mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1429 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import math
4
+ import unittest
5
+ from itertools import permutations
6
+
7
+ import mlx.core as mx
8
+ import mlx_tests
9
+ import numpy as np
10
+
11
+
12
+ class TestBlas(mlx_tests.MLXTestCase):
13
+ @property
14
+ def dtypes(self):
15
+ return ["float32", "float16"]
16
+
17
+ def __gemm_test(
18
+ self,
19
+ shape_a,
20
+ shape_b,
21
+ np_dtype=np.float32,
22
+ f_np_a=lambda x: x,
23
+ f_np_b=lambda x: x,
24
+ f_mx_a=lambda x: x,
25
+ f_mx_b=lambda x: x,
26
+ ):
27
+ with self.subTest(
28
+ dtype=np.dtype(np_dtype).name, shape_a=shape_a, shape_b=shape_b
29
+ ):
30
+ np.random.seed(42)
31
+ scale = max(np.sum(shape_a), 128)
32
+ a_np = np.random.normal(0.0, 1.0 / scale, shape_a).astype(np_dtype)
33
+ b_np = np.random.normal(0.0, 1.0 / scale, shape_b).astype(np_dtype)
34
+
35
+ a_mx = mx.array(a_np)
36
+ b_mx = mx.array(b_np)
37
+
38
+ a_np = f_np_a(a_np.astype(np.float32))
39
+ b_np = f_np_b(b_np.astype(np.float32))
40
+ a_mx = f_mx_a(a_mx)
41
+ b_mx = f_mx_b(b_mx)
42
+
43
+ out_npy = a_np @ b_np
44
+ out_mlx = a_mx @ b_mx
45
+
46
+ self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
47
+ self.assertTrue(np.allclose(out_mlx, out_npy.astype(np_dtype), atol=1e-5))
48
+
49
+ def test_matmul_unaligned(self):
50
+ if not mx.is_available(mx.gpu):
51
+ return
52
+
53
+ for dtype in self.dtypes:
54
+ np_dtype = getattr(np, dtype)
55
+ base_shapes = [4, 8, 16, 32, 64, 128]
56
+ perturbations = [-2, -1, 0, 1, 2]
57
+
58
+ for dim in base_shapes:
59
+ for p in perturbations:
60
+ shape_a = (dim + p, dim + p)
61
+ shape_b = (dim + p, dim + p)
62
+ self.__gemm_test(shape_a, shape_b, np_dtype)
63
+
64
+ def test_matvec_unaligned(self):
65
+ a = mx.random.normal(shape=(4, 128))
66
+ b = mx.random.normal(shape=(129,))[1:]
67
+ out = a @ b
68
+ np_out = np.array(a) @ np.array(b)
69
+ self.assertTrue(np.allclose(out, np_out))
70
+
71
+ def test_matmul_shapes(self):
72
+ if not mx.is_available(mx.gpu):
73
+ return
74
+
75
+ shapes = [
76
+ (1, 2, 1, 1),
77
+ (1, 1, 2, 1),
78
+ (3, 23, 457, 3),
79
+ ]
80
+
81
+ if mx.default_device() == mx.gpu:
82
+ shapes += [
83
+ (16, 768, 768, 128),
84
+ (1, 64, 64, 4096),
85
+ ]
86
+
87
+ for dtype in self.dtypes:
88
+ np_dtype = getattr(np, dtype)
89
+
90
+ for B, M, N, K in shapes:
91
+ with self.subTest(transpose="nn"):
92
+ shape_a = (B, M, K)
93
+ shape_b = (B, K, N)
94
+ self.__gemm_test(shape_a, shape_b, np_dtype)
95
+
96
+ with self.subTest(transpose="nt"):
97
+ shape_a = (B, M, K)
98
+ shape_b = (B, N, K)
99
+ self.__gemm_test(
100
+ shape_a,
101
+ shape_b,
102
+ np_dtype,
103
+ f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
104
+ f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
105
+ )
106
+
107
+ with self.subTest(transpose="tn"):
108
+ shape_a = (B, K, M)
109
+ shape_b = (B, K, N)
110
+ self.__gemm_test(
111
+ shape_a,
112
+ shape_b,
113
+ np_dtype,
114
+ f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
115
+ f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
116
+ )
117
+
118
+ with self.subTest(transpose="tt"):
119
+ shape_a = (B, K, M)
120
+ shape_b = (B, N, K)
121
+ self.__gemm_test(
122
+ shape_a,
123
+ shape_b,
124
+ np_dtype,
125
+ f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
126
+ f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
127
+ f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
128
+ f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
129
+ )
130
+
131
+ def test_matmul(self):
132
+ # Note: so far, matmul only works with floating-point types
133
+ a = mx.array([[1.0, 2.0], [3.0, 4.0]])
134
+
135
+ b = mx.array([[0.0, -1.0], [-3.0, 3.0]])
136
+
137
+ expected = [[-6.0, 5.0], [-12.0, 9.0]]
138
+
139
+ self.assertEqual((a @ b).tolist(), expected)
140
+ self.assertEqual(mx.matmul(a, b).tolist(), expected)
141
+
142
+ # Transposed matmul
143
+ np.random.seed(0)
144
+ a_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
145
+ b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
146
+ c_npy = a_npy @ np.transpose(b_npy, (1, 0))
147
+ d_npy = np.transpose(a_npy, (1, 0)) @ b_npy
148
+
149
+ a_mlx = mx.array(a_npy)
150
+ b_mlx = mx.array(b_npy)
151
+ c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
152
+ d_mlx = mx.transpose(a_mlx, (1, 0)) @ b_mlx
153
+
154
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
155
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
156
+
157
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
158
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-6))
159
+
160
+ def test_matmul_dtypes(self):
161
+ for dt in self.dtypes:
162
+ a_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
163
+ getattr(np, dt)
164
+ )
165
+ b_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
166
+ getattr(np, dt)
167
+ )
168
+ a_mlx = mx.array(a_npy)
169
+ b_mlx = mx.array(b_npy)
170
+
171
+ c_npy = np.matmul(a_npy, b_npy, dtype=getattr(np, dt))
172
+ c_mlx = a_mlx @ b_mlx
173
+
174
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
175
+
176
+ def test_matmul_batched(self):
177
+ np.random.seed(0)
178
+ # Batched matmul
179
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
180
+ b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
181
+ c_npy = a_npy @ b_npy
182
+
183
+ a_mlx = mx.array(a_npy)
184
+ b_mlx = mx.array(b_npy)
185
+ c_mlx = a_mlx @ b_mlx
186
+
187
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
188
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
189
+
190
+ # Batched and transposed matmul
191
+ b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
192
+ c_npy = a_npy @ np.transpose(b_npy, (0, 2, 1))
193
+
194
+ b_mlx = mx.array(b_npy)
195
+ c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 2, 1))
