
+ inline array
54
+ ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
55
+ if (!x.flags().row_contiguous) {
56
+ array x_copy = contiguous_copy_gpu(x, s);
57
+ d.add_temporary(x_copy, s.index);
58
+ return x_copy;
59
+ } else {
60
+ return x;
61
+ }
62
+ }
63
+
64
+ inline array ensure_row_contiguous_matrix(
65
+ const array& x,
66
+ metal::Device& d,
67
+ const Stream& s) {
68
+ if (x.ndim() < 2) {
69
+ if (x.strides()[0] == 1) {
70
+ return x;
71
+ }
72
+ } else {
73
+ auto stride_0 = x.strides()[x.ndim() - 2];
74
+ auto stride_1 = x.strides()[x.ndim() - 1];
75
+ if (stride_0 == x.shape(-1) && stride_1 == 1) {
76
+ return x;
77
+ }
78
+ }
79
+ array x_copy = contiguous_copy_gpu(x, s);
80
+ d.add_temporary(x_copy, s.index);
81
+ return x_copy;
82
+ }
83
+
84
+ inline int get_qmv_batch_limit(int D, int O, metal::Device& d) {
85
+ auto arch = d.get_architecture();
86
+ auto arch_size = arch.back();
87
+ auto arch_gen = arch.substr(arch.size() - 3, 2);
88
+ if (arch_gen == "13" || arch_gen == "14") {
89
+ switch (arch_size) {
90
+ case 'd':
91
+ if (D <= 2048 && O <= 2048) {
92
+ return 32;
93
+ } else if (D <= 4096 && O <= 4096) {
94
+ return 18;
95
+ } else {
96
+ return 12;
97
+ }
98
+ default:
99
+ if (D <= 2048 && O <= 2048) {
100
+ return 14;
101
+ } else if (D <= 4096 && O <= 4096) {
102
+ return 10;
103
+ } else {
104
+ return 6;
105
+ }
106
+ }
107
+ } else {
108
+ switch (arch_size) {
109
+ case 'd':
110
+ if (D <= 2048 && O <= 2048) {
111
+ return 32;
112
+ } else if (D <= 4096 && O <= 4096) {
113
+ return 18;
114
+ } else {
115
+ return 12;
116
+ }
117
+ default:
118
+ if (D <= 2048 && O <= 2048) {
119
+ return 18;
120
+ } else if (D <= 4096 && O <= 4096) {
121
+ return 12;
122
+ } else {
123
+ return 10;
124
+ }
125
+ }
126
+ }
127
+ }
128
+
129
+ inline int add_strides_and_shapes(
130
+ CommandEncoder& compute_encoder,
131
+ bool skip,
132
+ const array& x,
133
+ const array& w,
134
+ const array& scales,
135
+ const std::optional<array>& biases,
136
+ int offset) {
137
+ if (skip) {
138
+ return 0;
139
+ }
140
+
141
+ // TODO: Collapse batch dimensions
142
+
143
+ int x_batch_ndims = x.ndim() - 2;
144
+ int w_batch_ndims = w.ndim() - 2;
145
+ compute_encoder.set_bytes(x_batch_ndims, offset++);
146
+ compute_encoder.set_vector_bytes(x.shape(), offset++);
147
+ compute_encoder.set_vector_bytes(x.strides(), offset++);
148
+ compute_encoder.set_bytes(w_batch_ndims, offset++);
149
+ compute_encoder.set_vector_bytes(w.shape(), offset++);
150
+ compute_encoder.set_vector_bytes(w.strides(), offset++);
151
+ compute_encoder.set_vector_bytes(scales.strides(), offset++);
152
+ if (biases) {
153
+ compute_encoder.set_vector_bytes(biases->strides(), offset++);
154
+ }
155
+
156
+ return offset;
157
+ }
158
+
159
+ inline int add_gather_strides_and_shapes(
160
+ CommandEncoder& compute_encoder,
161
+ const array& lhs_indices,
162
+ const array& rhs_indices,
163
+ int offset) {
164
+ auto [shape, strides] = collapse_contiguous_dims(
165
+ lhs_indices.shape(), {lhs_indices.strides(), rhs_indices.strides()});
166
+ int ndims = shape.size();
167
+
168
+ compute_encoder.set_bytes(ndims, offset++);
169
+ compute_encoder.set_vector_bytes(shape, offset++);
170
+ compute_encoder.set_vector_bytes(strides[0], offset++);
171
+ compute_encoder.set_vector_bytes(strides[1], offset++);
172
+
173
+ return offset;
174
+ }
175
+
176
+ } // namespace
177
+
178
+ void qmv_quad(
179
+ const array& x,
180
+ const array& w,
181
+ const array& scales,
182
+ const std::optional<array>& biases,
183
+ array& out,
184
+ int group_size,
185
+ int bits,
186
+ int M,
187
+ int N,
188
+ int K,
189
+ metal::Device& d,
190
+ const Stream& s,
191
+ const std::string& mode) {
192
+ int B = out.size() / M / N;
193
+
194
+ constexpr int quads_per_simd = 8;
195
+ constexpr int results_per_quadgroup = 8;
196
+ int bn = quads_per_simd * results_per_quadgroup;
197
+ int simdgroup_size = 32;
198
+ MTL::Size group_dims(simdgroup_size, 1, 1);
199
+ MTL::Size grid_dims(M, (N + bn - 1) / bn, B);
200
+
201
+ std::string kname;
202
+ kname.reserve(64);
203
+ std::string type_string = get_type_string(x.dtype());
204
+
205
+ concatenate(
206
+ kname,
207
+ mode + "_qmv_quad_",
208
+ type_string,
209
+ "_gs_",
210
+ group_size,
211
+ "_b_",
212
+ bits,
213
+ "_d_",
214
+ K,
215
+ B > 1 ? "_batch_1" : "_batch_0");
216
+ auto kernel = get_quantized_kernel_wrapped(
217
+ d, kname, "qmv_quad", mode, type_string, group_size, bits, K, B > 1);
218
+ auto& compute_encoder = d.get_command_encoder(s.index);
219
+ compute_encoder.set_compute_pipeline_state(kernel);
220
+
221
+ int c = 0;
222
+ compute_encoder.set_input_array(w, c++);
223
+ compute_encoder.set_input_array(scales, c++);
224
+ if (biases) {
225
+ compute_encoder.set_input_array(*biases, c++);
226
+ }
227
+ compute_encoder.set_input_array(x, c++);
228
+ compute_encoder.set_output_array(out, c++);
229
+ compute_encoder.set_bytes(K, c++);
230
+ compute_encoder.set_bytes(N, c++);
231
+ add_strides_and_shapes(compute_encoder, B <= 1, x, w, scales, biases, c++);
232
+
233
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
234
+ }
235
+
236
+ void qmv(
237
+ const array& x,
238
+ const array& w,
239
+ const array& scales,
240
+ const std::optional<array>& biases,
241
+ array& out,
242
+ int group_size,
243
+ int bits,
244
+ int M,
245
+ int N,
246
+ int K,
247
+ metal::Device& d,
248
+ const Stream& s,
249
+ const std::string& mode) {
250
+ int B = out.size() / M / N;
251
+
252
+ int bn = 8;
253
+ int bk = 32;
254
+ MTL::Size group_dims(bk, 2, 1);
255
+ MTL::Size grid_dims(M, (N + bn - 1) / bn, B);
256
+
257
+ std::string kname;
258
+ kname.reserve(64);
259
+ std::string type_string = get_type_string(x.dtype());
260
+ bool fast = N % bn == 0 && K % 512 == 0;
261
+
262
+ concatenate(
263
+ kname,
264
+ mode + (fast ? "_qmv_fast_" : "_qmv_"),
265
+ type_string,
266
+ "_gs_",
267
+ group_size,
268
+ "_b_",
269
+ bits,
270
+ B > 1 ? "_batch_1" : "_batch_0");
271
+ auto kernel = get_quantized_kernel_wrapped(
272
+ d,
273
+ kname,
274
+ (fast ? "qmv_fast" : "qmv"),
