mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,810 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import math
4
+ import unittest
5
+ from itertools import permutations
6
+
7
+ import mlx.core as mx
8
+ import mlx_tests
9
+ import numpy as np
10
+
11
+ try:
12
+ import torch
13
+ import torch.nn.functional as F
14
+
15
+ has_torch = True
16
+ except ImportError as e:
17
+ has_torch = False
18
+
19
+
20
+ class TestConvTranspose(mlx_tests.MLXTestCase):
21
+ @unittest.skipIf(not has_torch, "requires Torch")
22
+ def test_torch_conv_transpose_1D(self):
23
+ def run_conv_transpose_1D(
24
+ N,
25
+ C,
26
+ O,
27
+ iH,
28
+ kH,
29
+ stride,
30
+ padding,
31
+ output_padding=0,
32
+ dilation=1,
33
+ groups=1,
34
+ dtype="float32",
35
+ atol=1e-5,
36
+ ):
37
+ with self.subTest(
38
+ dtype=dtype,
39
+ N=N,
40
+ C=C,
41
+ O=O,
42
+ iH=iH,
43
+ kH=kH,
44
+ stride=stride,
45
+ padding=padding,
46
+ dilation=dilation,
47
+ groups=groups,
48
+ ):
49
+ np_dtype = getattr(np, dtype)
50
+ np.random.seed(0)
51
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
52
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, int(C / groups))).astype(
53
+ np_dtype
54
+ )
55
+
56
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
57
+ in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
58
+ wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
59
+
60
+ out_mx = mx.conv_transpose1d(
61
+ in_mx,
62
+ wt_mx,
63
+ stride=stride,
64
+ padding=padding,
65
+ dilation=dilation,
66
+ groups=groups,
67
+ )
68
+ out_pt = torch.conv_transpose1d(
69
+ in_pt,
70
+ wt_pt,
71
+ stride=stride,
72
+ padding=padding,
73
+ dilation=dilation,
74
+ groups=groups,
75
+ )
76
+ out_pt = torch.transpose(out_pt, 2, 1)
77
+
78
+ self.assertEqual(out_pt.shape, out_mx.shape)
79
+ self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
80
+
81
+ for dtype in ("float32",):
82
+ for N, C, O in (
83
+ (1, 1, 1),
84
+ (1, 6, 1),
85
+ (1, 1, 6),
86
+ (4, 32, 64),
87
+ ):
88
+ for iH, kH, stride, padding in (
89
+ (1, 1, 1, 0),
90
+ (3, 3, 1, 0),
91
+ (31, 5, 5, 2),
92
+ ):
93
+ run_conv_transpose_1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
94
+
95
+ # Groups tests
96
+ N, C, O = (4, 32, 64)
97
+ for iH, kH, stride, padding in (
98
+ (1, 1, 1, 0),
99
+ (3, 3, 1, 0),
100
+ (31, 5, 5, 2),
101
+ ):
102
+ for group in (1,):
103
+ run_conv_transpose_1D(
104
+ N, C, O, iH, kH, stride, padding, groups=group, dtype=dtype
105
+ )
106
+
107
+ # Strided inputs tests
108
+ for tpose_in, tpose_wt in (
109
+ ((0, 2, 1), (0, 1, 2)),
110
+ ((0, 2, 1), (0, 2, 1)),
111
+ ):
112
+ with self.subTest(name="strided", tpose_in=tpose_in, tpose_wt=tpose_wt):
113
+ in_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
114
+ wt_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
115
+
116
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
117
+ in_mx_t = mx.transpose(in_mx, tpose_in)
118
+ wt_mx_t = mx.transpose(wt_mx, tpose_wt)
119
+ out_mx = mx.conv_transpose1d(in_mx_t, wt_mx_t)
120
+
121
+ in_pt = torch.from_numpy(in_np.transpose(tpose_in).transpose(0, 2, 1))
122
+ wt_pt = torch.from_numpy(wt_np.transpose(tpose_wt).transpose(2, 0, 1))
123
+
124
+ out_pt = torch.conv_transpose1d(in_pt, wt_pt)
125
+ out_pt = torch.transpose(out_pt, 2, 1)
126
+
127
+ self.assertEqual(out_pt.shape, out_mx.shape)
128
+ self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=1e-5))
129
+
130
