mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,426 @@
|
|
|
1
|
+
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import math
|
|
4
|
+
from typing import Callable, Optional, Union
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
from mlx.nn.layers.base import Module
|
|
8
|
+
from mlx.utils import tree_map_with_path
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def _defaults_for_mode(mode, group_size, bits):
|
|
12
|
+
mode_defaults = {
|
|
13
|
+
"affine": (64, 4),
|
|
14
|
+
"mxfp4": (32, 4),
|
|
15
|
+
"nvfp4": (16, 4),
|
|
16
|
+
"mxfp8": (32, 8),
|
|
17
|
+
}
|
|
18
|
+
default_group_size, default_bits = mode_defaults[mode]
|
|
19
|
+
return group_size or default_group_size, bits or default_bits
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def quantize(
|
|
23
|
+
model: Module,
|
|
24
|
+
group_size: int = None,
|
|
25
|
+
bits: int = None,
|
|
26
|
+
*,
|
|
27
|
+
mode: str = "affine",
|
|
28
|
+
quantize_input: bool = False,
|
|
29
|
+
class_predicate: Optional[Callable[[str, Module], Union[bool, dict]]] = None,
|
|
30
|
+
):
|
|
31
|
+
"""Quantize the sub-modules of a module according to a predicate.
|
|
32
|
+
|
|
33
|
+
By default all layers that define a ``to_quantized()`` method will be
|
|
34
|
+
quantized. Both :obj:`Linear` and :obj:`Embedding` layers will be
|
|
35
|
+
quantized. The module is updated in-place.
|
|
36
|
+
|
|
37
|
+
Note:
|
|
38
|
+
``quantize_input=True`` is only supported for ``"nvfp4"`` and ``"mxfp8"``
|
|
39
|
+
modes and :obj:`Linear` layers.
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
model (mlx.nn.Module): The model whose leaf modules may be quantized.
|
|
43
|
+
group_size (Optional[int]): The quantization group size (see
|
|
44
|
+
:func:`mlx.core.quantize`). Default: ``None``.
|
|
45
|
+
bits (Optional[int]): The number of bits per parameter (see
|
|
46
|
+
:func:`mlx.core.quantize`). Default: ``None``.
|
|
47
|
+
mode (str): The quantization method to use (see
|
|
48
|
+
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
|
49
|
+
quantize_input (bool): Whether to quantize activations. Default: ``False``.
|
|
50
|
+
class_predicate (Optional[Callable]): A callable which receives the
|
|
51
|
+
:obj:`Module` path and :obj:`Module` itself and returns ``True`` or a
|
|
52
|
+
dict of params for ``to_quantized`` if it should be quantized and
|
|
53
|
+
``False`` otherwise. If ``None``, then all layers that define a
|
|
54
|
+
``to_quantized()`` method are quantized. Default: ``None``.
|
|
55
|
+
|
|
56
|
+
Example:
|
|
57
|
+
Weight only quantization for all layers that define a ``to_quantized()`` method:
|
|
58
|
+
|
|
59
|
+
>>> import mlx.nn as nn
|
|
60
|
+
>>> nn.quantize(model, group_size=64, bits=4, mode="affine")
|
|
61
|
+
|
|
62
|
+
Weight and input quantization for all linear layers:
|
|
63
|
+
|
|
64
|
+
>>> predicate = lambda p, m: isinstance(m, nn.Linear)
|
|
65
|
+
>>> nn.quantize(model, mode="nvfp4", quantize_input=True, class_predicate=predicate)
|
|
66
|
+
"""
|
|
67
|
+
class_predicate = class_predicate or (lambda _, m: hasattr(m, "to_quantized"))
|
|
68
|
+
|
|
69
|
+
def _maybe_quantize(path, m):
|
|
70
|
+
if bool_or_params := class_predicate(path, m):
|
|
71
|
+
if hasattr(m, "to_quantized"):
|
|
72
|
+
if isinstance(bool_or_params, bool):
|
|
73
|
+
kwargs = {"group_size": group_size, "bits": bits, "mode": mode}
|
|
74
|
+
if quantize_input:
|
|
75
|
+
kwargs["quantize_input"] = quantize_input
|
|
76
|
+
return m.to_quantized(**kwargs)
|
|
77
|
+
elif isinstance(bool_or_params, dict):
|
|
78
|
+
if ("quantize_input" in bool_or_params) and not bool_or_params[
|
|
79
|
+
"quantize_input"
|
|
80
|
+
]:
|
|
81
|
+
bool_or_params.pop("quantize_input")
|
|
82
|
+
return m.to_quantized(**bool_or_params)
|
|
83
|
+
else:
|
|
84
|
+
raise ValueError(
|
|
85
|
+
"``class_predicate`` must return a bool"
|
|
86
|
+
" or a dict of parameters to pass to ``to_quantized``"
|
|
87
|
+
)
|
|
88
|
+
else:
|
|
89
|
+
raise ValueError(f"Unable to quantize model of type {type(m)}")
|
|
90
|
+
else:
|
|
91
|
+
return m
|
|
92
|
+
|
|
93
|
+
leaves = model.leaf_modules()
|
|
94
|
+
leaves = tree_map_with_path(_maybe_quantize, leaves, is_leaf=Module.is_module)
|
|
95
|
+
model.update_modules(leaves)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
class QuantizedEmbedding(Module):
|
|
99
|
+
"""The same as :obj:`Embedding` but with a quantized weight matrix.