275
+ mode,
276
+ type_string,
277
+ group_size,
278
+ bits,
279
+ B > 1);
280
+
281
+ auto& compute_encoder = d.get_command_encoder(s.index);
282
+ compute_encoder.set_compute_pipeline_state(kernel);
283
+
284
+ int c = 0;
285
+ compute_encoder.set_input_array(w, c++);
286
+ compute_encoder.set_input_array(scales, c++);
287
+ if (biases) {
288
+ compute_encoder.set_input_array(*biases, c++);
289
+ }
290
+ compute_encoder.set_input_array(x, c++);
291
+ compute_encoder.set_output_array(out, c++);
292
+ compute_encoder.set_bytes(K, c++);
293
+ compute_encoder.set_bytes(N, c++);
294
+ add_strides_and_shapes(compute_encoder, B <= 1, x, w, scales, biases, c);
295
+
296
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
297
+ }
298
+
299
+ void qvm_split_k(
300
+ const array& x,
301
+ const array& w,
302
+ const array& scales,
303
+ const std::optional<array>& biases,
304
+ array& out,
305
+ int group_size,
306
+ int bits,
307
+ int M,
308
+ int N,
309
+ int K,
310
+ metal::Device& d,
311
+ const Stream& s,
312
+ const std::string& mode) {
313
+ int split_k = K > 8192 ? 32 : 8;
314
+ int split_D = (K + split_k - 1) / split_k;
315
+ int B = out.size() / M / N;
316
+ B *= split_k;
317
+
318
+ constexpr int num_simdgroups = 2;
319
+ constexpr int bk = 32;
320
+ int bn = std::min(group_size, 32) * num_simdgroups;
321
+ MTL::Size group_dims = MTL::Size(bk, num_simdgroups, 1);
322
+ MTL::Size grid_dims = MTL::Size(M, N / bn, B);
323
+
324
+ auto x_shape = x.shape();
325
+ auto x_strides = x.strides();
326
+ if (x_shape.size() == 1) {
327
+ x_shape.insert(x_shape.begin(), 1);
328
+ x_strides.insert(x_strides.begin(), 0);
329
+ }
330
+
331
+ int x_ndim = x_shape.size();
332
+ int x_batch_ndims = x_ndim - 2;
333
+ int w_batch_ndims = w.ndim() - 2;
334
+ auto w_shape = w.shape();
335
+ auto w_strides = w.strides();
336
+ auto s_strides = scales.strides();
337
+
338
+ // Add split_k dim with reshapes
339
+ x_shape.insert(x_shape.end() - 2, split_k);
340
+ x_shape.back() /= split_k;
341
+ x_strides.insert(x_strides.end() - 2, split_D);
342
+ x_strides[x_ndim - 1] = split_D;
343
+ x_batch_ndims += 1;
344
+
345
+ w_shape.insert(w_shape.end() - 2, split_k);
346
+ w_shape[w.ndim() - 1] /= split_k;
347
+ w_strides.insert(w_strides.end() - 2, split_D * w.shape(-1));
348
+ w_batch_ndims += 1;
349
+ s_strides.insert(s_strides.end() - 2, split_D * scales.shape(-1));
350
+
351
+ int final_block_size = K - (split_k - 1) * split_D;
352
+
353
+ auto temp_shape = out.shape();
354
+ if (temp_shape.size() == 1) {
355
+ temp_shape.insert(temp_shape.begin(), 1);
356
+ }
357
+ temp_shape.insert(temp_shape.end() - 2, split_k);
358
+ array intermediate(temp_shape, x.dtype(), nullptr, {});
359
+ intermediate.set_data(allocator::malloc(intermediate.nbytes()));
360
+ d.add_temporary(intermediate, s.index);
361
+
362
+ std::string type_string = get_type_string(x.dtype());
363
+ std::string kname;
364
+ kname.reserve(64);
365
+ concatenate(
366
+ kname,
367
+ mode + "_qvm_split_k_",
368
+ type_string,
369
+ "_gs_",
370
+ group_size,
371
+ "_b_",
372
+ bits,
373
+ "_spk_",
374
+ split_k);
375
+
376
+ // Encode and dispatch kernel
377
+ auto kernel = get_quantized_kernel_wrapped(
378
+ d, kname, "qvm_split_k", mode, type_string, group_size, bits, split_k);
379
+
380
+ auto& compute_encoder = d.get_command_encoder(s.index);
381
+ compute_encoder.set_compute_pipeline_state(kernel);
382
+
383
+ int c = 0;
384
+ compute_encoder.set_input_array(w, c++);
385
+ compute_encoder.set_input_array(scales, c++);
386
+ if (biases) {
387
+ compute_encoder.set_input_array(*biases, c++);
388
+ }
389
+ compute_encoder.set_input_array(x, c++);
390
+ compute_encoder.set_output_array(intermediate, c++);
391
+ compute_encoder.set_bytes(split_D, c++);
392
+ compute_encoder.set_bytes(N, c++);
393
+
394
+ compute_encoder.set_bytes(x_batch_ndims, c++);
395
+ compute_encoder.set_vector_bytes(x_shape, c++);
396
+ compute_encoder.set_vector_bytes(x_strides, c++);
397
+ compute_encoder.set_bytes(w_batch_ndims, c++);
398
+ compute_encoder.set_vector_bytes(w_shape, c++);
399
+ compute_encoder.set_vector_bytes(w_strides, c++);
400
+ compute_encoder.set_vector_bytes(s_strides, c++);
401
+ if (biases) {
402
+ auto b_strides = biases->strides();
403
+ b_strides.insert(b_strides.end() - 2, split_D * biases->shape(-1));
404
+ compute_encoder.set_vector_bytes(b_strides, c++);
405
+ }
406
+ compute_encoder.set_bytes(final_block_size, c++);
407
+
408
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
409
+
410
+ int axis = intermediate.ndim() - 3;
411
+ ReductionPlan plan(
412
+ ReductionOpType::ContiguousStridedReduce,
413
+ {intermediate.shape(axis)},
414
+ {intermediate.strides(axis)});
415
+ strided_reduce_general_dispatch(
416
+ intermediate, out, "sum", plan, {axis}, compute_encoder, d, s);
417
+ }
418
+
419
+ void qvm(
420
+ const array& x,
421
+ const array& w,
422
+ const array& scales,
423
+ const std::optional<array>& biases,
424
+ array& out,
425
+ int group_size,
426
+ int bits,
427
+ int M,
428
+ int N,
429
+ int K,
430
+ metal::Device& d,
431
+ const Stream& s,
432
+ const std::string& mode) {
433
+ int B = out.size() / M / N;
434
+
435
+ constexpr int num_simdgroups = 2;
436
+ constexpr int bk = 32;
437
+ int bn = std::min(group_size, 32) * num_simdgroups;
438
+ MTL::Size group_dims(bk, num_simdgroups, 1);
439
+ MTL::Size grid_dims(M, (N + bn - 1) / bn, B);
440
+
441
+ std::string kname;
442
+ kname.reserve(64);
443
+ std::string type_string = get_type_string(x.dtype());
444
+ concatenate(
445
+ kname,
446
+ mode + "_qvm_",
447
+ type_string,
448
+ "_gs_",
449
+ group_size,
450
+ "_b_",
451
+ bits,
452
+ B > 1 ? "_batch_1" : "_batch_0");
453
+ auto kernel = get_quantized_kernel_wrapped(
454
+ d, kname, "qvm", mode, type_string, group_size, bits, B > 1);
455
+ auto& compute_encoder = d.get_command_encoder(s.index);
456
+ compute_encoder.set_compute_pipeline_state(kernel);
457
+
458
+ int c = 0;
459
+ compute_encoder.set_input_array(w, c++);
460
+ compute_encoder.set_input_array(scales, c++);
461
+ if (biases) {
462