+ @unittest.skipIf(not has_torch, "requires Torch")
131
+ def test_torch_conv_transpose_1D_grad(self):
132
+ def run_conv_transpose1D_grad(
133
+ N,
134
+ C,
135
+ O,
136
+ iH,
137
+ kH,
138
+ stride,
139
+ padding,
140
+ dilation=1,
141
+ groups=1,
142
+ dtype="float32",
143
+ atol=1e-5,
144
+ ):
145
+ with self.subTest(
146
+ dtype=dtype,
147
+ N=N,
148
+ C=C,
149
+ O=O,
150
+ iH=iH,
151
+ kH=kH,
152
+ stride=stride,
153
+ padding=padding,
154
+ dilation=dilation,
155
+ groups=groups,
156
+ ):
157
+ np_dtype = getattr(np, dtype)
158
+ np.random.seed(0)
159
+ # oH = 1 + ((iH + 2 * padding - dilation * (kH - 1) - 1) // stride)
160
+
161
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
162
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
163
+
164
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
165
+ in_pt = torch.from_numpy(in_np.transpose(0, 2, 1)).requires_grad_(True)
166
+ wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1)).requires_grad_(True)
167
+
168
+ out_pt = F.conv_transpose1d(
169
+ in_pt, wt_pt, stride=stride, padding=padding, dilation=dilation
170
+ )
171
+
172
+ # use torch to compute ct
173
+ out_pt.retain_grad()
174
+ out_pt.sum().backward()
175
+
176
+ pt_grad_in = in_pt.grad.permute(0, 2, 1).numpy()
177
+ pt_grad_wt = wt_pt.grad.permute(1, 2, 0).numpy()
178
+
179
+ ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 1))
180
+
181
+ def f(a, b):
182
+ return mx.conv_transpose1d(
183
+ a,
184
+ b,
185
+ stride=stride,
186
+ padding=padding,
187
+ dilation=dilation,
188
+ groups=groups,
189
+ )
190
+
191
+ _, outs_mx = mx.vjp(
192
+ f,
193
+ [
194
+ in_mx,
195
+ wt_mx,
196
+ ],
197
+ [
198
+ ct_mx,
199
+ ],
200
+ )
201
+
202
+ mx_grad_in, mx_grad_wt = outs_mx
203
+
204
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
205
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
206
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
207
+
208
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
209
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
210
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
211
+
212
+ for dtype in ("float32",):
213
+ for N, C, O in (
214
+ (1, 1, 1),
215
+ (1, 6, 1),
216
+ (1, 1, 6),
217
+ (4, 32, 64),
218
+ ):
219
+ for iH, kH, stride, padding in (
220
+ (1, 1, 1, 0),
221
+ (3, 3, 1, 0),
222
+ (31, 5, 5, 2),
223
+ ):
224
+ run_conv_transpose1D_grad(
225
+ N, C, O, iH, kH, stride, padding, dtype=dtype
226
+ )
227
+
228
+ @unittest.skipIf(not has_torch, "requires Torch")
229
+ def test_torch_conv_transpose_2D(self):
230
+ def run_conv_transpose2D(
231
+ N,
232
+ C,
233
+ O,
234
+ idim,
235
+ kdim,
236
+ stride,
237
+ padding,
238
+ dilation=(1, 1),
239
+ groups=1,
240
+ dtype="float32",
241
+ atol=1e-5,
242
+ ):
243
+ with self.subTest(
244
+ dtype=dtype,
245
+ N=N,
246
+ C=C,
247
+ O=O,
248
+ idim=idim,
249
+ kdim=kdim,
250
+ stride=stride,
251
+ padding=padding,
252
+ dilation=dilation,
253
+ groups=groups,
254
+ ):
255
+ np_dtype = getattr(np, dtype)
256
+ np.random.seed(0)
257
+ iH, iW = idim
258
+ kH, kW = kdim
259
+ scale = 1.0 / math.sqrt(kH * kW * C)
260
+ in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
261
+ wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups))).astype(
262
+ np_dtype
263
+ )
264
+
265
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
266
+ in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2)).to("cpu")
267
+ wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2)).to("cpu")
268
+
269
+ out_mx = mx.conv_transpose2d(
270
+ in_mx,
271
+ wt_mx,
272
+ stride=stride,
273
+ padding=padding,
274
+ dilation=dilation,
275
+ groups=groups,
276
+ )
277
+ out_pt = torch.conv_transpose2d(
278
+ in_pt,
279
+ wt_pt,
280
+ stride=stride,
281
+ padding=padding,
282
+ dilation=dilation,
283
+ groups=groups,
284
+ )
285
+ out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
286
+
287
+ self.assertEqual(out_pt.shape, out_mx.shape)
288
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
289
+
290
+ for dtype in ("float32",):
291
+ for N, C, O in (
292
+ (1, 1, 1),
293
+ (1, 6, 1),
294
+ (1, 1, 6),
295
+ (4, 32, 64),
296
+ ):
297
+ for idim, kdim, stride, padding in (
298
+ ((1, 1), (1, 1), (1, 1), (0, 0)),
299
+ ((3, 3), (3, 1), (1, 1), (0, 0)),
300
+ ((31, 31), (5, 5), (5, 5), (2, 2)),
301
+ ):
302
+ run_conv_transpose2D(
303
+ N, C, O, idim, kdim, stride, padding, dtype=dtype
304
+ )
305
+
306
+ # Groups tests
307
+ N, C, O = (4, 32, 64)
308
+ for idim, kdim, stride, padding in (
309
+ ((1, 1), (1, 1), (1, 1), (0, 0)),
310
+ ((3, 3), (3, 1), (1, 1), (0, 0)),
311
+ ((31, 31), (5, 5), (5, 5), (2, 2)),
312
+ ):
313
+ for group in (1,):
314
+ run_conv_transpose2D(
315
+ N, C, O, idim, kdim, stride, padding, groups=group, dtype=dtype
316
+ )
317
+
318
+ @unittest.skipIf(not has_torch, "requires Torch")
319
+ def test_torch_conv_transpose_2D_grad(self):
320
+ def run_conv_transpose2D_grad(
321
+ N,
322
+ C,
323
+ O,
324
+ idim,
325
+ kdim,
326
+ stride,
327
+ padding,
328
+ dilation=(1, 1),
329
+ groups=1,
330
+ dtype="float32",
331
+ atol=1e-5,
332
+ ):
333
+ with self.subTest(
334
+ dtype=dtype,
335
+ N=N,
336
+ C=C,
337
+ O=O,
338
+ idim=idim,
339
+ kdim=kdim,
340
+ stride=stride,
341
+ padding=padding,
342
+ dilation=dilation,
343
+ groups=groups,
344
+ ):
345
+ np_dtype = getattr(np, dtype)
346
+ np.random.seed(0)
347
+ iH, iW = idim
348
+ kH, kW = kdim
349
+ scale = 1.0 / math.sqrt(kH * kW * C * O)
350
+
351
+ in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
352
+ wt_np = np.random.normal(0.0, scale, (O, kH, kW, C)).astype(np_dtype)
353
+
354
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
355
+ in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2)).requires_grad_(
356
+ True
357
+ )
358
+ wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2)).requires_grad_(
359
+ True
360
+ )
361
+
362
+ out_pt = F.conv_transpose2d(
363
+ in_pt, wt_pt, stride=stride, padding=padding, dilation=dilation
364
+ )
365
+
366
+ # use torch to compute ct
367
+ out_pt.retain_grad()
368
+ out_pt.sum().backward()
369
+
370
+ pt_grad_in = in_pt.grad.permute(0, 2, 3, 1).numpy()
371
+ pt_grad_wt = wt_pt.grad.permute(1, 2, 3, 0).numpy()
372
+
373
+ ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 3, 1))
374
+
375
+ def f(a, b):
376
+ return mx.conv_transpose2d(
377
+ a,
378
+ b,
379
+ stride=stride,
380
+ padding=padding,
381
+ dilation=dilation,
382
+ groups=groups,
383
+ )
384
+
385
+ _, outs_mx = mx.vjp(
386
+ f,
387
+ [in_mx, wt_mx],
388
+ [ct_mx],
389
+ )
390
+
391
+ mx_grad_in, mx_grad_wt = outs_mx
392
+
393
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
394
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
395
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
396
+
397
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
398
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