196
+
197
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
198
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
199
+
200
+ # Batched matmul with simple broadcast
201
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
202
+ b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
203
+ c_npy = a_npy @ b_npy
204
+
205
+ a_mlx = mx.array(a_npy)
206
+ b_mlx = mx.array(b_npy)
207
+ c_mlx = a_mlx @ b_mlx
208
+
209
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
210
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
211
+
212
+ # Both operands broadcasted
213
+ d_npy = np.broadcast_to(b_npy, (5, 16, 16))
214
+ d_mlx = mx.broadcast_to(b_mlx, (5, 16, 16))
215
+
216
+ e_npy = d_npy @ d_npy
217
+ e_mlx = d_mlx @ d_mlx
218
+
219
+ self.assertListEqual(list(e_npy.shape), list(e_mlx.shape))
220
+ self.assertTrue(np.allclose(e_mlx, e_npy, atol=1e-6))
221
+
222
+ # Batched and transposed matmul with simple broadcast
223
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
224
+ b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
225
+ a_mlx = mx.array(a_npy)
226
+ b_mlx = mx.array(b_npy)
227
+
228
+ c_npy = a_npy @ np.transpose(b_npy, (1, 0))
229
+ c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
230
+
231
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
232
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
233
+
234
+ # Matmul with vector
235
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
236
+ b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
237
+ a_mlx = mx.array(a_npy)
238
+ b_mlx = mx.array(b_npy)
239
+
240
+ c_npy = a_npy @ b_npy
241
+ c_mlx = a_mlx @ b_mlx
242
+
243
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
244
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
245
+
246
+ # Test Multiheaded attention style matmul
247
+ a_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
248
+ b_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
249
+ a_mlx = mx.array(a_npy)
250
+ b_mlx = mx.array(b_npy)
251
+
252
+ a_npy = np.transpose(a_npy, (0, 2, 1, 3))
253
+ b_npy = np.transpose(b_npy, (0, 2, 1, 3))
254
+ a_mlx = mx.transpose(a_mlx, (0, 2, 1, 3))
255
+ b_mlx = mx.transpose(b_mlx, (0, 2, 1, 3))
256
+
257
+ c_npy = a_npy @ np.transpose(b_npy, (0, 1, 3, 2))
258
+ c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 1, 3, 2))
259
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
260
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
261
+
262
+ def __gemv_test(
263
+ self,
264
+ shape_mat,
265
+ shape_vec,
266
+ np_dtype=np.float32,
267
+ mat_first=True,
268
+ np_mat_f=lambda x: x,
269
+ np_vec_f=lambda x: x,
270
+ mlx_mat_f=lambda x: x,
271
+ mlx_vec_f=lambda x: x,
272
+ ):
273
+ with self.subTest(
274
+ shape_mat=shape_mat, shape_vec=shape_vec, mat_first=mat_first
275
+ ):
276
+ np.random.seed(42)
277
+ scale = max(np.sum(shape_mat), 32)
278
+ mat_npy = np.random.normal(0.0, 1.0 / scale, shape_mat).astype(np_dtype)
279
+ vec_npy = np.random.normal(0.0, 1.0 / scale, shape_vec).astype(np_dtype)
280
+
281
+ mat_mlx = mx.array(mat_npy)
282
+ vec_mlx = mx.array(vec_npy)
283
+
284
+ mat_npy = np_mat_f(mat_npy)
285
+ vec_npy = np_vec_f(vec_npy)
286
+ mat_mlx = mlx_mat_f(mat_mlx)
287
+ vec_mlx = mlx_vec_f(vec_mlx)
288
+
289
+ if mat_first:
290
+ out_npy = mat_npy @ vec_npy
291
+ out_mlx = mat_mlx @ vec_mlx
292
+ else:
293
+ out_npy = vec_npy @ mat_npy
294
+ out_mlx = vec_mlx @ mat_mlx
295
+
296
+ # Due to some bug, numpy sometimes has NaNs on macOS
297
+ # See https://github.com/ml-explore/mlx/pull/3063
298
+ nans = np.isnan(out_npy)
299
+ if np.any(nans):
300
+ nan_ids = np.where(nans)
301
+ mlx_nan_ids = tuple(mx.array(n) for n in nan_ids)
302
+ out_npy[nan_ids] = 0.0
303
+ out_mlx[mlx_nan_ids] = 0.0
304
+
305
+ self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
306
+ self.assertTrue(np.allclose(out_mlx, out_npy, atol=1e-5))
307
+
308
+ def test_matrix_vector(self):
309
+ for dtype in self.dtypes:
310
+ with self.subTest(dtype=dtype):
311
+ np_dtype = getattr(np, dtype)
312
+
313
+ # Basic square matrix test
314
+ self.__gemv_test(
315
+ shape_mat=(64, 64), shape_vec=(64, 1), np_dtype=np_dtype
316
+ )
317
+ self.__gemv_test(
318
+ shape_mat=(64, 64),
319
+ shape_vec=(64, 1),
320
+ np_dtype=np_dtype,
321
+ mat_first=False,
322
+ np_vec_f=lambda x: np.transpose(x, (1, 0)),
323
+ mlx_vec_f=lambda x: mx.transpose(x, (1, 0)),
324
+ )
325
+
326
+ # Vector matrix product with aligned and unaligned shapes
327
+ for in_len_base, out_len_base in (
328
+ (2, 2),
329
+ (32, 32),
330
+ (64, 64),
331
+ (2048, 2048),
332
+ ):
333
+ for mi in (-1, 0, 1):
334
+ for mj in (-1, 0, 1):
335
+ # Vec mat
336
+ shape_mat = (in_len_base + mi, out_len_base + mj)
337
+ shape_vec = (1, in_len_base + mi)
338
+ self.__gemv_test(
339
+ shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
340
+ )
341
+
342
+ # Mat vec
343
+ shape_mat = (out_len_base + mj, in_len_base + mi)
344
+ shape_vec = (in_len_base + mi, 1)
345
+ self.__gemv_test(
346
+ shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
347
+ )
348
+
349
+ def test_matrix_vector_batched(self):
350
+ for dtype in self.dtypes:
351
+ with self.subTest(dtype=dtype):
352
+ np_dtype = getattr(np, dtype)
353
+
354
+ # Batched mat vec
355
+ for shape_mat, shape_vec in (
356
+ ((32, 128, 64), (32, 64, 1)),
357
+ ((128, 64), (32, 64, 1)),
358
+ ((32, 128, 64), (64, 1)),
359
+ ((2, 1, 8, 1, 6, 128), (2, 1, 8, 4, 128, 1)),
360
+ ):
361
+ self.__gemv_test(
362
+ shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
363
+ )
364
+
365
+ # Batched vec mat
366
+ for shape_vec, shape_mat in (
367
+ ((32, 1, 128), (32, 128, 64)),
368
+ ((32, 1, 128), (128, 64)),
369
+ ((1, 128), (32, 128, 64)),
370
+ ((1, 8, 4, 1, 128), (1, 8, 1, 128, 6)),
371
+ ):
372
+ self.__gemv_test(