+ compute_encoder.set_input_array(*biases, c++);
463
+ }
464
+ compute_encoder.set_input_array(x, c++);
465
+ compute_encoder.set_output_array(out, c++);
466
+ compute_encoder.set_bytes(K, c++);
467
+ compute_encoder.set_bytes(N, c++);
468
+ add_strides_and_shapes(compute_encoder, B <= 1, x, w, scales, biases, c++);
469
+
470
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
471
+ }
472
+
473
+ void qmm_nax(
474
+ const array& x,
475
+ const array& w,
476
+ const array& scales,
477
+ const std::optional<array>& biases,
478
+ array& out,
479
+ bool transpose,
480
+ int group_size,
481
+ int bits,
482
+ int M,
483
+ int N,
484
+ int K,
485
+ metal::Device& d,
486
+ const Stream& s,
487
+ const std::string& mode) {
488
+ int B = out.size() / M / N;
489
+
490
+ int wm = 2;
491
+ int wn = 2;
492
+ int bm = 64;
493
+ int bn = 64;
494
+ int bk = 64;
495
+ MTL::Size group_dims(32, wn, wm);
496
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, B);
497
+
498
+ std::string kname;
499
+ kname.reserve(64);
500
+ bool aligned = N % 64 == 0;
501
+ bool batched = B > 1;
502
+ std::string type_string = get_type_string(x.dtype());
503
+ concatenate(
504
+ kname,
505
+ mode + (transpose ? "_qmm_t_nax_" : "_qmm_n_nax_"),
506
+ type_string,
507
+ "_gs_",
508
+ group_size,
509
+ "_b_",
510
+ bits,
511
+ "_bm",
512
+ bm,
513
+ "_bn",
514
+ bn,
515
+ "_bk",
516
+ bk,
517
+ "_wm",
518
+ wm,
519
+ "_wn",
520
+ wn,
521
+ transpose ? (aligned ? "_alN_true" : "_alN_false") : "",
522
+ batched ? "_batch_1" : "_batch_0");
523
+ std::string template_def;
524
+ MTL::ComputePipelineState* kernel;
525
+ if (transpose) {
526
+ kernel = get_qmm_nax_kernel_wrapped(
527
+ d,
528
+ kname,
529
+ "qmm_t_nax",
530
+ mode,
531
+ type_string,
532
+ group_size,
533
+ bits,
534
+ aligned,
535
+ batched,
536
+ bm,
537
+ bk,
538
+ bn,
539
+ wm,
540
+ wn);
541
+ } else {
542
+ kernel = get_qmm_nax_kernel_wrapped(
543
+ d,
544
+ kname,
545
+ "qmm_n_nax",
546
+ mode,
547
+ type_string,
548
+ group_size,
549
+ bits,
550
+ batched,
551
+ bm,
552
+ bk,
553
+ bn,
554
+ wm,
555
+ wn);
556
+ }
557
+ auto& compute_encoder = d.get_command_encoder(s.index);
558
+ compute_encoder.set_compute_pipeline_state(kernel);
559
+
560
+ int c = 0;
561
+ compute_encoder.set_input_array(w, c++);
562
+ compute_encoder.set_input_array(scales, c++);
563
+ if (biases) {
564
+ compute_encoder.set_input_array(*biases, c++);
565
+ }
566
+ compute_encoder.set_input_array(x, c++);
567
+ compute_encoder.set_output_array(out, c++);
568
+ compute_encoder.set_bytes(K, c++);
569
+ compute_encoder.set_bytes(N, c++);
570
+ compute_encoder.set_bytes(M, c++);
571
+ add_strides_and_shapes(compute_encoder, B <= 1, x, w, scales, biases, c);
572
+
573
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
574
+ }
575
+
576
+ void gather_qmm_nax(
577
+ const array& x,
578
+ const array& w,
579
+ const array& scales,
580
+ const std::optional<array>& biases,
581
+ const array& lhs_indices,
582
+ const array& rhs_indices,
583
+ array& out,
584
+ bool transpose,
585
+ int group_size,
586
+ int bits,
587
+ int M,
588
+ int N,
589
+ int K,
590
+ metal::Device& d,
591
+ const Stream& s,
592
+ const std::string& mode) {
593
+ int B = out.size() / M / N;
594
+
595
+ int wm = 2;
596
+ int wn = 2;
597
+ int bm = 64;
598
+ int bn = 64;
599
+ int bk = 32;
600
+ MTL::Size group_dims(32, wn, wm);
601
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, B);
602
+
603
+ std::string kname;
604
+ kname.reserve(64);
605
+ bool aligned = N % 64 == 0;
606
+ std::string type_string = get_type_string(x.dtype());
607
+ concatenate(
608
+ kname,
609
+ mode + (transpose ? "_gather_qmm_t_nax_" : "_gather_qmm_n_nax_"),
610
+ type_string,
611
+ "_gs_",
612
+ group_size,
613
+ "_b_",
614
+ bits,
615
+ "_bm",
616
+ bm,
617
+ "_bn",
618
+ bn,
619
+ "_bk",
620
+ bk,
621
+ "_wm",
622
+ wm,
623
+ "_wn",
624
+ wn,
625
+ transpose ? (aligned ? "_alN_true" : "_alN_false") : "");
626
+ MTL::ComputePipelineState* kernel;
627
+ if (transpose) {
628
+ kernel = get_qmm_nax_kernel_wrapped(
629
+ d,
630
+ kname,
631
+ "gather_qmm_t_nax_",
632
+ mode,
633
+ type_string,
634
+ group_size,
635
+ bits,
636
+ aligned,
637
+ bm,
638
+ bk,
639
+ bn,
640
+ wm,
641
+ wn);
642
+ } else {
643
+ kernel = get_qmm_nax_kernel_wrapped(
644
+ d,
645
+ kname,
646
+ "gather_qmm_n_nax_",
647
+ mode,
648
+ type_string,
649
+ group_size,
650
+ bits,
651
+ bm,
652
+ bk,
653
+ bn,
654
+ wm,
655
+ wn);
656
+ }
657
+
658
+ auto& compute_encoder = d.get_command_encoder(s.index);
659
+ compute_encoder.set_compute_pipeline_state(kernel);
660
+
661
+ int c = 0;
662
+ compute_encoder.set_input_array(w, c++);
663
+ compute_encoder.set_input_array(scales, c++);
664
+ if (biases) {
665
+ compute_encoder.set_input_array(*biases, c++);
666
+ }
667
+ compute_encoder.set_input_array(x, c++);
668
+ compute_encoder.set_input_array(lhs_indices, c++);
669
+ compute_encoder.set_input_array(rhs_indices, c++);
670
+ compute_encoder.set_output_array(out, c++);
671
+ compute_encoder.set_bytes(K, c++);
672
+ compute_encoder.set_bytes(N, c++);
673
+ compute_encoder.set_bytes(M, c++);
674
+ c = add_strides_and_shapes(compute_encoder, false, x, w, scales, biases, c);
675
+ add_gather_strides_and_shapes(compute_encoder, lhs_indices, rhs_indices, c);
676
+
677
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
678
+ }
679
+
680
+ void qmm(
681
+ const array& x,
682
+ const array& w,
683
+ const array& scales,
684
+ const std::optional<array>& biases,
685
+ array& out,
686
+ bool transpose,
687
+ int group_size,
688
+ int bits,
689
+ int M,
690
+ int N,
691
+ int K,
692
+ metal::Device& d,
693
+ const Stream& s,
694
+ const std::string& mode) {
695
+ if (metal::is_nax_available() && transpose && (K % 64 == 0) &&
696
+ (env::enable_tf32() || x.dtype() != float32)) {
697
+ return qmm_nax(
698
+ /* const array& x = */ x,
699
+ /* const array& w = */ w,
700
+ /* const array& scales = */ scales,
701
+ /* const std::optional<array>& biases = */ biases,
702
+ /* array& out = */ out,
703
+ /* bool transpose = */ transpose,
704
+ /* int group_size = */ group_size,