|
|
100
|
+
|
|
101
|
+
:obj:`QuantizedEmbedding` also provides a :meth:`from_embedding`
|
|
102
|
+
classmethod to convert embedding layers to :obj:`QuantizedEmbedding`
|
|
103
|
+
layers.
|
|
104
|
+
|
|
105
|
+
Args:
|
|
106
|
+
num_embeddings (int): How many possible discrete tokens can we embed.
|
|
107
|
+
Usually called the vocabulary size.
|
|
108
|
+
dims (int): The dimensionality of the embeddings.
|
|
109
|
+
group_size (Optional[int]): The group size to use for the quantized
|
|
110
|
+
weight. See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
111
|
+
bits (Optional[int]): The bit width to use for the quantized weight.
|
|
112
|
+
See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
113
|
+
mode (str): The quantization method to use (see
|
|
114
|
+
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
def __init__(
|
|
118
|
+
self,
|
|
119
|
+
num_embeddings: int,
|
|
120
|
+
dims: int,
|
|
121
|
+
group_size: int = None,
|
|
122
|
+
bits: int = None,
|
|
123
|
+
mode: str = "affine",
|
|
124
|
+
):
|
|
125
|
+
super().__init__()
|
|
126
|
+
|
|
127
|
+
# Quantization config
|
|
128
|
+
self.group_size, self.bits = _defaults_for_mode(mode, group_size, bits)
|
|
129
|
+
self.mode = mode
|
|
130
|
+
|
|
131
|
+
# Initialize the quantized weight
|
|
132
|
+
scale = math.sqrt(1 / dims)
|
|
133
|
+
weight = mx.random.normal(shape=(num_embeddings, dims), scale=scale)
|
|
134
|
+
self.weight, self.scales, *biases = mx.quantize(
|
|
135
|
+
weight, group_size, bits, mode=mode
|
|
136
|
+
)
|
|
137
|
+
self.biases = biases[0] if biases else None
|
|
138
|
+
self.num_embeddings = num_embeddings
|
|
139
|
+
self.dims = dims
|
|
140
|
+
|
|
141
|
+
# Freeze this model's parameters
|
|
142
|
+
self.freeze()
|
|
143
|
+
|
|
144
|
+
def __call__(self, x):
|
|
145
|
+
biases = self.get("biases")
|
|
146
|
+
return mx.dequantize(
|
|
147
|
+
self["weight"][x],
|
|
148
|
+
scales=self["scales"][x],
|
|
149
|
+
biases=biases[x] if biases is not None else None,
|
|
150
|
+
group_size=self.group_size,
|
|
151
|
+
bits=self.bits,
|
|
152
|
+
mode=self.mode,
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
def as_linear(self, x):
|
|
156
|
+
"""
|
|
157
|
+
Call the quantized embedding layer as a quantized linear layer.
|
|
158
|
+
|
|
159
|
+
Use this for example when input embedding and output projection
|
|
160
|
+
weights are tied.
|
|
161
|
+
"""
|
|
162
|
+
return mx.quantized_matmul(
|
|
163
|
+
x,
|
|
164
|
+
self["weight"],
|
|
165
|
+
scales=self["scales"],
|
|
166
|
+
biases=self.get("biases"),
|
|
167
|
+
transpose=True,
|
|
168
|
+
group_size=self.group_size,
|
|
169
|
+
bits=self.bits,
|
|
170
|
+
mode=self.mode,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
def _extra_repr(self):
|
|
174
|
+
return (
|
|
175
|
+
f"{self.num_embeddings}, {self.dims}, "
|
|
176
|
+
f"group_size={self.group_size}, bits={self.bits}, mode={self.mode}"
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
@classmethod
|
|
180
|
+
def from_embedding(
|
|
181
|
+
cls,
|
|
182
|
+
embedding_layer: Module,
|
|
183
|
+
group_size: int = None,
|
|
184
|
+
bits: int = None,
|
|
185
|
+
mode: str = "affine",
|
|
186
|
+
):
|
|
187
|
+
"""Create a :obj:`QuantizedEmbedding` layer from an :obj:`Embedding` layer."""