373
+ shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
374
+ )
375
+
376
+ def test_matrix_vector_broadcast(self):
377
+ for dtype in self.dtypes:
378
+ with self.subTest(dtype=dtype):
379
+ np_dtype = getattr(np, dtype)
380
+
381
+ # Different broadcasts mat vec
382
+ for shape_mat, shape_vec in (
383
+ ((32, 64, 64), (32, 64, 1)),
384
+ ((64, 64), (32, 64, 1)),
385
+ ((32, 64, 64), (64, 1)),
386
+ ):
387
+ self.__gemv_test(
388
+ shape_mat=(64, 64),
389
+ shape_vec=(64, 1),
390
+ np_dtype=np_dtype,
391
+ np_mat_f=(lambda mat_npy: np.broadcast_to(mat_npy, shape_mat)),
392
+ np_vec_f=(lambda vec_npy: np.broadcast_to(vec_npy, shape_vec)),
393
+ mlx_mat_f=(lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat)),
394
+ mlx_vec_f=(lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec)),
395
+ )
396
+
397
+ # Different broadcasts vec mat
398
+ for shape_vec, shape_mat in (
399
+ ((32, 1, 64), (32, 64, 64)),
400
+ ((32, 1, 64), (64, 64)),
401
+ ((1, 64), (32, 64, 64)),
402
+ ):
403
+ self.__gemv_test(
404
+ shape_mat=(64, 64),
405
+ shape_vec=(1, 64),
406
+ np_dtype=np_dtype,
407
+ mat_first=False,
408
+ np_mat_f=lambda mat_npy: np.broadcast_to(mat_npy, shape_mat),
409
+ np_vec_f=lambda vec_npy: np.broadcast_to(vec_npy, shape_vec),
410
+ mlx_mat_f=lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat),
411
+ mlx_vec_f=lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec),
412
+ )
413
+
414
+ def test_matrix_vector_attn(self):
415
+ # Multi-query style attention check
416
+ for dtype in self.dtypes:
417
+ # fmt: off
418
+ for (B, D, n_kv_heads, factor, qsl, ksl) in (
419
+ (1, 16, 8, 4, 1, 256),
420
+ (1, 16, 8, 4, 32, 256),
421
+ (1, 16, 8, 4, 256, 1),
422
+ (4, 16, 8, 4, 1, 256),
423
+ (4, 16, 8, 4, 256, 1),
424
+ ):
425
+ # fmt: on
426
+ with self.subTest(
427
+ B=B, # Batch size
428
+ D=D, # Dimension of mm
429
+ n_kv_heads=n_kv_heads, # key-value heads
430
+ factor=factor, # factor to get query heads
431
+ qsl=qsl, # Query sequence length
432
+ ksl=ksl, # Key sequence length
433
+ dtype=dtype # Data type
434
+ ):
435
+
436
+ np_dtype = getattr(np, dtype)
437
+
438
+ # Fix shapes for kqv
439
+ n_q_heads = n_kv_heads * factor
440
+ Dk = D * n_kv_heads
441
+ Dq = D * n_q_heads
442
+ scale = 1. / math.sqrt(Dk)
443
+
444
+ shape_queries = (B, qsl, Dq)
445
+ shape_keys = (B, ksl, Dk)
446
+ shape_values = (B, ksl, Dk)
447
+
448
+ # Prepare numpy arrays
449
+ q_np = np.random.uniform(-scale, scale, size=shape_queries).astype(np_dtype)
450
+ k_np = np.random.uniform(-scale, scale, size=shape_keys).astype(np_dtype)
451
+ v_np = np.random.uniform(-scale, scale, size=shape_values).astype(np_dtype)
452
+
453
+ # Rearrange to move heads up
454
+ q_np_reshape = q_np.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
455
+ k_np_reshape = k_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
456
+ v_np_reshape = v_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
457
+
458
+ # Do attn style matmul
459
+ s_np = q_np_reshape @ k_np_reshape
460
+ o_np = s_np @ v_np_reshape
461
+ o_np = o_np.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
462
+
463
+ # Test mlx
464
+ q_mx = mx.array(q_np)
465
+ k_mx = mx.array(k_np)
466
+ v_mx = mx.array(v_np)
467
+
468
+ # Rearrange to move heads up
469
+ q_mx_reshape = q_mx.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
470
+ k_mx_reshape = k_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
471
+ v_mx_reshape = v_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
472
+
473
+ # Do attn style matmul
474
+ s_mx = q_mx_reshape @ k_mx_reshape
475
+ o_mx = (s_mx @ v_mx_reshape)
476
+ o_mx = o_mx.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
477
+
478
+ # Check against np
479
+ self.assertListEqual(list(s_np.shape), list(s_mx.shape))
480
+ self.assertTrue(np.allclose(s_np, s_mx, atol=1e-4))
481
+
482
+ self.assertListEqual(list(o_np.shape), list(o_mx.shape))
483
+ self.assertTrue(np.allclose(o_np, o_mx, atol=1e-4))
484
+
485
+ def test_matrix_vector_edgecases(self):
486
+ for dtype in self.dtypes:
487
+ with self.subTest(dtype=dtype):
488
+ np_dtype = getattr(np, dtype)
489
+
490
+ for in_vec_len in np.arange(1, 5):
491
+ for out_vec_len in np.arange(1, 5):
492
+ for batch_size in np.arange(1, 5):
493
+ with self.subTest(
494
+ problem_shape=(batch_size, in_vec_len, out_vec_len)
495
+ ):
496
+ # Matrix vector
497
+ with self.subTest(transpose=False):
498
+ a_npy = np.ones(
499
+ (batch_size, out_vec_len, in_vec_len),
500
+ dtype=np_dtype,
501
+ )
502
+ b_npy = np.ones(
503
+ (batch_size, in_vec_len, 1), dtype=np_dtype
504
+ )
505
+ for i in range(batch_size):
506
+ b_npy[i] *= i + 1.0
507
+
508
+ a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
509
+ c_npy = a_npy @ b_npy
510
+ c_mlx = a_mlx @ b_mlx
511
+
512
+ self.assertListEqual(
513
+ list(c_npy.shape), list(c_mlx.shape)
514
+ )
515
+ self.assertTrue(np.array_equal(c_mlx, c_npy))
516
+
517
+ # Vector matrix
518
+ with self.subTest(transpose=True):
519
+ a_npy = np.ones(
520
+ (batch_size, out_vec_len, in_vec_len),
521
+ dtype=np_dtype,
522
+ )
523
+ b_npy = np.ones(
524
+ (batch_size, 1, out_vec_len), dtype=np_dtype
525
+ )
526
+ for i in range(batch_size):
527
+ b_npy[i] *= i + 1.0
528
+
529
+ a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
530
+ c_npy = b_npy @ a_npy
531
+ c_mlx = b_mlx @ a_mlx
532
+
533
+ self.assertListEqual(
534
+ list(c_npy.shape), list(c_mlx.shape)
535
+ )
536
+ self.assertTrue(np.array_equal(c_mlx, c_npy))
537
+
538
+ def test_mismatch_stride_mm(self):
539
+ np.random.seed(0)
540
+ a_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
541
+ b_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
542
+
543
+ a_mlx = mx.array(a_npy)
544
+ b_mlx = mx.array(b_npy)
545
+
546
+ # Matmul with batches