705
+ /* int bits = */ bits,
706
+ /* int M = */ M,
707
+ /* int N = */ N,
708
+ /* int K = */ K,
709
+ /* metal::Device& d = */ d,
710
+ /* const Stream& s = */ s,
711
+ /* const std::string& mode = */ mode);
712
+ }
713
+
714
+ int B = out.size() / M / N;
715
+
716
+ int wm = 2;
717
+ int wn = 2;
718
+ int bm = 32;
719
+ int bn = 32;
720
+ MTL::Size group_dims(32, wn, wm);
721
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, B);
722
+
723
+ std::string kname;
724
+ kname.reserve(64);
725
+ bool aligned = N % 32 == 0;
726
+ bool batched = B > 1;
727
+ std::string type_string = get_type_string(x.dtype());
728
+ concatenate(
729
+ kname,
730
+ mode + (transpose ? "_qmm_t_" : "_qmm_n_"),
731
+ type_string,
732
+ "_gs_",
733
+ group_size,
734
+ "_b_",
735
+ bits,
736
+ transpose ? (aligned ? "_alN_true" : "_alN_false") : "",
737
+ batched ? "_batch_1" : "_batch_0");
738
+ std::string template_def;
739
+ MTL::ComputePipelineState* kernel;
740
+ if (transpose) {
741
+ kernel = get_quantized_kernel_wrapped(
742
+ d,
743
+ kname,
744
+ "qmm_t",
745
+ mode,
746
+ type_string,
747
+ group_size,
748
+ bits,
749
+ aligned,
750
+ batched);
751
+ } else {
752
+ kernel = get_quantized_kernel_wrapped(
753
+ d, kname, "qmm_n", mode, type_string, group_size, bits, batched);
754
+ }
755
+ auto& compute_encoder = d.get_command_encoder(s.index);
756
+ compute_encoder.set_compute_pipeline_state(kernel);
757
+
758
+ int c = 0;
759
+ compute_encoder.set_input_array(w, c++);
760
+ compute_encoder.set_input_array(scales, c++);
761
+ if (biases) {
762
+ compute_encoder.set_input_array(*biases, c++);
763
+ }
764
+ compute_encoder.set_input_array(x, c++);
765
+ compute_encoder.set_output_array(out, c++);
766
+ compute_encoder.set_bytes(K, c++);
767
+ compute_encoder.set_bytes(N, c++);
768
+ compute_encoder.set_bytes(M, c++);
769
+ add_strides_and_shapes(compute_encoder, B <= 1, x, w, scales, biases, c);
770
+
771
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
772
+ }
773
+
774
+ void gather_qmm(
775
+ const array& x,
776
+ const array& w,
777
+ const array& scales,
778
+ const std::optional<array>& biases,
779
+ const array& lhs_indices,
780
+ const array& rhs_indices,
781
+ array& out,
782
+ bool transpose,
783
+ int group_size,
784
+ int bits,
785
+ int M,
786
+ int N,
787
+ int K,
788
+ metal::Device& d,
789
+ const Stream& s,
790
+ const std::string& mode) {
791
+ if (metal::is_nax_available() && transpose && (K % 64 == 0) &&
792
+ (env::enable_tf32() || x.dtype() != float32)) {
793
+ return gather_qmm_nax(
794
+ /* const array& x = */ x,
795
+ /* const array& w = */ w,
796
+ /* const array& scales = */ scales,
797
+ /* const std::optional<array>& biases = */ biases,
798
+ /* const array& lhs_indices = */ lhs_indices,
799
+ /* const array& rhs_indices = */ rhs_indices,
800
+ /* array& out = */ out,
801
+ /* bool transpose = */ transpose,
802
+ /* int group_size = */ group_size,
803
+ /* int bits = */ bits,
804
+ /* int M = */ M,
805
+ /* int N = */ N,
806
+ /* int K = */ K,
807
+ /* metal::Device& d = */ d,
808
+ /* const Stream& s = */ s,
809
+ /* const std::string& mode = */ mode);
810
+ }
811
+
812
+ int B = out.size() / M / N;
813
+
814
+ int wm = 2;
815
+ int wn = 2;
816
+ int bm = 32;
817
+ int bn = 32;
818
+ MTL::Size group_dims(32, wn, wm);
819
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, B);
820
+
821
+ std::string kname;
822
+ kname.reserve(64);
823
+ bool aligned = N % 32 == 0;
824
+ std::string type_string = get_type_string(x.dtype());
825
+ concatenate(
826
+ kname,
827
+ mode + (transpose ? "_gather_qmm_t_" : "_gather_qmm_n_"),
828
+ type_string,
829
+ "_gs_",
830
+ group_size,
831
+ "_b_",
832
+ bits,
833
+ transpose ? (aligned ? "_alN_true" : "_alN_false") : "");
834
+ MTL::ComputePipelineState* kernel;
835
+ if (transpose) {
836
+ kernel = get_quantized_kernel_wrapped(
837
+ d, kname, "gather_qmm_t", mode, type_string, group_size, bits, aligned);
838
+ } else {
839
+ kernel = get_quantized_kernel_wrapped(
840
+ d, kname, "gather_qmm_n", mode, type_string, group_size, bits);
841
+ }
842
+
843
+ auto& compute_encoder = d.get_command_encoder(s.index);
844
+ compute_encoder.set_compute_pipeline_state(kernel);
845
+
846
+ int c = 0;
847
+ compute_encoder.set_input_array(w, c++);
848
+ compute_encoder.set_input_array(scales, c++);
849
+ if (biases) {
850
+ compute_encoder.set_input_array(*biases, c++);
851
+ }
852
+ compute_encoder.set_input_array(x, c++);
853
+ compute_encoder.set_input_array(lhs_indices, c++);
854
+ compute_encoder.set_input_array(rhs_indices, c++);
855
+ compute_encoder.set_output_array(out, c++);
856
+ compute_encoder.set_bytes(K, c++);
857
+ compute_encoder.set_bytes(N, c++);
858
+ compute_encoder.set_bytes(M, c++);
859
+ c = add_strides_and_shapes(compute_encoder, false, x, w, scales, biases, c);
860
+ add_gather_strides_and_shapes(compute_encoder, lhs_indices, rhs_indices, c);
861
+
862
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
863
+ }
864
+
865
+ void gather_qmv(
866
+ const array& x,
867
+ const array& w,
868
+ const array& scales,
869
+ const std::optional<array>& biases,
870
+ const array& lhs_indices,
871
+ const array& rhs_indices,
872
+ array& out,
873
+ int group_size,
874
+ int bits,
875
+ int M,
876
+ int N,
877
+ int K,
878
+ metal::Device& d,
879
+ const Stream& s,
880
+ const std::string& mode) {
881
+ int B = out.size() / M / N;
882
+
883
+ int bn = 8;
884
+ int bk = 32;
885
+ MTL::Size group_dims(bk, 2, 1);
886
+ MTL::Size grid_dims(M, (N + bn - 1) / bn, B);
887
+
888
+ std::string kname;
889
+ kname.reserve(64);
890
+ std::string type_string = get_type_string(x.dtype());
891
+ bool fast = N % bn == 0 && K % 512 == 0;
892
+ concatenate(
893
+ kname,
894
+ mode + (fast ? "_gather_qmv_fast_" : "_gather_qmv_"),
895
+ type_string,
896
+ "_gs_",
897
+ group_size,
898
+ "_b_",
899
+ bits);
900
+
901
+ auto kernel = get_quantized_kernel_wrapped(
902
+ d,
903
+ kname,
904
+ (fast ? "gather_qmv_fast" : "gather_qmv"),
905
+ mode,
906
+ type_string,
907
+ group_size,
908
+ bits);
909
+
910