|
|
188
|
+
embedding_dims, dims = embedding_layer.weight.shape
|
|
189
|
+
ql = cls(embedding_dims, dims, group_size, bits, mode=mode)
|
|
190
|
+
ql.weight, ql.scales, *biases = mx.quantize(
|
|
191
|
+
embedding_layer.weight,
|
|
192
|
+
group_size,
|
|
193
|
+
bits,
|
|
194
|
+
mode=mode,
|
|
195
|
+
)
|
|
196
|
+
ql.biases = biases[0] if biases else None
|
|
197
|
+
return ql
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
class QuantizedLinear(Module):
|
|
201
|
+
"""Applies an affine transformation to the input using a quantized weight matrix.
|
|
202
|
+
|
|
203
|
+
It is the quantized equivalent of :class:`mlx.nn.Linear`. For now its
|
|
204
|
+
parameters are frozen and will not be included in any gradient computation
|
|
205
|
+
but this will probably change in the future.
|
|
206
|
+
|
|
207
|
+
:obj:`QuantizedLinear` also provides a classmethod :meth:`from_linear` to
|
|
208
|
+
convert linear layers to :obj:`QuantizedLinear` layers.
|
|
209
|
+
|
|
210
|
+
Args:
|
|
211
|
+
input_dims (int): The dimensionality of the input features.
|
|
212
|
+
output_dims (int): The dimensionality of the output features.
|
|
213
|
+
bias (bool, optional): If set to ``False`` then the layer will not use
|
|
214
|
+
a bias. Default: ``True``.
|
|
215
|
+
group_size (Optional[int]): The group size to use for the quantized
|
|
216
|
+
weight. See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
217
|
+
bits (Optional[int]): The bit width to use for the quantized weight.
|
|
218
|
+
See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
219
|
+
mode (str): The quantization method to use (see
|
|
220
|
+
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
|
221
|
+
"""
|
|
222
|
+
|
|
223
|
+
def __init__(
|
|
224
|
+
self,
|
|
225
|
+
input_dims: int,
|
|
226
|
+
output_dims: int,
|
|
227
|
+
bias: bool = True,
|
|
228
|
+
group_size: int = None,
|
|
229
|
+
bits: int = None,
|
|
230
|
+
mode: str = "affine",
|
|
231
|
+
):
|
|
232
|
+
super().__init__()
|
|
233
|
+
|
|
234
|
+
# Quantization config
|
|
235
|
+
self.group_size, self.bits = _defaults_for_mode(mode, group_size, bits)
|
|
236
|
+
self.mode = mode
|
|
237
|
+
|
|
238
|
+
# Initialize the quantized weight
|
|
239
|
+
scale = math.sqrt(1 / input_dims)
|
|
240
|
+
weight = mx.random.uniform(
|
|
241
|
+
low=-scale,
|
|
242
|
+
high=scale,
|
|
243
|
+
shape=(output_dims, input_dims),
|
|
244
|
+
)
|
|
245
|
+
self.weight, self.scales, *biases = mx.quantize(
|
|
246
|
+
weight, group_size, bits, mode=mode
|
|
247
|
+
)
|
|
248
|
+
self.biases = biases[0] if biases else None
|
|
249
|
+
|
|
250
|
+
# And bias if needed
|
|
251
|
+
if bias:
|
|
252
|
+
self.bias = mx.zeros((output_dims,))
|
|
253
|
+
|
|
254
|
+
# Freeze this model's parameters
|
|
255
|
+
self.freeze()
|
|
256
|
+
|
|
257
|
+
def _extra_repr(self):
|
|
258
|
+
out_dims, in_dims = self.weight.shape
|
|
259
|
+
in_dims = (in_dims * 32) // self.bits
|
|
260
|
+
return (
|
|
261
|
+
f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, "
|
|
262
|
+
f"group_size={self.group_size}, bits={self.bits}, mode={self.mode}"
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
def __call__(self, x):
|
|
266
|
+
x = mx.quantized_matmul(
|
|
267
|
+
x,
|
|
268
|
+
self["weight"],
|
|
269
|
+
scales=self["scales"],
|
|
270
|
+
biases=self.get("biases"),
|
|
271
|
+
transpose=True,
|
|
272
|
+
group_size=self.group_size,
|
|
273
|
+
bits=self.bits,
|
|
274
|
+
mode=self.mode,
|
|
275
|
+
)
|
|
276
|
+
if "bias" in self:
|
|
277
|
+
x = x + self["bias"]
|
|
278
|
+
return x
|
|
279
|
+
|
|
280
|
+
@classmethod
|
|
281
|
+
def from_linear(
|
|
282
|
+
cls,
|
|
283
|
+
linear_layer: Module,
|
|
284
|
+
group_size: int = None,
|
|
285
|
+
bits: int = None,
|
|
286
|
+
mode: str = "affine",
|
|
287
|
+
):
|
|
288
|
+
"""Create a :obj:`QuantizedLinear` layer from a :obj:`Linear` layer."""