547
+ c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, :]
548
+ c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, :]
549
+
550
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
551
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
552
+
553
+ # Matvec with batches
554
+ c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, 2:3]
555
+ c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, 2:3]
556
+
557
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
558
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
559
+
560
+ # Matmul with slice
561
+ c_npy = a_npy[:, :8, :] @ b_npy[:, :, :8]
562
+ c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, :8]
563
+
564
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
565
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
566
+
567
+ # Matmul with slice
568
+ c_npy = a_npy[:, :, :8] @ b_npy[:, :8, :]
569
+ c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :8, :]
570
+
571
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
572
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
573
+
574
+ # Matmul transpose with slice
575
+ c_npy = a_npy[:, :8, :] @ b_npy[:, :8, :].swapaxes(-1, -2)
576
+ c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :8, :].swapaxes(-1, -2)
577
+
578
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
579
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
580
+
581
+ # Matmul transpose with slice
582
+ c_npy = a_npy[:, :, :8] @ b_npy[:, :, :8].swapaxes(-1, -2)
583
+ c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :, :8].swapaxes(-1, -2)
584
+
585
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
586
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
587
+
588
+ # Matvec with slice
589
+ c_npy = a_npy[:, :8, :] @ b_npy[:, :, 6:7]
590
+ c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, 6:7]
591
+
592
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
593
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
594
+
595
+ # Matvec with slice
596
+ c_npy = a_npy[:, :, :8] @ b_npy[:, 3:11, 2:3]
597
+ c_mlx = a_mlx[:, :, :8] @ b_mlx[:, 3:11, 2:3]
598
+
599
+ self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
600
+ self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
601
+
602
+ def test_addmm(self):
603
+ np.random.seed(0)
604
+ # Batched matmul
605
+ alpha = 0.5
606
+ for beta in (1.0, 2.0):
607
+ # c must broadcast to the output shape
608
+ with self.assertRaises(ValueError):
609
+ mx.addmm(mx.zeros((2, 2, 2)), mx.zeros((2, 2)), mx.zeros((2, 2)))
610
+
611
+ # Regular batched case
612
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
613
+ b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
614
+
615
+ a_mlx = mx.array(a_npy)
616
+ b_mlx = mx.array(b_npy)
617
+
618
+ for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
619
+ c_npy = np.ones(c_shape).astype(np.float32)
620
+ c_mlx = mx.array(c_npy)
621
+
622
+ d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
623
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
624
+
625
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
626
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
627
+
628
+ # Batched and transposed matmul
629
+ b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
630
+ b_mlx = mx.array(b_npy)
631
+
632
+ for c_shape in ((1,), (32, 1, 128), (1, 128)):
633
+ c_npy = np.ones(c_shape).astype(np.float32)
634
+ c_mlx = mx.array(c_npy)
635
+
636
+ b_np_t = np.transpose(b_npy, (0, 2, 1))
637
+ b_mx_t = mx.transpose(b_mlx, (0, 2, 1))
638
+
639
+ d_npy = alpha * (a_npy @ b_np_t) + beta * c_npy
640
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mx_t, alpha, beta)
641
+
642
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
643
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
644
+ # Batched matmul with simple broadcast
645
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
646
+ b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
647
+
648
+ a_mlx = mx.array(a_npy)
649
+ b_mlx = mx.array(b_npy)
650
+
651
+ for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
652
+ c_npy = np.ones(c_shape).astype(np.float32)
653
+ c_mlx = mx.array(c_npy)
654
+
655
+ d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
656
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
657
+
658
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
659
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
660
+ # Matmul with vector
661
+ a_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
662
+ b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 128)).astype(np.float32)
663
+ a_mlx = mx.array(a_npy)
664
+ b_mlx = mx.array(b_npy)
665
+
666
+ for c_shape in ((1,), (128,), (32, 128)):
667
+ c_npy = np.ones(c_shape).astype(np.float32)
668
+ c_mlx = mx.array(c_npy)
669
+
670
+ d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
671
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
672
+
673
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
674
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
675
+
676
+ # Matmul with vector
677
+ a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
678
+ b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
679
+ a_mlx = mx.array(a_npy)
680
+ b_mlx = mx.array(b_npy)
681
+
682
+ for c_shape in ((1,), (32, 128)):
683
+ c_npy = np.ones(c_shape).astype(np.float32)
684
+ c_mlx = mx.array(c_npy)
685
+
686
+ d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
687
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
688
+
689
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
690
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
691
+
692
+ # Split K specializtion
693
+ a_npy = np.random.normal(0.0, 1.0 / 128, (64, 4096)).astype(np.float32)
694