+ auto& compute_encoder = d.get_command_encoder(s.index);
911
+ compute_encoder.set_compute_pipeline_state(kernel);
912
+
913
+ int c = 0;
914
+ compute_encoder.set_input_array(w, c++);
915
+ compute_encoder.set_input_array(scales, c++);
916
+ if (biases) {
917
+ compute_encoder.set_input_array(*biases, c++);
918
+ }
919
+ compute_encoder.set_input_array(x, c++);
920
+ compute_encoder.set_input_array(lhs_indices, c++);
921
+ compute_encoder.set_input_array(rhs_indices, c++);
922
+ compute_encoder.set_output_array(out, c++);
923
+ compute_encoder.set_bytes(K, c++);
924
+ compute_encoder.set_bytes(N, c++);
925
+ c = add_strides_and_shapes(compute_encoder, false, x, w, scales, biases, c);
926
+ add_gather_strides_and_shapes(compute_encoder, lhs_indices, rhs_indices, c);
927
+
928
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
929
+ }
930
+
931
+ void gather_qvm(
932
+ const array& x,
933
+ const array& w,
934
+ const array& scales,
935
+ const std::optional<array>& biases,
936
+ const array& lhs_indices,
937
+ const array& rhs_indices,
938
+ array& out,
939
+ int group_size,
940
+ int bits,
941
+ int M,
942
+ int N,
943
+ int K,
944
+ metal::Device& d,
945
+ const Stream& s,
946
+ const std::string& mode) {
947
+ int B = out.size() / M / N;
948
+
949
+ constexpr int num_simdgroups = 2;
950
+ constexpr int bk = 32;
951
+ int bn = std::min(group_size, 32) * num_simdgroups;
952
+ MTL::Size group_dims(bk, num_simdgroups, 1);
953
+ MTL::Size grid_dims(M, (N + bn - 1) / bn, B);
954
+
955
+ std::string kname;
956
+ kname.reserve(64);
957
+ std::string type_string = get_type_string(x.dtype());
958
+ concatenate(
959
+ kname,
960
+ mode + "_gather_qvm_",
961
+ type_string,
962
+ "_gs_",
963
+ group_size,
964
+ "_b_",
965
+ bits);
966
+ auto kernel = get_quantized_kernel_wrapped(
967
+ d, kname, "gather_qvm", mode, type_string, group_size, bits);
968
+ auto& compute_encoder = d.get_command_encoder(s.index);
969
+ compute_encoder.set_compute_pipeline_state(kernel);
970
+
971
+ int c = 0;
972
+ compute_encoder.set_input_array(w, c++);
973
+ compute_encoder.set_input_array(scales, c++);
974
+ if (biases) {
975
+ compute_encoder.set_input_array(*biases, c++);
976
+ }
977
+ compute_encoder.set_input_array(x, c++);
978
+ compute_encoder.set_input_array(lhs_indices, c++);
979
+ compute_encoder.set_input_array(rhs_indices, c++);
980
+ compute_encoder.set_output_array(out, c++);
981
+ compute_encoder.set_bytes(K, c++);
982
+ compute_encoder.set_bytes(N, c++);
983
+ c = add_strides_and_shapes(compute_encoder, false, x, w, scales, biases, c++);
984
+ add_gather_strides_and_shapes(compute_encoder, lhs_indices, rhs_indices, c);
985
+
986
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
987
+ }
988
+
989
+ void gather_qmm_rhs_nax(
990
+ const array& x_,
991
+ const array& w_,
992
+ const array& scales_,
993
+ const std::optional<array>& biases_,
994
+ const array& indices_,
995
+ array& out,
996
+ bool transpose,
997
+ int group_size,
998
+ int bits,
999
+ int M,
1000
+ int N,
1001
+ int K,
1002
+ metal::Device& d,
1003
+ const Stream& s,
1004
+ const std::string mode) {
1005
+ // Start by normalizing the indices
1006
+ array indices = ensure_row_contiguous(indices_, d, s);
1007
+
1008
+ // Broadcast x with indices. If we are here that means lhs_indices were not
1009
+ // provided so the lhs_indices are implied to be the shape of x broadcasted
1010
+ // with rhs_indices. We need only broadcast x and copy it as if applying the
1011
+ // lhs_indices.
1012
+ auto broadcast_with_indices = [&d, &s, &indices](const array& x) {
1013
+ if (x.size() / x.shape(-2) / x.shape(-1) == indices.size()) {
1014
+ return ensure_row_contiguous(x, d, s);
1015
+ }
1016
+
1017
+ auto x_shape = indices.shape();
1018
+ x_shape.push_back(x.shape(-2));
1019
+ x_shape.push_back(x.shape(-1));
1020
+ array new_x(std::move(x_shape), x.dtype(), nullptr, {});
1021
+ broadcast(x, new_x);
1022
+ return ensure_row_contiguous(new_x, d, s);
1023
+ };
1024
+
1025
+ // Normalize the input arrays
1026
+ array x = broadcast_with_indices(x_);
1027
+ array w = ensure_row_contiguous(w_, d, s);
1028
+ array scales = ensure_row_contiguous(scales_, d, s);
1029
+
1030
+ // TODO: Tune the block sizes
1031
+ int bm = 64, bn = 64, bk = 64;
1032
+ int wm = 2, wn = 2;
1033
+
1034
+ const bool align_M = (M % bm) == 0;
1035
+ const bool align_N = (N % bn) == 0;
1036
+ const bool align_K = (K % bk) == 0;
1037
+
1038
+ // Make the kernel name
1039
+ std::string kname;
1040
+ kname.reserve(64);
1041
+ std::string type_string = get_type_string(x.dtype());
1042
+ concatenate(
1043
+ kname,
1044
+ mode +
1045
+ (transpose ? "_gather_qmm_rhs_nax_nt_" : "_gather_qmm_rhs_nax_nn_"),
1046
+ type_string,
1047
+ "_gs_",
1048
+ group_size,
1049
+ "_b_",
1050
+ bits,
1051
+ "_bm_",
1052
+ bm,
1053
+ "_bn_",
1054
+ bn,
1055
+ "_bk_",
1056
+ bk,
1057
+ "_wm_",
1058
+ wm,
1059
+ "_wn_",
1060
+ wn);
1061
+
1062
+ metal::MTLFCList func_consts = {
1063
+ {&align_M, MTL::DataType::DataTypeBool, 200},
1064
+ {&align_N, MTL::DataType::DataTypeBool, 201},
1065
+ {&align_K, MTL::DataType::DataTypeBool, 202},
1066
+ };
1067
+
1068
+ // And the kernel hash that includes the function constants
1069
+ std::string hash_name;
1070
+ hash_name.reserve(128);
1071
+ concatenate(
1072
+ hash_name,
1073
+ kname,
1074
+ "_align_M_",
1075
+ align_M ? 't' : 'n',
1076
+ "_align_N_",
1077
+ align_N ? 't' : 'n',
1078
+ "_align_K_",
1079
+ align_K ? 't' : 'n');
1080
+
1081
+ // Get and set the kernel
1082
+ auto& compute_encoder = d.get_command_encoder(s.index);
1083
+ auto kernel = get_gather_qmm_nax_kernel(
1084
+ d,
1085
+ kname,
1086
+ hash_name,
1087
+ func_consts,
1088
+ x,
1089
+ group_size,
1090
+ bits,
1091
+ mode,
1092
+ bm,
1093
+ bn,
1094
+ bk,
1095
+ wm,
1096
+ wn,
1097
+ transpose);
1098
+ compute_encoder.set_compute_pipeline_state(kernel);
1099
+
1100
+ MTL::Size group_dims(32, wn, wm);
1101
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, 1);
1102
+
1103
+ int c = 0;
1104
+ compute_encoder.set_input_array(x, c++);
1105
+ compute_encoder.set_input_array(w, c++);
1106