|
|
289
|
+
output_dims, input_dims = linear_layer.weight.shape
|
|
290
|
+
ql = cls(input_dims, output_dims, False, group_size, bits, mode=mode)
|
|
291
|
+
ql.weight, ql.scales, *biases = mx.quantize(
|
|
292
|
+
linear_layer.weight,
|
|
293
|
+
group_size,
|
|
294
|
+
bits,
|
|
295
|
+
mode=mode,
|
|
296
|
+
)
|
|
297
|
+
ql.biases = biases[0] if biases else None
|
|
298
|
+
|
|
299
|
+
if "bias" in linear_layer:
|
|
300
|
+
ql.bias = linear_layer.bias
|
|
301
|
+
|
|
302
|
+
return ql
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
class QQLinear(Module):
|
|
306
|
+
"""Quantizes the input and applies an affine transformation using quantized weights.
|
|
307
|
+
|
|
308
|
+
Two use cases are supported:
|
|
309
|
+
|
|
310
|
+
1) **Eval**: The weights are frozen and stored in quantized form together with
|
|
311
|
+
their scales (``self.weight`` is quantized and ``self.scales`` is provided).
|
|
312
|
+
2) **Train**: The weights are stored in higher precision and are quantized on
|
|
313
|
+
the fly during computation so that gradients with respect to the weights
|
|
314
|
+
can be computed.
|
|
315
|
+
|
|
316
|
+
To switch between the two cases, use ``layer.eval()`` and ``layer.train()`` respectively.
|
|
317
|
+
|
|
318
|
+
Compared to the :class:`mlx.nn.QuantizedLinear` layer, this layer
|
|
319
|
+
quantizes the input as well and includes weights in gradient computations.
|
|
320
|
+
|
|
321
|
+
:obj:`QQLinear` also provides the class method :meth:`from_linear` to
|
|
322
|
+
convert :class:`mlx.nn.Linear` layers to :obj:`QQLinear` layers.
|
|
323
|
+
|
|
324
|
+
Note: This layer does not support a bias term yet.
|
|
325
|
+
|
|
326
|
+
Args:
|
|
327
|
+
input_dims (int): The dimensionality of the input features.
|
|
328
|
+
output_dims (int): The dimensionality of the output features.
|
|
329
|
+
group_size (Optional[int]): The group size to use for the quantized weight.
|
|
330
|
+
See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
331
|
+
bits (Optional[int]): The bit width to use for the quantized weight.
|
|
332
|
+
See :func:`~mlx.core.quantize`. Default: ``None``.
|
|
333
|
+
mode (Optional[str]): The quantization method to use (see
|
|
334
|
+
:func:`mlx.core.quantize`). Currently, only ``"nvfp4"`` and ``"mxfp8"``
|
|
335
|
+
are supported. Default: ``"nvfp4"``.