+ b_npy = np.random.normal(0.0, 1.0 / 128, (4096, 32)).astype(np.float32)
695
+
696
+ a_mlx = mx.array(a_npy)
697
+ b_mlx = mx.array(b_npy)
698
+
699
+ for c_shape in ((1,), (1, 32), (64, 1), (64, 32)):
700
+ c_npy = np.ones(c_shape).astype(np.float32)
701
+ c_mlx = mx.array(c_npy)
702
+
703
+ d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
704
+ d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
705
+
706
+ self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
707
+ self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
708
+
709
+ # Transposed c
710
+ a = mx.ones((10, 5)).T
711
+ b = mx.ones((5, 5))
712
+ out = mx.addmm(a, b, a, beta=beta, alpha=alpha)
713
+ expected = beta * a + alpha * (b @ a)
714
+ self.assertTrue(mx.allclose(expected, out))
715
+
716
+ # Broadcast c
717
+ a = mx.ones((5, 5))
718
+ b = mx.ones((5, 5))
719
+ c = mx.ones((1, 5))
720
+ out = mx.addmm(c, a, b, beta=beta, alpha=alpha)
721
+ expected = beta * c + alpha * (a @ b)
722
+ self.assertTrue(mx.allclose(expected, out))
723
+
724
+ # Test half precision
725
+ for t, tol in [(mx.float16, 1e-3), (mx.bfloat16, 1e-2)]:
726
+ c = mx.ones((32, 32)).astype(t)
727
+ a = mx.random.uniform(shape=(32, 32)).astype(t)
728
+ b = mx.random.uniform(shape=(32, 32)).astype(t)
729
+ out = mx.addmm(c, a, b, alpha=0.5, beta=2.0)
730
+ expected = 0.5 * (a @ b) + 2.0 * c
731
+ self.assertTrue(mx.allclose(out, expected, rtol=tol, atol=tol))
732
+
733
+ def test_addmm_grad(self):
734
+ def make_ref_addmm(alpha, beta):
735
+ return lambda c, a, b: alpha * (a @ b) + beta * c
736
+
737
+ def make_addmm(alpha, beta):
738
+ return lambda c, a, b: mx.addmm(c, a, b, alpha, beta)
739
+
740
+ # B, M, N, K
741
+ shapes = ((1, 64, 32, 128), (4, 28, 24, 47), (1, 1, 24, 47))
742
+
743
+ alpha = 2.0
744
+ for beta in (1.0, 0.5):
745
+ f_test = make_addmm(alpha, beta)
746
+ f_ref = make_ref_addmm(alpha, beta)
747
+
748
+ for B, M, N, K in shapes:
749
+ cotan = mx.ones((B, M, N))
750
+ c = mx.random.normal((B, M, N))
751
+ a = mx.random.normal((B, M, K))
752
+ b = mx.random.normal((B, K, N))
753
+
754
+ out_ref, dout_ref = mx.vjp(
755
+ f_ref,
756
+ [c, a, b],
757
+ [cotan],
758
+ )
759
+ out_test, dout_test = mx.vjp(
760
+ f_test,
761
+ [c, a, b],
762
+ [cotan],
763
+ )
764
+
765
+ self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-4).item())
766
+
767
+ for r, t in zip(dout_ref, dout_test):
768
+ self.assertEqual(r.shape, t.shape)
769
+ self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
770
+
771
+ def test_empty_matmul(self):
772
+ a = mx.array([[], []]).T
773
+ b = mx.array([[1.0, 2.0], [2.0, 3.0]])
774
+ c = a @ b
775
+ mx.eval(c)
776
+ self.assertEqual(c.shape, (0, 2))
777
+
778
+ a = mx.array([[1.0, 2.0], [2.0, 3.0]])
779
+ b = mx.array([[], []])
780
+ c = a @ b
781
+ mx.eval(c)
782
+ self.assertEqual(c.shape, (2, 0))
783
+
784
+ a = mx.array([[], []]).T
785
+ b = mx.array([[], []])
786
+ c = a @ b
787
+ mx.eval(c)
788
+ self.assertEqual(c.shape, (0, 0))
789
+
790
+ c = mx.array(1.0, dtype=mx.float32)
791
+ a = mx.array([], dtype=mx.float32)
792
+ b = mx.array([], dtype=mx.float32)
793
+ out = mx.addmm(c, a, b)
794
+ self.assertEqual(out.item(), 1.0)
795
+ self.assertEqual(out.shape, ())
796
+
797
+ a = mx.ones((2, 0))
798
+ b = mx.ones((0, 2))
799
+ c = mx.ones((2, 2))
800
+
801
+ test_cases = [
802
+ (0.0, 1.0),
803
+ (0.0, 2.0),
804
+ (0.0, 0.5),
805
+ (0.0, 0.0),
806
+ (1.0, 2.0),
807
+ ]
808
+
809
+ for alpha, beta in test_cases:
810
+ with self.subTest(alpha=alpha, beta=beta):
811
+ result = mx.addmm(c, a, b, alpha=alpha, beta=beta)
812
+ expected = c * beta # a @ b = 0 for empty matrices
813
+ self.assertTrue(mx.allclose(result, expected))
814
+
815
+ shapes_tests = [
816
+ ((3, 0), (0, 3), (3, 3)),
817
+ ((5, 0), (0, 5), (5, 5)),
818
+ ((1, 0), (0, 10), (1, 10)),
819
+ ((10, 0), (0, 1), (10, 1)),
820
+ ]
821
+
822
+ for shape_a, shape_b, shape_c in shapes_tests:
823
+ with self.subTest(shape_a=shape_a, shape_b=shape_b, shape_c=shape_c):
824
+ a = mx.ones(shape_a)
825
+ b = mx.ones(shape_b)
826
+ c = mx.ones(shape_c)
827
+ result = mx.addmm(c, a, b, alpha=0.5, beta=2.0)
828
+ expected = c * 2.0
829
+ self.assertTrue(mx.allclose(result, expected))
830
+
831
+ a = mx.ones((2, 5, 0))
832
+ b = mx.ones((2, 0, 5))
833
+ c = mx.ones((2, 5, 5))
834
+ result = mx.addmm(c, a, b, alpha=0.0, beta=3.0)
835
+ expected = c * 3.0
836
+ self.assertTrue(mx.allclose(result, expected))
837
+
838
+ def test_block_masked_matmul(self):
839
+ def ref_block_masked_mm(
840
+ a, b, block_size, out_mask=None, lhs_mask=None, rhs_mask=None
841
+ ):
842
+ # Get mask adjusted shapes
843
+ M = a.shape[-2]
844
+ N = b.shape[-1]
845
+ K = a.shape[-1]
846
+
847
+ bsx_shape = np.broadcast_shapes(a.shape[:-2], b.shape[:-2])
848
+
849
+ # Expand mask dims
850
+ def expand_mask(mask, block_size, Y, X):
851
+ mask = mx.expand_dims(mask, (-3, -1))
852
+ mask_shape = list(bsx_shape) + list(mask.shape[-4:])
853
+ mask_shape[-1] = block_size
854
+ x = mask_shape[-2] * block_size
855
+ mask_shape[-3] = block_size
856
+ y = mask_shape[-4] * block_size
857
+ mask = mx.broadcast_to(mask, mask_shape)
858
+ mask_shape = mask_shape[:-4] + [y, x]
859
+ return mask.reshape(mask_shape)[..., :Y, :X]
860
+
861
+ a_masked = a
862
+ b_masked = b
863
+
864
+ if lhs_mask is not None:
865
+ lhs_mask = expand_mask(lhs_mask, block_size, M, K).astype(mx.float32)
866
+ a_masked = lhs_mask * a_masked
867
+
868
+ if rhs_mask is not None:
869
+ rhs_mask = expand_mask(rhs_mask, block_size, K, N).astype(mx.float32)
870
+ b_masked = rhs_mask * b_masked
871
+
872
+ out = a_masked @ b_masked
873
+
874
+ if out_mask is not None:
875
+ out_mask = expand_mask(out_mask, block_size, M, N).astype(mx.float32)
876
+ out = out * out_mask
877
+ return out
878
+
879