+ compute_encoder.set_input_array(scales, c++);
1107
+ if (biases_) {
1108
+ array biases = ensure_row_contiguous(*biases_, d, s);
1109
+ compute_encoder.set_input_array(biases, c++);
1110
+ }
1111
+ compute_encoder.set_input_array(indices, c++);
1112
+ compute_encoder.set_output_array(out, c++);
1113
+ compute_encoder.set_bytes(M, c++);
1114
+ compute_encoder.set_bytes(N, c++);
1115
+ compute_encoder.set_bytes(K, c++);
1116
+
1117
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
1118
+ }
1119
+
1120
+ void gather_qmm_rhs(
1121
+ const array& x_,
1122
+ const array& w_,
1123
+ const array& scales_,
1124
+ const std::optional<array>& biases_,
1125
+ const array& indices_,
1126
+ array& out,
1127
+ bool transpose,
1128
+ int group_size,
1129
+ int bits,
1130
+ int M,
1131
+ int N,
1132
+ int K,
1133
+ metal::Device& d,
1134
+ const Stream& s,
1135
+ const std::string mode) {
1136
+ if (metal::is_nax_available() && transpose &&
1137
+ (env::enable_tf32() || x_.dtype() != float32)) {
1138
+ return gather_qmm_rhs_nax(
1139
+ /* const array& x_ = */ x_,
1140
+ /* const array& w_ = */ w_,
1141
+ /* const array& scales_ = */ scales_,
1142
+ /* const std::optional<array>& biases_ = */ biases_,
1143
+ /* const array& indices_ = */ indices_,
1144
+ /* array& out = */ out,
1145
+ /* bool transpose = */ transpose,
1146
+ /* int group_size = */ group_size,
1147
+ /* int bits = */ bits,
1148
+ /* int M = */ M,
1149
+ /* int N = */ N,
1150
+ /* int K = */ K,
1151
+ /* metal::Device& d = */ d,
1152
+ /* const Stream& s = */ s,
1153
+ /* const std::string mode = */ mode);
1154
+ }
1155
+
1156
+ // Start by normalizing the indices
1157
+ array indices = ensure_row_contiguous(indices_, d, s);
1158
+
1159
+ // Broadcast x with indices. If we are here that means lhs_indices were not
1160
+ // provided so the lhs_indices are implied to be the shape of x broadcasted
1161
+ // with rhs_indices. We need only broadcast x and copy it as if applying the
1162
+ // lhs_indices.
1163
+ auto broadcast_with_indices = [&d, &s, &indices](const array& x) {
1164
+ if (x.size() / x.shape(-2) / x.shape(-1) == indices.size()) {
1165
+ return ensure_row_contiguous(x, d, s);
1166
+ }
1167
+
1168
+ auto x_shape = indices.shape();
1169
+ x_shape.push_back(x.shape(-2));
1170
+ x_shape.push_back(x.shape(-1));
1171
+ array new_x(std::move(x_shape), x.dtype(), nullptr, {});
1172
+ broadcast(x, new_x);
1173
+ return ensure_row_contiguous(new_x, d, s);
1174
+ };
1175
+
1176
+ // Normalize the input arrays
1177
+ array x = broadcast_with_indices(x_);
1178
+ array w = ensure_row_contiguous(w_, d, s);
1179
+ array scales = ensure_row_contiguous(scales_, d, s);
1180
+
1181
+ // TODO: Tune the block sizes
1182
+ int bm = 16, bn = 32, bk = 32;
1183
+ int wm = 1, wn = 2;
1184
+
1185
+ const bool align_M = (M % bm) == 0;
1186
+ const bool align_N = (N % bn) == 0;
1187
+ const bool align_K = (K % bk) == 0;
1188
+
1189
+ // Make the kernel name
1190
+ std::string kname;
1191
+ kname.reserve(64);
1192
+ std::string type_string = get_type_string(x.dtype());
1193
+ concatenate(
1194
+ kname,
1195
+ mode + (transpose ? "_gather_qmm_rhs_nt_" : "_gather_qmm_rhs_nn_"),
1196
+ type_string,
1197
+ "_gs_",
1198
+ group_size,
1199
+ "_b_",
1200
+ bits,
1201
+ "_bm_",
1202
+ bm,
1203
+ "_bn_",
1204
+ bn,
1205
+ "_bk_",
1206
+ bk,
1207
+ "_wm_",
1208
+ wm,
1209
+ "_wn_",
1210
+ wn);
1211
+
1212
+ metal::MTLFCList func_consts = {
1213
+ {&align_M, MTL::DataType::DataTypeBool, 200},
1214
+ {&align_N, MTL::DataType::DataTypeBool, 201},
1215
+ {&align_K, MTL::DataType::DataTypeBool, 202},
1216
+ };
1217
+
1218
+ // And the kernel hash that includes the function constants
1219
+ std::string hash_name;
1220
+ hash_name.reserve(128);
1221
+ concatenate(
1222
+ hash_name,
1223
+ kname,
1224
+ "_align_M_",
1225
+ align_M ? 't' : 'n',
1226
+ "_align_N_",
1227
+ align_N ? 't' : 'n',
1228
+ "_align_K_",
1229
+ align_K ? 't' : 'n');
1230
+
1231
+ // Get and set the kernel
1232
+ auto& compute_encoder = d.get_command_encoder(s.index);
1233
+ auto kernel = get_gather_qmm_kernel(
1234
+ d,
1235
+ kname,
1236
+ hash_name,
1237
+ func_consts,
1238
+ x,
1239
+ group_size,
1240
+ bits,
1241
+ mode,
1242
+ bm,
1243
+ bn,
1244
+ bk,
1245
+ wm,
1246
+ wn,
1247
+ transpose);
1248
+ compute_encoder.set_compute_pipeline_state(kernel);
1249
+
1250
+ MTL::Size group_dims(32, wn, wm);
1251
+ MTL::Size grid_dims((N + bn - 1) / bn, (M + bm - 1) / bm, 1);
1252
+
1253
+ int c = 0;
1254
+ compute_encoder.set_input_array(x, c++);
1255
+ compute_encoder.set_input_array(w, c++);
1256
+ compute_encoder.set_input_array(scales, c++);
1257
+ if (biases_) {
1258
+ array biases = ensure_row_contiguous(*biases_, d, s);
1259
+ compute_encoder.set_input_array(biases, c++);
1260
+ }
1261
+ compute_encoder.set_input_array(indices, c++);
1262
+ compute_encoder.set_output_array(out, c++);
1263
+ compute_encoder.set_bytes(M, c++);
1264
+ compute_encoder.set_bytes(N, c++);
1265
+ compute_encoder.set_bytes(K, c++);
1266
+
1267
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
1268
+ }
1269
+
1270
+ void dispatch_qmv(
1271
+ const array& x,
1272
+ const array& w,
1273
+ const array& scales,
1274
+ const std::optional<array>& biases,
1275
+ array& out,
1276
+ int group_size,
1277
+ int bits,
1278
+ int M,
1279
+ int N,
1280
+ int K,
1281
+ metal::Device& d,
1282
+ const Stream& s,
1283
+ const std::string& mode) {
1284
+ // It is a qmv with a small inner dimension so route to qmv_quad kernel
1285
+ if ((K == 128 || K == 64) && is_power_of_2(bits)) {
1286
+ qmv_quad(x, w, scales, biases, out, group_size, bits, M, N, K, d, s, mode);
1287
+ return;
1288
+ }
1289
+
1290
+ // Run of the mill qmv
1291
+ qmv(x, w, scales, biases, out, group_size, bits, M, N, K, d, s, mode);
1292
+ }
1293
+
1294
+ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
1295
+ auto& s = stream();
1296
+ auto& d = metal::device(s.device);
1297
+
1298
+ out.set_data(allocator::malloc(out.nbytes()));
1299
+
1300
+ // Make sure the last two dims of x and w, s, b are contiguous. This should
1301
+ // be relaxed for x.