|
|
336
|
+
"""
|
|
337
|
+
|
|
338
|
+
def __init__(
|
|
339
|
+
self,
|
|
340
|
+
input_dims: int,
|
|
341
|
+
output_dims: int,
|
|
342
|
+
group_size: int = None,
|
|
343
|
+
bits: int = None,
|
|
344
|
+
mode: str = "nvfp4",
|
|
345
|
+
):
|
|
346
|
+
super().__init__()
|
|
347
|
+
|
|
348
|
+
# Quantization config
|
|
349
|
+
self.group_size, self.bits = _defaults_for_mode(mode, group_size, bits)
|
|
350
|
+
self.mode = mode
|
|
351
|
+
|
|
352
|
+
scale = math.sqrt(1 / input_dims)
|
|
353
|
+
self.weight = mx.random.uniform(
|
|
354
|
+
low=-scale,
|
|
355
|
+
high=scale,
|
|
356
|
+
shape=(output_dims, input_dims),
|
|
357
|
+
)
|
|
358
|
+
self._quantized = False
|
|
359
|
+
|
|
360
|
+
def _extra_repr(self):
|
|
361
|
+
out_dims, in_dims = self.weight.shape
|
|
362
|
+
if self.weight.dtype == mx.uint32:
|
|
363
|
+
in_dims = (in_dims * 32) // self.bits
|
|
364
|
+
return (
|
|
365
|
+
f"input_dims={in_dims}, output_dims={out_dims}, "
|
|
366
|
+
f"group_size={self.group_size}, bits={self.bits}, mode={self.mode}"
|
|
367
|
+
)
|
|
368
|
+
|
|
369
|
+
def quantize(self):
|
|
370
|
+
if not self._quantized:
|
|
371
|
+
self.weight, self.scales = mx.quantize(
|
|
372
|
+
self.weight,
|
|
373
|
+
self.group_size,
|
|
374
|
+
self.bits,
|
|
375
|
+
mode=self.mode,
|
|
376
|
+
)
|
|
377
|
+
self._quantized = True
|
|
378
|
+
|
|
379
|
+
def dequantize(self):
|
|
380
|
+
if self._quantized:
|
|
381
|
+
self.weight = mx.dequantize(
|
|
382
|
+
self.weight,
|
|
383
|
+
scales=self.scales,
|
|
384
|
+
group_size=self.group_size,
|
|
385
|
+
bits=self.bits,
|
|
386
|
+
mode=self.mode,
|
|
387
|
+
)
|
|
388
|
+
self.__delattr__("scales")
|
|
389
|
+
self._quantized = False
|
|
390
|
+
|
|
391
|
+
def _set_training_mode(self, mode: bool):
|
|
392
|
+
super()._set_training_mode(mode)
|
|
393
|
+
|
|
394
|
+
if self._training:
|
|
395
|
+
self.dequantize()
|
|
396
|
+
else:
|
|
397
|
+
self.quantize()
|
|
398
|
+
|
|
399
|
+
def __call__(self, x):
|
|
400
|
+
x = mx.qqmm(
|
|
401
|
+
x,
|
|
402
|
+
self["weight"],
|
|
403
|
+
scales=self.get("scales"),
|
|
404
|
+
group_size=self.group_size,
|
|
405
|
+
bits=self.bits,
|
|
406
|
+
mode=self.mode,
|
|
407
|
+
)
|
|
408
|
+
return x
|
|
409
|
+
|
|
410
|
+
@classmethod
|
|
411
|
+
def from_linear(
|
|
412
|
+
cls,
|
|
413
|
+
linear_layer: Module,
|
|
414
|
+
group_size: int = None,
|
|
415
|
+
bits: int = None,
|
|
416
|
+
mode: str = "nvfp4",
|
|
417
|
+
):
|
|
418
|
+
"""Create a :obj:`QQLinear` layer from a :obj:`Linear` layer."""
|
|
419
|
+
output_dims, input_dims = linear_layer.weight.shape # (N,K)
|
|
420
|
+
if linear_layer.get("bias") is not None:
|
|
421
|
+
raise NotImplementedError("QQLinear does not support bias yet.")
|
|
422
|
+
ql = cls(input_dims, output_dims, group_size, bits, mode=mode)
|
|
423
|
+
ql.weight = linear_layer.weight
|
|
424
|
+
ql.train(linear_layer.training)
|
|
425
|
+
|
|
426
|
+
return ql
|
|
@@ -0,0 +1,289 @@
|
|
|
1
|
+
# Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import math
|
|
4
|
+
from typing import Callable, Optional
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
from mlx.nn.layers.activations import tanh
|
|
8
|
+
from mlx.nn.layers.base import Module
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class RNN(Module):
|
|
12
|
+
r"""An Elman recurrent layer.
|
|
13
|
+
|
|
14
|
+
The input is a sequence of shape ``NLD`` or ``LD`` where:
|
|
15
|
+
|
|
16
|
+
* ``N`` is the optional batch dimension
|
|
17
|
+
* ``L`` is the sequence length
|
|
18
|
+
* ``D`` is the input's feature dimension
|
|
19
|
+
|
|
20
|
+
Concretely, for each element along the sequence length axis, this
|
|
21
|
+
layer applies the function:
|
|
22
|
+
|
|
23
|
+
.. math::
|
|
24
|
+
|
|
25
|
+
h_{t + 1} = \text{tanh} (W_{ih}x_t + W_{hh}h_t + b)
|
|
26
|
+
|
|
27
|
+
The hidden state :math:`h` has shape ``NH`` or ``H``, depending on
|
|
28
|
+
whether the input is batched or not. Returns the hidden state at each
|
|
29
|
+
time step, of shape ``NLH`` or ``LH``.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
input_size (int): Dimension of the input, ``D``.