399
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
400
+
401
+ for dtype in ("float32",):
402
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 32, 64), (4, 16, 32)):
403
+ for idim, kdim, stride, padding, dilation in (
404
+ ((1, 1), (1, 1), (1, 1), (0, 0), (1, 1)),
405
+ ((3, 3), (3, 1), (1, 1), (0, 0), (1, 1)),
406
+ ((31, 31), (5, 5), (5, 5), (2, 2), (1, 1)),
407
+ ((32, 32), (3, 3), (2, 2), (1, 1), (1, 1)),
408
+ ((31, 31), (5, 5), (5, 5), (2, 2), (3, 2)),
409
+ ((32, 32), (3, 3), (2, 2), (1, 1), (3, 2)),
410
+ ):
411
+ run_conv_transpose2D_grad(
412
+ N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
413
+ )
414
+
415
+ @unittest.skipIf(not has_torch, "requires Torch")
416
+ def test_torch_conv_transpose_3D(self):
417
+ def run_conv_transpose3D(
418
+ N,
419
+ C,
420
+ O,
421
+ idim,
422
+ kdim,
423
+ stride,
424
+ padding,
425
+ dilation=(1, 1, 1),
426
+ groups=1,
427
+ dtype="float32",
428
+ atol=1e-5,
429
+ ):
430
+ with self.subTest(
431
+ dtype=dtype,
432
+ N=N,
433
+ C=C,
434
+ O=O,
435
+ idim=idim,
436
+ kdim=kdim,
437
+ stride=stride,
438
+ padding=padding,
439
+ dilation=dilation,
440
+ groups=groups,
441
+ ):
442
+ np_dtype = getattr(np, dtype)
443
+ np.random.seed(0)
444
+ iD, iH, iW = idim
445
+ kD, kH, kW = kdim
446
+ scale = 1.0 / math.sqrt(kD * kH * kW * C * O)
447
+ in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
448
+ np_dtype
449
+ )
450
+ wt_np = np.random.normal(0.0, 1.0, (O, kD, kH, kW, C)).astype(np_dtype)
451
+
452
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
453
+ in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
454
+ wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
455
+
456
+ out_mx = mx.conv_transpose3d(
457
+ in_mx,
458
+ wt_mx,
459
+ stride=stride,
460
+ padding=padding,
461
+ dilation=dilation,
462
+ groups=groups,
463
+ )
464
+ out_pt = torch.conv_transpose3d(
465
+ in_pt,
466
+ wt_pt,
467
+ stride=stride,
468
+ padding=padding,
469
+ dilation=dilation,
470
+ groups=groups,
471
+ )
472
+ out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
473
+
474
+ self.assertEqual(out_pt.shape, out_mx.shape)
475
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
476
+
477
+ for dtype in ("float32",):
478
+ for N, C, O in (
479
+ (1, 1, 1),
480
+ (1, 6, 1),
481
+ (1, 1, 6),
482
+ (2, 8, 16),
483
+ ):
484
+ for idim, kdim, stride, padding in (
485
+ ((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0)),
486
+ ((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0)),
487
+ ((15, 15, 15), (3, 3, 3), (3, 3, 3), (2, 2, 2)),
488
+ ):
489
+ run_conv_transpose3D(
490
+ N, C, O, idim, kdim, stride, padding, dtype=dtype
491
+ )
492
+
493
+ @unittest.skipIf(not has_torch, "requires Torch")
494
+ def test_torch_conv_transpose_3D_grad(self):
495
+ def run_conv_transpose3D_grad(
496
+ N,
497
+ C,
498
+ O,
499
+ idim,
500
+ kdim,
501
+ stride,
502
+ padding,
503
+ dilation=(1, 1, 1),
504
+ groups=1,
505
+ dtype="float32",
506
+ atol=1e-4,
507
+ ):
508
+ with self.subTest(
509
+ dtype=dtype,
510
+ N=N,
511
+ C=C,
512
+ O=O,
513
+ idim=idim,
514
+ kdim=kdim,
515
+ stride=stride,
516
+ padding=padding,
517
+ dilation=dilation,
518
+ groups=groups,
519
+ ):
520
+ np_dtype = getattr(np, dtype)
521
+ np.random.seed(0)
522
+ iD, iH, iW = idim
523
+ kD, kH, kW = kdim
524
+ scale = 1.0 / math.sqrt(kD * kH * kW * C * O)
525
+
526
+ in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