1302
+ array x = ensure_row_contiguous_matrix(inputs[0], d, s);
1303
+ array w = ensure_row_contiguous_matrix(inputs[1], d, s);
1304
+ array scales = ensure_row_contiguous_matrix(inputs[2], d, s);
1305
+ std::optional<array> biases = std::nullopt;
1306
+ if (inputs.size() == 4) {
1307
+ biases = ensure_row_contiguous_matrix(inputs[3], d, s);
1308
+ }
1309
+
1310
+ // Extract the matmul shapes
1311
+ bool non_batched = w.ndim() == 2 && x.flags().row_contiguous;
1312
+ int K = x.shape(-1);
1313
+ int M = non_batched ? x.size() / K : x.shape(-2);
1314
+ int N = out.shape(-1);
1315
+
1316
+ int vector_limit = transpose_ ? get_qmv_batch_limit(K, N, d) : 4;
1317
+ auto mode = quantization_mode_to_string(mode_);
1318
+ // It is a matrix matrix product.
1319
+ if (M >= vector_limit) {
1320
+ qmm(x,
1321
+ w,
1322
+ scales,
1323
+ biases,
1324
+ out,
1325
+ transpose_,
1326
+ group_size_,
1327
+ bits_,
1328
+ M,
1329
+ N,
1330
+ K,
1331
+ d,
1332
+ s,
1333
+ mode);
1334
+ return;
1335
+ }
1336
+
1337
+ // Run of the mill qmv
1338
+ if (transpose_) {
1339
+ dispatch_qmv(
1340
+ x, w, scales, biases, out, group_size_, bits_, M, N, K, d, s, mode);
1341
+ return;
1342
+ }
1343
+
1344
+ // Run of the mill qvm
1345
+ if (K < 1024) {
1346
+ qvm(x, w, scales, biases, out, group_size_, bits_, M, N, K, d, s, mode);
1347
+ return;
1348
+ }
1349
+
1350
+ // Qvm with large dimension so route to a split K kernel for more parallelism
1351
+ qvm_split_k(
1352
+ x, w, scales, biases, out, group_size_, bits_, M, N, K, d, s, mode);
1353
+ return;
1354
+ }
1355
+
1356
+ void GatherQMM::eval_gpu(const std::vector<array>& inputs, array& out) {
1357
+ auto& s = stream();
1358
+ auto& d = metal::device(s.device);
1359
+
1360
+ out.set_data(allocator::malloc(out.nbytes()));
1361
+
1362
+ array x = ensure_row_contiguous_matrix(inputs[0], d, s);
1363
+ array w = ensure_row_contiguous_matrix(inputs[1], d, s);
1364
+ array scales = ensure_row_contiguous_matrix(inputs[2], d, s);
1365
+ std::optional<array> biases = std::nullopt;
1366
+ if (inputs.size() == 6) {
1367
+ biases = ensure_row_contiguous_matrix(inputs[3], d, s);
1368
+ }
1369
+ const array& lhs_indices = inputs[inputs.size() - 2];
1370
+ const array& rhs_indices = inputs[inputs.size() - 1];
1371
+
1372
+ int K = x.shape(-1);
1373
+ int M = x.shape(-2);
1374
+ int N = out.shape(-1);
1375
+ int B = out.size() / M / N;
1376
+ int E = w.size() / w.shape(-1) / w.shape(-2);
1377
+ int vector_limit = transpose_ ? get_qmv_batch_limit(K, N, d) : 4;
1378
+ auto mode = quantization_mode_to_string(mode_);
1379
+
1380
+ // We are walking x in order and w is also in order so we can batch up the
1381
+ // matmuls and reuse reading x and w.
1382
+ //
1383
+ // TODO: Tune 16 and 4 here a bit better.
1384
+ if (M == 1 && B >= 16 && right_sorted_ == true && B / E >= 4) {
1385
+ gather_qmm_rhs(
1386
+ x,
1387
+ w,
1388
+ scales,
1389
+ biases,
1390
+ rhs_indices,
1391
+ out,
1392
+ transpose_,
1393
+ group_size_,
1394
+ bits_,
1395
+ x.size() / K,
1396
+ N,
1397
+ K,
1398
+ d,
1399
+ s,
1400
+ mode);
1401
+ return;
1402
+ }
1403
+
1404
+ // It is a matrix matrix product
1405
+ if (M >= vector_limit) {
1406
+ gather_qmm(
1407
+ x,
1408
+ w,
1409
+ scales,
1410
+ biases,
1411
+ lhs_indices,
1412
+ rhs_indices,
1413
+ out,
1414
+ transpose_,
1415
+ group_size_,
1416
+ bits_,
1417
+ M,
1418
+ N,
1419
+ K,
1420
+ d,
1421
+ s,
1422
+ mode);
1423
+ return;
1424
+ }
1425
+
1426
+ if (transpose_) {
1427
+ gather_qmv(
1428
+ x,
1429
+ w,
1430
+ scales,
1431
+ biases,
1432
+ lhs_indices,
1433
+ rhs_indices,
1434
+ out,
1435
+ group_size_,
1436
+ bits_,
1437
+ M,
1438
+ N,
1439
+ K,
1440
+ d,
1441
+ s,
1442
+ mode);
1443
+ return;
1444
+ }
1445
+
1446
+ gather_qvm(
1447
+ x,
1448
+ w,
1449
+ scales,
1450
+ biases,
1451
+ lhs_indices,
1452
+ rhs_indices,
1453
+ out,
1454
+ group_size_,
1455
+ bits_,
1456
+ M,
1457
+ N,
1458
+ K,
1459
+ d,
1460
+ s,
1461
+ mode);
1462
+ }
1463
+
1464
+ void quantize_dequantize(
1465
+ const array& in,
1466
+ array& out,
1467
+ std::string mode,
1468
+ int group_size,
1469
+ int bits,
1470
+ metal::Device& d,
1471
+ const Stream& s) {
1472
+ auto& compute_encoder = d.get_command_encoder(s.index);
1473
+
1474
+ auto w = ensure_row_contiguous(in, d, s);
1475
+ compute_encoder.set_input_array(w, 0);
1476
+ compute_encoder.set_output_array(out, 1);
1477
+ auto type_string = get_type_string(in.dtype());
1478
+ std::string kname;
1479
+ concatenate(
1480
+ kname,
1481
+ mode + "_quantize_dequantize_",
1482
+ type_string,
1483
+ "_gs_",
1484
+ group_size,
1485
+ "_b_",
1486
+ bits);
1487
+ auto kernel = get_quantized_kernel_wrapped(
1488
+ d, kname, "quantize_dequantize", mode, type_string, group_size, bits);
1489
+
1490
+ compute_encoder.set_compute_pipeline_state(kernel);
1491
+
1492
+ constexpr int uint8_per_uint32 = 4;
1493
+ constexpr int simd_size = 32;
1494
+ int packs_per_int = (bits == 3 || bits == 5) ? 8 : bits == 6 ? 4 : 8 / bits;
1495
+ int per_thread = std::max(group_size / simd_size, 1);
1496
+ size_t nthreads = w.size() / per_thread;
1497
+
1498
+ NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
1499