|
|
33
|
+
hidden_size (int): Dimension of the hidden state, ``H``.
|
|
34
|
+
bias (bool, optional): Whether to use a bias. Default: ``True``.
|
|
35
|
+
nonlinearity (callable, optional): Non-linearity to use. If ``None``,
|
|
36
|
+
then func:`tanh` is used. Default: ``None``.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
input_size: int,
|
|
42
|
+
hidden_size: int,
|
|
43
|
+
bias: bool = True,
|
|
44
|
+
nonlinearity: Optional[Callable] = None,
|
|
45
|
+
):
|
|
46
|
+
super().__init__()
|
|
47
|
+
|
|
48
|
+
self.nonlinearity = nonlinearity or tanh
|
|
49
|
+
if not callable(self.nonlinearity):
|
|
50
|
+
raise ValueError(
|
|
51
|
+
f"Nonlinearity must be callable. Current value: {nonlinearity}."
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
scale = 1.0 / math.sqrt(hidden_size)
|
|
55
|
+
self.hidden_size = hidden_size
|
|
56
|
+
self.Wxh = mx.random.uniform(
|
|
57
|
+
low=-scale, high=scale, shape=(hidden_size, input_size)
|
|
58
|
+
)
|
|
59
|
+
self.Whh = mx.random.uniform(
|
|
60
|
+
low=-scale, high=scale, shape=(hidden_size, hidden_size)
|
|
61
|
+
)
|
|
62
|
+
self.bias = (
|
|
63
|
+
mx.random.uniform(low=-scale, high=scale, shape=(hidden_size,))
|
|
64
|
+
if bias
|
|
65
|
+
else None
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
def _extra_repr(self):
|
|
69
|
+
return (
|
|
70
|
+
f"input_dims={self.Wxh.shape[1]}, "
|
|
71
|
+
f"hidden_size={self.hidden_size}, "
|
|
72
|
+
f"nonlinearity={self.nonlinearity}, bias={self.bias is not None}"
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
def __call__(self, x, hidden=None):
|
|
76
|
+
if self.bias is not None:
|
|
77
|
+
x = mx.addmm(self.bias, x, self.Wxh.T)
|
|
78
|
+
else:
|
|
79
|
+
x = x @ self.Wxh.T
|
|
80
|
+
|
|
81
|
+
all_hidden = []
|
|
82
|
+
for idx in range(x.shape[-2]):
|
|
83
|
+
if hidden is not None:
|
|
84
|
+
hidden = mx.addmm(x[..., idx, :], hidden, self.Whh.T)
|
|
85
|
+
else:
|
|
86
|
+
hidden = x[..., idx, :]
|
|
87
|
+
hidden = self.nonlinearity(hidden)
|
|
88
|
+
all_hidden.append(hidden)
|
|
89
|
+
|
|
90
|
+
return mx.stack(all_hidden, axis=-2)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class GRU(Module):
|
|
94
|
+
r"""A gated recurrent unit (GRU) RNN layer.
|
|
95
|
+
|
|
96
|
+
The input has shape ``NLD`` or ``LD`` where:
|
|
97
|
+
|
|
98
|
+
* ``N`` is the optional batch dimension
|
|
99
|
+
* ``L`` is the sequence length
|
|
100
|
+
* ``D`` is the input's feature dimension
|
|
101
|
+
|
|
102
|
+
Concretely, for each element of the sequence, this layer computes:
|
|
103
|
+
|
|
104
|
+
.. math::
|
|
105
|
+
|
|
106
|
+
\begin{aligned}
|
|
107
|
+
r_t &= \sigma (W_{xr}x_t + W_{hr}h_t + b_{r}) \\
|
|
108
|
+
z_t &= \sigma (W_{xz}x_t + W_{hz}h_t + b_{z}) \\
|
|
109
|
+
n_t &= \text{tanh}(W_{xn}x_t + b_{n} + r_t \odot (W_{hn}h_t + b_{hn})) \\
|
|
110
|
+
h_{t + 1} &= (1 - z_t) \odot n_t + z_t \odot h_t
|
|
111
|
+
\end{aligned}
|
|
112
|
+
|
|
113
|
+
The hidden state :math:`h` has shape ``NH`` or ``H`` depending on
|
|
114
|
+
whether the input is batched or not. Returns the hidden state at each
|
|
115
|
+
time step of shape ``NLH`` or ``LH``.