+ def run_test(a, b, block_size, out_mask, a_mask, b_mask, cotan):
880
+ def f_ref(a_, b_):
881
+ return ref_block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
882
+
883
+ def f_test(a_, b_):
884
+ return mx.block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
885
+
886
+ out_ref, dout_ref = mx.vjp(f_ref, [a, b], [cotan])
887
+ out_test, dout_test = mx.vjp(f_test, [a, b], [cotan])
888
+
889
+ self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
890
+
891
+ for r, t in zip(dout_ref, dout_test):
892
+ self.assertEqual(r.shape, t.shape)
893
+ self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
894
+
895
+ def run_test_mask_vjp(a, b, block_size, out_mask, a_mask, b_mask, cotan):
896
+ def f_ref(a_, b_, a_mask_, b_mask_):
897
+ return ref_block_masked_mm(
898
+ a_, b_, block_size, out_mask, a_mask_, b_mask_
899
+ )
900
+
901
+ def f_test(a_, b_, a_mask_, b_mask_):
902
+ return mx.block_masked_mm(
903
+ a_, b_, block_size, out_mask, a_mask_, b_mask_
904
+ )
905
+
906
+ out_ref, dout_ref = mx.vjp(f_ref, [a, b, a_mask, b_mask], [cotan])
907
+ out_test, dout_test = mx.vjp(f_test, [a, b, a_mask, b_mask], [cotan])
908
+
909
+ mx.eval((out_ref, dout_ref, out_test, dout_test))
910
+
911
+ self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
912
+
913
+ for r, t in zip(dout_ref, dout_test):
914
+ self.assertEqual(r.shape, t.shape)
915
+ self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
916
+
917
+ def make_mask(tm_, tn_, batch, np_dtype):
918
+ arr_np_mask = np.random.normal(size=batch + (tm_, tn_)).astype(np_dtype)
919
+ arr_np_bool_mask = arr_np_mask < 0.0
920
+ arr_np_mask[arr_np_bool_mask] = 0.0
921
+
922
+ return mx.array(arr_np_bool_mask), mx.array(arr_np_mask)
923
+
924
+ def test_shape(
925
+ M,
926
+ N,
927
+ K,
928
+ block_size,
929
+ transpose=False,
930
+ np_dtype=np.float32,
931
+ batch_A=(),
932
+ batch_B=(),
933
+ ):
934
+ with self.subTest(
935
+ M=M,
936
+ N=N,
937
+ K=K,
938
+ block_size=block_size,
939
+ np_dtype=np_dtype,
940
+ transpose=transpose,
941
+ batch_A=batch_A,
942
+ batch_B=batch_B,
943
+ ):
944
+ batch_out = np.broadcast_shapes(batch_A, batch_B)
945
+ cotan = mx.ones(batch_out + (M, N))
946
+
947
+ a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
948
+ b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
949
+
950
+ a_mx = mx.array(a_np)
951
+ b_mx = mx.array(b_np)
952
+
953
+ tm = (M + block_size - 1) // block_size
954
+ tn = (N + block_size - 1) // block_size
955
+ tk = (K + block_size - 1) // block_size
956
+
957
+ a_mx_bool_mask, a_mx_mask = make_mask(tm, tk, batch_A, np_dtype)
958
+ b_mx_bool_mask, b_mx_mask = make_mask(tk, tn, batch_B, np_dtype)
959
+ out_mx_bool_mask, out_mx_mask = make_mask(tm, tn, batch_out, np_dtype)
960
+
961
+ # Boolean block masks
962
+ run_test(
963
+ a_mx,
964
+ b_mx,
965
+ block_size,
966
+ out_mx_bool_mask,
967
+ a_mx_bool_mask,
968
+ b_mx_bool_mask,
969
+ cotan,
970
+ )
971
+ run_test(a_mx, b_mx, block_size, out_mx_bool_mask, None, None, cotan)
972
+ run_test(
973
+ a_mx, b_mx, block_size, None, a_mx_bool_mask, b_mx_bool_mask, cotan
974
+ )
975
+
976
+ # Float block masks
977
+ run_test(
978
+ a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
979
+ )
980
+ run_test(a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan)
981
+ run_test_mask_vjp(
982
+ a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
983
+ )
984
+ run_test_mask_vjp(
985
+ a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan
986
+ )
987
+
988
+ shapes = (
989
+ (16, 16, 16, 32),
990
+ (64, 64, 16, 32),
991
+ (128, 128, 128, 32),
992
+ (256, 256, 128, 64),
993
+ (1, 128, 128, 32),
994
+ (256, 1, 128, 64),
995
+ )
996
+
997
+ for M, N, K, block_size in shapes:
998
+ test_shape(M, N, K, block_size)
999
+
1000
+ # Test broadcasting
1001
+ test_shape(64, 64, 64, 32, batch_A=(1, 2), batch_B=(2, 2))
1002
+ test_shape(1, 128, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
1003
+ test_shape(128, 1, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
1004
+
1005
+ a_np = np.ones((128, 256)).astype(np.float32)
1006
+ b_np = np.ones((128, 1)).astype(np.float32)
1007
+ d_np = np.ones((1, 256)).astype(np.float32)
1008
+ a_mask_np = np.random.normal(size=(4, 8)).astype(np.float32)
1009
+ b_mask_np = np.ones((4, 1)).astype(np.bool_)
1010
+ d_mask_np = np.ones((1, 8)).astype(np.bool_)
1011
+ c_mask_np = np.random.normal(size=(8, 1)).astype(np.float32)
1012
+ e_mask_np = np.random.normal(size=(1, 4)).astype(np.float32)
1013
+
1014
+ a_mask_np[a_mask_np < 0.0] = 0.0
1015
+ e_mask_np[e_mask_np < 0.0] = 0.0
1016
+ c_mask_np[c_mask_np < 0.0] = 0.0
1017
+
1018
+ a_mx = mx.array(a_np)
1019
+ b_mx = mx.array(b_np)
1020
+ d_mx = mx.array(d_np)
1021
+ a_mask_mx = mx.array(a_mask_np)
1022
+ b_mask_mx = mx.array(b_mask_np)
1023
+ d_mask_mx = mx.array(d_mask_np)
1024
+ e_mask_mx = mx.array(e_mask_np)
1025
+ c_mask_mx = mx.array(c_mask_np)
1026
+
1027
+ c_mx = mx.block_masked_mm(a_mx.T, b_mx, 32, c_mask_mx, a_mask_mx.T, b_mask_mx)
1028
+ e_mx = mx.block_masked_mm(d_mx, a_mx.T, 32, e_mask_mx, d_mask_mx, a_mask_mx.T)
1029
+
1030
+ a_mask_np = np.broadcast_to(np.expand_dims(a_mask_np, (-3, -1)), (4, 32, 8, 32))
1031
+ a_mask_np = a_mask_np.reshape((128, 256))
1032
+ a_np *= a_mask_np
1033
+
1034
+ c_np = a_np.T @ b_np
1035
+ e_np = d_np @ a_np.T
1036
+
1037
+ c_mask_np = np.broadcast_to(np.expand_dims(c_mask_np, (-2)), (8, 32, 1))
1038
+ c_mask_np = c_mask_np.reshape((256, 1))
1039
+ c_np *= c_mask_np
1040
+
1041
+ e_mask_np = np.broadcast_to(np.expand_dims(e_mask_np, (-1)), (1, 4, 32))
1042
+ e_mask_np = e_mask_np.reshape((1, 128))
1043
+ e_np *= e_mask_np
1044
+
1045
+ self.assertTrue(np.allclose(c_mx, c_np, atol=1e-5))
1046
+ self.assertTrue(np.allclose(e_mx, e_np, atol=1e-5))
1047
+
1048
+ def test_gather_matmul(self):