+ if (thread_group_size > nthreads) {
1500
+ thread_group_size = nthreads;
1501
+ }
1502
+ auto group_dims = MTL::Size(thread_group_size, 1, 1);
1503
+ bool use_2d = nthreads > UINT_MAX;
1504
+ auto grid_shape = w.shape();
1505
+ grid_shape.back() /= per_thread;
1506
+ MTL::Size grid_dims = use_2d ? get_2d_grid_dims(grid_shape, w.strides())
1507
+ : MTL::Size(nthreads, 1, 1);
1508
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
1509
+ }
1510
+
1511
+ void QQMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
1512
+ auto& s = stream();
1513
+ auto& d = metal::device(s.device);
1514
+
1515
+ auto mode = quantization_mode_to_string(mode_);
1516
+ bool w_quantized = (inputs[1].dtype() == uint32);
1517
+ if (w_quantized && inputs[0].shape(-2) == 1) {
1518
+ out.set_data(allocator::malloc(out.nbytes()));
1519
+
1520
+ bool donate_x = inputs[0].is_donatable();
1521
+ array x = ensure_row_contiguous(inputs[0], d, s);
1522
+ // If x is a copy it should be donatable
1523
+ donate_x |= x.is_donatable();
1524
+ auto xhat = donate_x
1525
+ ? x
1526
+ : array(allocator::malloc(x.nbytes()), x.shape(), x.dtype());
1527
+ quantize_dequantize(x, xhat, mode, group_size_, bits_, d, s);
1528
+
1529
+ // Make sure the last two dims of w and s are contiguous
1530
+ array w = ensure_row_contiguous_matrix(inputs[1], d, s);
1531
+ array scales = ensure_row_contiguous_matrix(inputs[2], d, s);
1532
+
1533
+ bool non_batched = w.ndim() == 2;
1534
+ int K = x.shape(-1);
1535
+ int M = non_batched ? x.size() / K : x.shape(-2);
1536
+ int N = out.shape(-1);
1537
+ dispatch_qmv(
1538
+ xhat,
1539
+ w,
1540
+ scales,
1541
+ std::nullopt,
1542
+ out,
1543
+ group_size_,
1544
+ bits_,
1545
+ M,
1546
+ N,
1547
+ K,
1548
+ d,
1549
+ s,
1550
+ mode);
1551
+ return;
1552
+ } else {
1553
+ throw std::runtime_error("[QQMatmul] NYI for the general case");
1554
+ }
1555
+ }
1556
+
1557
+ void fast::Quantize::eval_gpu(
1558
+ const std::vector<array>& inputs,
1559
+ std::vector<array>& outputs) {
1560
+ auto& w_pre = inputs[0];
1561
+ auto& out = outputs[0];
1562
+ out.set_data(allocator::malloc(out.nbytes()));
1563
+
1564
+ auto& s = stream();
1565
+ auto& d = metal::device(s.device);
1566
+ auto& compute_encoder = d.get_command_encoder(s.index);
1567
+
1568
+ auto w = ensure_row_contiguous(w_pre, d, s);
1569
+ if (dequantize_) {
1570
+ auto scales = ensure_row_contiguous(inputs[1], d, s);
1571
+ if (mode_ == QuantizationMode::Affine) {
1572
+ auto biases = ensure_row_contiguous(inputs[2], d, s);
1573
+ compute_encoder.set_input_array(biases, 2);
1574
+ }
1575
+ compute_encoder.set_input_array(w, 0);
1576
+ compute_encoder.set_input_array(scales, 1);
1577
+ compute_encoder.set_output_array(out, 3);
1578
+ } else {
1579
+ auto& scales = outputs[1];
1580
+ scales.set_data(allocator::malloc(scales.nbytes()));
1581
+ if (mode_ == QuantizationMode::Affine) {
1582
+ auto& biases = outputs[2];
1583
+ biases.set_data(allocator::malloc(biases.nbytes()));
1584
+ compute_encoder.set_output_array(biases, 3);
1585
+ }
1586
+ compute_encoder.set_input_array(w, 0);
1587
+ compute_encoder.set_output_array(out, 1);
1588
+ compute_encoder.set_output_array(scales, 2);
1589
+ }
1590
+
1591
+ auto type_string = dequantize_ ? get_type_string(out.dtype())
1592
+ : get_type_string(w_pre.dtype());
1593
+ auto mode = quantization_mode_to_string(mode_);
1594
+ std::string kname;
1595
+ concatenate(
1596
+ kname,
1597
+ mode + (dequantize_ ? "_dequantize" : "_quantize"),
1598
+ "_",
1599
+ type_string,
1600
+ "_gs_",
1601
+ group_size_,
1602
+ "_b_",
1603
+ bits_);
1604
+ auto kernel = get_quantized_kernel_wrapped(
1605
+ d,
1606
+ kname,
1607
+ dequantize_ ? "dequantize" : "quantize",
1608
+ mode,
1609
+ type_string,
1610
+ group_size_,
1611
+ bits_);
1612
+
1613
+ compute_encoder.set_compute_pipeline_state(kernel);
1614
+
1615
+ // Treat uint32 as uint8 in kernel
1616
+ constexpr int uint8_per_uint32 = 4;
1617
+ constexpr int simd_size = 32;
1618
+ int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
1619
+ : bits_ == 6 ? 4
1620
+ : 8 / bits_;
1621
+ int per_thread =
1622
+ dequantize_ ? packs_per_int : std::max(group_size_ / simd_size, 1);
1623
+ size_t nthreads =
1624
+ dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
1625
+
1626
+ NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
1627
+ if (thread_group_size > nthreads) {
1628
+ thread_group_size = nthreads;
1629
+ }
1630
+ auto group_dims = MTL::Size(thread_group_size, 1, 1);
1631
+ bool use_2d = nthreads > UINT_MAX;
1632
+ auto grid_shape = w.shape();
1633
+ if (dequantize_) {
1634
+ grid_shape.back() *= uint8_per_uint32;
1635
+ } else {
1636
+ grid_shape.back() /= per_thread;
1637
+ }
1638
+ MTL::Size grid_dims = use_2d ? get_2d_grid_dims(grid_shape, w.strides())
1639
+ : MTL::Size(nthreads, 1, 1);
1640
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
1641
+ }
1642
+
1643
+ void fast::ConvertFP8::eval_gpu(
1644
+ const std::vector<array>& inputs,
1645
+ std::vector<array>& outputs) {
1646
+ auto& in = inputs[0];
1647
+ auto& out = outputs[0];
1648
+ unary_op_gpu(inputs, out, name(), stream());
1649
+ }
1650
+
1651
+ } // namespace mlx::core