|
|
116
|
+
|
|
117
|
+
Args:
|
|
118
|
+
input_size (int): Dimension of the input, ``D``.
|
|
119
|
+
hidden_size (int): Dimension of the hidden state, ``H``.
|
|
120
|
+
bias (bool): Whether to use biases or not. Default: ``True``.
|
|
121
|
+
"""
|
|
122
|
+
|
|
123
|
+
def __init__(
|
|
124
|
+
self,
|
|
125
|
+
input_size: int,
|
|
126
|
+
hidden_size: int,
|
|
127
|
+
bias: bool = True,
|
|
128
|
+
):
|
|
129
|
+
super().__init__()
|
|
130
|
+
|
|
131
|
+
self.hidden_size = hidden_size
|
|
132
|
+
scale = 1.0 / math.sqrt(hidden_size)
|
|
133
|
+
self.Wx = mx.random.uniform(
|
|
134
|
+
low=-scale, high=scale, shape=(3 * hidden_size, input_size)
|
|
135
|
+
)
|
|
136
|
+
self.Wh = mx.random.uniform(
|
|
137
|
+
low=-scale, high=scale, shape=(3 * hidden_size, hidden_size)
|
|
138
|
+
)
|
|
139
|
+
self.b = (
|
|
140
|
+
mx.random.uniform(low=-scale, high=scale, shape=(3 * hidden_size,))
|
|
141
|
+
if bias
|
|
142
|
+
else None
|
|
143
|
+
)
|
|
144
|
+
self.bhn = (
|
|
145
|
+
mx.random.uniform(low=-scale, high=scale, shape=(hidden_size,))
|
|
146
|
+
if bias
|
|
147
|
+
else None
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
def _extra_repr(self):
|
|
151
|
+
return (
|
|
152
|
+
f"input_dims={self.Wx.shape[1]}, "
|
|
153
|
+
f"hidden_size={self.hidden_size}, bias={self.b is not None}"
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
def __call__(self, x, hidden=None):
|
|
157
|
+
if self.b is not None:
|
|
158
|
+
x = mx.addmm(self.b, x, self.Wx.T)
|
|
159
|
+
else:
|
|
160
|
+
x = x @ self.Wx.T
|
|
161
|
+
|
|
162
|
+
x_rz = x[..., : -self.hidden_size]
|
|
163
|
+
x_n = x[..., -self.hidden_size :]
|
|
164
|
+
|
|
165
|
+
all_hidden = []
|
|
166
|
+
|
|
167
|
+
for idx in range(x.shape[-2]):
|
|
168
|
+
rz = x_rz[..., idx, :]
|
|
169
|
+
if hidden is not None:
|
|
170
|
+
h_proj = hidden @ self.Wh.T
|
|
171
|
+
h_proj_rz = h_proj[..., : -self.hidden_size]
|
|
172
|
+
h_proj_n = h_proj[..., -self.hidden_size :]
|
|
173
|
+
|
|
174
|
+
if self.bhn is not None:
|
|
175
|
+
h_proj_n += self.bhn
|
|
176
|
+
|
|
177
|
+
rz = rz + h_proj_rz
|
|
178
|
+
|
|
179
|
+
rz = mx.sigmoid(rz)
|
|
180
|
+
|
|
181
|
+
r, z = mx.split(rz, 2, axis=-1)
|
|
182
|
+
|
|
183
|
+
n = x_n[..., idx, :]
|
|
184
|
+
|
|
185
|
+
if hidden is not None:
|
|
186
|
+
n = n + r * h_proj_n
|
|
187
|
+
n = mx.tanh(n)
|
|
188
|
+
|
|
189
|
+
if hidden is not None:
|
|
190
|
+
hidden = (1 - z) * n + z * hidden
|
|
191
|
+
else:
|
|
192
|
+
hidden = (1 - z) * n
|
|
193
|
+
|
|
194
|
+
all_hidden.append(hidden)
|
|
195
|
+
|
|
196
|
+
return mx.stack(all_hidden, axis=-2)
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
class LSTM(Module):
|
|
200
|
+
r"""An LSTM recurrent layer.