1049
+ def np_gather_mm(a, b, lhs_indices=None, rhs_indices=None):
1050
+ a = a.reshape((-1, a.shape[-2], a.shape[-1]))
1051
+ b = b.reshape((-1, b.shape[-2], b.shape[-1]))
1052
+ lhs_indices = lhs_indices or np.arange(a.shape[0])
1053
+ rhs_indices = rhs_indices or np.arange(b.shape[0])
1054
+ a = a[lhs_indices, :, :]
1055
+ b = b[rhs_indices, :, :]
1056
+ out = a @ b
1057
+ return out
1058
+
1059
+ def test_shape(
1060
+ M,
1061
+ N,
1062
+ K,
1063
+ np_dtype=np.float32,
1064
+ batch_A=(),
1065
+ batch_B=(),
1066
+ lhs_indices=None,
1067
+ rhs_indices=None,
1068
+ ):
1069
+ with self.subTest(
1070
+ M=M,
1071
+ N=N,
1072
+ K=K,
1073
+ np_dtype=np_dtype,
1074
+ batch_A=batch_A,
1075
+ batch_B=batch_B,
1076
+ lhs_indices=lhs_indices,
1077
+ rhs_indices=rhs_indices,
1078
+ ):
1079
+ a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
1080
+ b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
1081
+
1082
+ a_mx = mx.array(a_np)
1083
+ b_mx = mx.array(b_np)
1084
+
1085
+ out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
1086
+
1087
+ lhs_indices_mx = None if lhs_indices is None else mx.array(lhs_indices)
1088
+ rhs_indices_mx = None if rhs_indices is None else mx.array(rhs_indices)
1089
+
1090
+ out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
1091
+
1092
+ self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
1093
+
1094
+ inputs = (
1095
+ {
1096
+ "batch_A": (1,),
1097
+ "lhs_indices": (0,),
1098
+ "batch_B": (3,),
1099
+ "rhs_indices": (2, 1),
1100
+ },
1101
+ {
1102
+ "batch_A": (1,),
1103
+ "lhs_indices": None,
1104
+ "batch_B": (3,),
1105
+ "rhs_indices": (2, 1),
1106
+ },
1107
+ {
1108
+ "batch_A": (2,),
1109
+ "lhs_indices": None,
1110
+ "batch_B": (3,),
1111
+ "rhs_indices": (2, 1),
1112
+ },
1113
+ {
1114
+ "batch_A": (3,),
1115
+ "lhs_indices": (0, 2),
1116
+ "batch_B": (1,),
1117
+ "rhs_indices": (0,),
1118
+ },
1119
+ {
1120
+ "batch_A": (5,),
1121
+ "lhs_indices": (0, 2),
1122
+ "batch_B": (3,),
1123
+ "rhs_indices": (2, 1),
1124
+ },
1125
+ {
1126
+ "batch_A": (4, 2),
1127
+ "lhs_indices": (
1128
+ (7, 6),
1129
+ (5, 4),
1130
+ (1, 2),
1131
+ ),
1132
+ "batch_B": (4, 1),
1133
+ "rhs_indices": ((2,), (0,), (1,)),
1134
+ },
1135
+ )
1136
+
1137
+ for kwargs in inputs:
1138
+ test_shape(32, 32, 32, **kwargs)
1139
+ test_shape(16, 1, 16, **kwargs)
1140
+
1141
+ # Add tests for broadcasting
1142
+ a_np = np.random.normal(size=(5, 32, 32)).astype(np.float32)
1143
+ b_np = np.random.normal(size=(3, 32, 32)).astype(np.float32)
1144
+ a_mx = mx.array(a_np)
1145
+ b_mx = mx.array(b_np)
1146
+
1147
+ # Numpy
1148
+ a_np = a_np.reshape((5, 1, 32, 32))
1149
+ b_np = b_np.reshape((1, 3, 32, 32))
1150
+
1151
+ a_np = np.broadcast_to(a_np, (5, 4, 32, 32))
1152
+ b_np = np.broadcast_to(b_np, (2, 3, 32, 32)).swapaxes(1, 0)
1153
+
1154
+ lhs_indices = [0, 13, 12]
1155
+ rhs_indices = [0, 3, 5]
1156
+
1157
+ out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
1158
+
1159
+ # MLX
1160
+ a_mx = a_mx.reshape((5, 1, 32, 32))
1161
+ b_mx = b_mx.reshape((1, 3, 32, 32))
1162
+
1163
+ a_mx = mx.broadcast_to(a_mx, (5, 4, 32, 32))
1164
+ b_mx = mx.broadcast_to(b_mx, (2, 3, 32, 32)).swapaxes(1, 0)
1165
+
1166
+ lhs_indices_mx = mx.array(lhs_indices)
1167
+ rhs_indices_mx = mx.array(rhs_indices)
1168
+
1169
+ out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
1170
+
1171
+ self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
1172
+
1173
+ # Gemv test
1174
+ a_np = np.random.normal(size=(5, 1, 32)).astype(np.float32)
1175
+ b_np = np.random.normal(size=(3, 16, 32)).astype(np.float32)
1176
+ a_mx = mx.array(a_np)
1177
+ b_mx = mx.array(b_np)
1178
+
1179
+ lhs_indices = [3, 1]
1180
+ rhs_indices = [0, 2]
1181
+
1182
+ b_np_t = np.swapaxes(b_np, -1, -2)
1183
+ out_np = np_gather_mm(a_np, b_np_t, lhs_indices, rhs_indices)
1184
+
1185
+ lhs_indices_mx = mx.array(lhs_indices)
1186
+ rhs_indices_mx = mx.array(rhs_indices)
1187
+
1188
+ b_mx_t = mx.swapaxes(b_mx, -1, -2)
1189
+ out_mx = mx.gather_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
1190
+
1191
+ self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
1192
+
1193
+ def test_gather_matmul_grad(self):
1194
+ lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
1195
+ rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
1196
+
1197
+ def f_ref(a, b):
1198
+ lhs_indices_ = mx.broadcast_to(lhs_indices, (3, 2))
1199
+ rhs_indices_ = mx.broadcast_to(rhs_indices, (3, 2))
1200
+ M = a.shape[-2]
1201
+ N = b.shape[-1]
1202
+ K = a.shape[-1]
1203
+
1204
+ a = a.reshape((-1, M, K))
1205
+ b = b.reshape((-1, K, N))
1206
+
1207
+ a = mx.take(a, lhs_indices_, 0)
1208
+ b = mx.take(b, rhs_indices_, 0)
1209
+
1210
+ return a @ b
1211
+
1212
+ def f_test(a, b):
1213
+ return mx.gather_mm(a, b, lhs_indices, rhs_indices)
1214
+
1215
+ a_mx = mx.random.normal((4, 2, 32, 32))
1216
+ b_mx = mx.random.normal((4, 1, 32, 32))
1217
+
1218
+ out_test = f_test(a_mx, b_mx)
1219
+ out_ref = f_ref(a_mx, b_mx)
1220
+
1221
+ self.assertTrue(mx.allclose(out_test, out_ref, atol=1e-5))
1222
+
1223
+ cotan = mx.ones_like(out_test)
1224
+ out_ref, dout_ref = mx.vjp(
1225
+ f_ref,
1226
+ [a_mx, b_mx],
1227
+ [cotan],
1228
+ )
1229
+ out_test, dout_test = mx.vjp(
1230
+ f_test,
1231
+ [a_mx, b_mx],
1232
+ [cotan],
1233
+ )
1234
+
1235
+ for r, t in zip(dout_ref, dout_test):
1236
+ self.assertEqual(r.shape, t.shape)
1237
+ self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
1238
+
1239
+ def test_gather_mm_sorted(self):
1240
+ def gather_mm_ref(a, b, rhs):
1241
+ b = b[rhs]
1242
+ return a @ b
1243
+
1244
+ def gather_mm_test(a, b, rhs):
1245
+ return mx.gather_mm(a, b, rhs_indices=rhs, sorted_indices=True)
1246
+
1247
+ dtypes = [(mx.float32, 1e-4)]
1248
+ if mx.cuda.is_available():
1249
+ dtypes += [
1250
+ (mx.float16, 1e-3),
1251
+ (mx.bfloat16, 1e-2),
1252
+ ]
1253
+
1254
+ for b_transposed in (True, False):
1255
+ for dtype, tol in dtypes:
1256
+ with self.subTest(b_transposed=b_transposed, dtype=dtype):
1257
+ a = mx.random.normal((100, 1, 100), dtype=dtype)
1258
+ b = mx.random.normal((8, 100, 100), dtype=dtype)
1259
+ if b_transposed:
1260
+ b = b.swapaxes(-1, -2)
1261
+ rhs = mx.sort(mx.random.randint(0, 8, shape=(100,)))
1262
+
1263
+ c1 = gather_mm_ref(a, b, rhs)
1264
+ c2 = gather_mm_test(a, b, rhs)
1265
+ self.assertTrue(mx.allclose(c1, c2, rtol=tol, atol=tol))
1266
+
1267
+ def test_gather_mm_sorted_vjp(self):
1268
+ def gather_mm_ref(a, b, rhs):
1269
+ b = b[rhs]
1270
+ return a @ b
1271
+
1272
+ def gather_mm_test(a, b, rhs):
1273
+ return mx.gather_mm(a, b, rhs_indices=rhs, sorted_indices=True)
1274
+
1275
+ a = mx.random.normal((100, 1, 100))
1276
+ b = mx.random.normal((8, 100, 100))
1277
+ rhs = mx.sort(mx.random.randint(0, 8, shape=(100,)))
1278
+
1279
+ cotan = mx.random.normal((100, 1, 100))
1280
+ c1, dc1 = mx.vjp(
1281
+ lambda a, b: gather_mm_ref(a, b, rhs),
1282
+ [a, b],
1283
+ [cotan],
1284
+ )
1285
+ c2, dc2 = mx.vjp(
1286
+ lambda a, b: gather_mm_test(a, b, rhs),
1287
+ [a, b],
1288
+ [cotan],
1289
+ )
1290
+ self.assertTrue(mx.allclose(c1[0], c2[0], atol=1e-4))
1291
+ self.assertTrue(mx.allclose(dc1[0], dc2[0], atol=1e-4))
1292
+ self.assertTrue(mx.allclose(dc1[1], dc2[1], atol=1e-4))
1293
+
1294
+ def test_segmented_mm(self):
1295
+ def segmented_mm_ref(a, b, s):
1296
+ s = s.tolist()
1297
+ c = []
1298
+ for s1, s2 in s:
1299
+ c.append(a[:, s1:s2] @ b[s1:s2, :])
1300
+ return mx.stack(c, axis=0)
1301
+
1302
+ shapes = [
1303
+ (10, 10, 10),
1304
+ (10, 10, 1000),
1305
+ (1000, 1000, 1000),
1306
+ ]
1307
+ all_segments = [[0, 0, 1.0], [0, 0.5, 1.0], [r / 9 for r in range(10)]]
1308
+
1309
+ for M, N, K in shapes:
1310
+ for s in all_segments:
1311
+ segments = []
1312
+ for i in range(len(s) - 1):
1313
+ segments.append([s[i], s[i + 1]])
1314
+ segments = mx.array(segments)
1315
+ segments = mx.minimum(K - 1, (K * segments).astype(mx.uint32))
1316
+ a = mx.random.normal((M, K))
1317
+ b = mx.random.normal((K, N))
1318
+ c1 = segmented_mm_ref(a, b, segments)
1319
+ c2 = mx.segmented_mm(a, b, segments)
1320
+ self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
1321
+
1322
+ a = mx.random.normal((K, M))
1323
+ b = mx.random.normal((K, N))
1324
+ c1 = segmented_mm_ref(a.T, b, segments)
1325
+ c2 = mx.segmented_mm(a.T, b, segments)
1326
+ self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
1327
+
1328
+ a = mx.random.normal((M, K))
1329
+ b = mx.random.normal((N, K))
1330
+ c1 = segmented_mm_ref(a, b.T, segments)
1331
+ c2 = mx.segmented_mm(a, b.T, segments)
1332
+ self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
1333
+
1334
+ a = mx.random.normal((K, M))
1335
+ b = mx.random.normal((N, K))
1336
+ c1 = segmented_mm_ref(a.T, b.T, segments)
1337
+ c2 = mx.segmented_mm(a.T, b.T, segments)
1338
+ self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
1339
+
1340
+ with self.assertRaises(ValueError):
1341
+ a = mx.ones((2, 10, 10))
1342
+ s = mx.array([[0, 5], [5, 10]]).astype(mx.uint32)
1343
+ mx.segmented_mm(a, a, s)
1344
+
1345
+ a = mx.ones((10, 1000))
1346
+ s = mx.random.randint(0, 16, shape=(1000,))
1347
+ s = mx.zeros(16, dtype=s.dtype).at[s].add(1)
1348
+ s = mx.sort(s)
1349
+ s = mx.cumsum(s)
1350
+ s = mx.concatenate([mx.array([0]), s])
1351
+ s = mx.as_strided(s, (16, 2), (1, 1))
1352
+ s = mx.reshape(s, (2, 2, 4, 2))
1353
+ c = mx.segmented_mm(a, a.T, s)
1354
+ self.assertEqual(c.shape, (2, 2, 4, 10, 10))
1355
+
1356
+ def test_gemv_gemm_same_precision(self):
1357
+ mx.random.seed(0)
1358
+ N = 256
1359
+ if mx.is_available(mx.gpu):
1360
+ t = mx.bfloat16
1361
+ a = mx.random.normal([1, N]).astype(t)
1362
+ b = mx.concatenate([a, a], axis=0).astype(t)
1363
+ c = mx.random.normal([N, 64]).astype(t)
1364
+ out_gemv = a @ c
1365
+ out_gemm = (b @ c)[0]
1366
+ self.assertTrue(mx.allclose(out_gemv, out_gemm))
1367
+
1368
+ def test_complex_gemv(self):
1369
+ M = 16
1370
+ N = 50
1371
+
1372
+ def rand(shape):
1373
+ return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
1374
+
1375
+ a = rand((M, N))
1376
+ b = rand((N, 1))
1377
+ c = mx.matmul(a, b)
1378
+ c_np = np.matmul(a, b)
1379
+ self.assertTrue(np.allclose(c, c_np))
1380
+
1381
+ # Transposed
1382
+ a = rand((N, M))
1383
+ b = rand((N, 1))
1384
+ c = mx.matmul(a.T, b)
1385
+ c_np = np.matmul(np.array(a).T, b)
1386
+ self.assertTrue(np.allclose(c, c_np))
1387
+
1388
+ # Check shapes
1389
+ a = mx.random.normal((2, 3)).astype(mx.complex64)
1390
+ b = mx.random.normal((3,))
1391
+ self.assertEqual((a @ b).shape, (2,))
1392
+
1393
+ a = mx.random.normal((2, 3)).astype(mx.complex64)
1394
+ b = mx.random.normal((3,))
1395
+ c = mx.random.normal((2,))
1396
+ self.assertEqual(mx.addmm(c, a, b).shape, (2,))
1397
+
1398
+ def test_complex_gemm(self):
1399
+ M = 16
1400
+ K = 50
1401
+ N = 32
1402
+
1403
+ def rand(shape):
1404
+ return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
1405
+
1406
+ a = rand((M, K))
1407
+ b = rand((K, N))
1408
+ c = mx.matmul(a, b)
1409
+ c_np = np.matmul(a, b)
1410
+ self.assertTrue(np.allclose(c, c_np))
1411
+
1412
+ # Test addmm
1413
+ a = rand((M, K))
1414
+ b = rand((K, N))
1415
+ c = rand((M, N))
1416
+ out = mx.addmm(c, a, b, 2.0, 2.0)
1417
+ out_np = 2.0 * np.matmul(a, b) + 2.0 * c
1418
+ self.assertTrue(np.allclose(out, out_np))
1419
+
1420
+ # complex with real
1421
+ a = rand((M, K)).real
1422
+ b = rand((K, N))
1423
+ c = mx.matmul(a, b)
1424
+ c_np = np.matmul(a, b)
1425
+ self.assertTrue(np.allclose(out, out_np))
1426
+
1427
+
1428
+ if __name__ == "__main__":
1429
+ mlx_tests.MLXTestRunner()