|
|
201
|
+
|
|
202
|
+
The input has shape ``NLD`` or ``LD`` where:
|
|
203
|
+
|
|
204
|
+
* ``N`` is the optional batch dimension
|
|
205
|
+
* ``L`` is the sequence length
|
|
206
|
+
* ``D`` is the input's feature dimension
|
|
207
|
+
|
|
208
|
+
Concretely, for each element of the sequence, this layer computes:
|
|
209
|
+
|
|
210
|
+
.. math::
|
|
211
|
+
\begin{aligned}
|
|
212
|
+
i_t &= \sigma (W_{xi}x_t + W_{hi}h_t + b_{i}) \\
|
|
213
|
+
f_t &= \sigma (W_{xf}x_t + W_{hf}h_t + b_{f}) \\
|
|
214
|
+
g_t &= \text{tanh} (W_{xg}x_t + W_{hg}h_t + b_{g}) \\
|
|
215
|
+
o_t &= \sigma (W_{xo}x_t + W_{ho}h_t + b_{o}) \\
|
|
216
|
+
c_{t + 1} &= f_t \odot c_t + i_t \odot g_t \\
|
|
217
|
+
h_{t + 1} &= o_t \text{tanh}(c_{t + 1})
|
|
218
|
+
\end{aligned}
|
|
219
|
+
|
|
220
|
+
The hidden state :math:`h` and cell state :math:`c` have shape ``NH``
|
|
221
|
+
or ``H``, depending on whether the input is batched or not.
|
|
222
|
+
|
|
223
|
+
The layer returns two arrays, the hidden state and the cell state at
|
|
224
|
+
each time step, both of shape ``NLH`` or ``LH``.
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
input_size (int): Dimension of the input, ``D``.
|
|
228
|
+
hidden_size (int): Dimension of the hidden state, ``H``.
|
|
229
|
+
bias (bool): Whether to use biases or not. Default: ``True``.
|
|
230
|
+
"""
|
|
231
|
+
|
|
232
|
+
def __init__(
|
|
233
|
+
self,
|
|
234
|
+
input_size: int,
|
|
235
|
+
hidden_size: int,
|
|
236
|
+
bias: bool = True,
|
|
237
|
+
):
|
|
238
|
+
super().__init__()
|
|
239
|
+
|
|
240
|
+
self.hidden_size = hidden_size
|
|
241
|
+
scale = 1.0 / math.sqrt(hidden_size)
|
|
242
|
+
self.Wx = mx.random.uniform(
|
|
243
|
+
low=-scale, high=scale, shape=(4 * hidden_size, input_size)
|
|
244
|
+
)
|
|
245
|
+
self.Wh = mx.random.uniform(
|
|
246
|
+
low=-scale, high=scale, shape=(4 * hidden_size, hidden_size)
|
|
247
|
+
)
|
|
248
|
+
self.bias = (
|
|
249
|
+
mx.random.uniform(low=-scale, high=scale, shape=(4 * hidden_size,))
|
|
250
|
+
if bias
|
|
251
|
+
else None
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
def _extra_repr(self):
|
|
255
|
+
return (
|
|
256
|
+
f"input_dims={self.Wx.shape[1]}, "
|
|
257
|
+
f"hidden_size={self.hidden_size}, bias={self.bias is not None}"
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def __call__(self, x, hidden=None, cell=None):
|
|
261
|
+
if self.bias is not None:
|
|
262
|
+
x = mx.addmm(self.bias, x, self.Wx.T)
|
|
263
|
+
else:
|
|
264
|
+
x = x @ self.Wx.T
|
|
265
|
+
|
|
266
|
+
all_hidden = []
|
|
267
|
+
all_cell = []
|
|
268
|
+
|
|
269
|
+
for idx in range(x.shape[-2]):
|
|
270
|
+
ifgo = x[..., idx, :]
|
|
271
|
+
if hidden is not None:
|
|
272
|
+
ifgo = mx.addmm(ifgo, hidden, self.Wh.T)
|
|
273
|
+
i, f, g, o = mx.split(ifgo, 4, axis=-1)
|
|
274
|
+
|
|
275
|
+
i = mx.sigmoid(i)
|
|
276
|
+
f = mx.sigmoid(f)
|
|
277
|
+
g = mx.tanh(g)
|
|
278
|
+
o = mx.sigmoid(o)
|
|
279
|
+
|
|
280
|
+
if cell is not None:
|
|
281
|
+
cell = f * cell + i * g
|
|
282
|
+
else:
|
|
283
|
+
cell = i * g
|
|
284
|
+
hidden = o * mx.tanh(cell)
|
|
285
|
+
|
|
286
|
+
all_cell.append(cell)
|
|
287
|
+
all_hidden.append(hidden)
|
|
288
|
+
|
|
289
|
+
return mx.stack(all_hidden, axis=-2), mx.stack(all_cell, axis=-2)
|