527
+ np_dtype
528
+ )
529
+ wt_np = np.random.normal(0.0, scale, (O, kD, kH, kW, C)).astype(
530
+ np_dtype
531
+ )
532
+
533
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
534
+ in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3)).requires_grad_(
535
+ True
536
+ )
537
+ wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3)).requires_grad_(
538
+ True
539
+ )
540
+
541
+ out_pt = F.conv_transpose3d(
542
+ in_pt,
543
+ wt_pt,
544
+ stride=stride,
545
+ padding=padding,
546
+ dilation=dilation,
547
+ groups=groups,
548
+ )
549
+
550
+ # use torch to compute ct
551
+ out_pt.retain_grad()
552
+ out_pt.sum().backward()
553
+
554
+ pt_grad_in = in_pt.grad.permute(0, 2, 3, 4, 1).numpy()
555
+ pt_grad_wt = wt_pt.grad.permute(1, 2, 3, 4, 0).numpy()
556
+
557
+ ct_mx = mx.array(out_pt.grad.numpy().transpose(0, 2, 3, 4, 1))
558
+
559
+ def f(a, b):
560
+ return mx.conv_transpose3d(
561
+ a,
562
+ b,
563
+ stride=stride,
564
+ padding=padding,
565
+ dilation=dilation,
566
+ groups=groups,
567
+ )
568
+
569
+ _, outs_mx = mx.vjp(
570
+ f,
571
+ [in_mx, wt_mx],
572
+ [ct_mx],
573
+ )
574
+
575
+ mx_grad_in, mx_grad_wt = outs_mx
576
+
577
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
578
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
579
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
580
+
581
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
582
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
583
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
584
+
585
+ for dtype in ("float32",):
586
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (2, 4, 8), (2, 8, 16)):
587
+ for idim, kdim, stride, padding, dilation in (
588
+ ((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
589
+ ((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
590
+ ((7, 7, 7), (5, 5, 5), (5, 5, 5), (2, 2, 2), (1, 1, 1)),
591
+ ((8, 8, 8), (3, 3, 3), (2, 2, 2), (1, 1, 1), (1, 1, 1)),
592
+ ((7, 7, 7), (5, 5, 5), (3, 3, 3), (2, 2, 2), (3, 2, 2)),
593
+ ((8, 8, 8), (3, 3, 3), (2, 2, 2), (1, 1, 1), (3, 2, 2)),
594
+ ):
595
+ run_conv_transpose3D_grad(
596
+ N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
597
+ )
598
+
599
+ @unittest.skipIf(not has_torch, "requires Torch")
600
+ def test_torch_conv_tranpose_1d_output_padding(self):
601
+ def run_conv_transpose_1d_output_padding(
602
+ N, C, O, iH, kH, stride, padding, output_padding, dtype="float32", atol=1e-5
603
+ ):
604
+ with self.subTest(
605
+ dtype=dtype,
606
+ N=N,
607
+ C=C,
608
+ O=O,
609
+ iH=iH,
610
+ kH=kH,
611
+ stride=stride,
612
+ padding=padding,
613
+ output_padding=output_padding,
614
+ ):
615
+ np_dtype = getattr(np, dtype)
616
+ np.random.seed(0)
617
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
618
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
619
+
620
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
621
+ in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
622
+ wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
623
+
624
+ out_mx = mx.conv_transpose1d(
625
+ in_mx,
626
+ wt_mx,
627
+ stride=stride,
628
+ padding=padding,
629
+ output_padding=output_padding,
630
+ )
631
+
632
+ out_pt = torch.conv_transpose1d(
633
+ in_pt,
634
+ wt_pt,
635
+ stride=stride,
636
+ padding=padding,
637
+ output_padding=output_padding,
638
+ )
639
+ out_pt = torch.transpose(out_pt, 2, 1)
640
+
641
+ self.assertEqual(out_pt.shape, out_mx.shape)
642
+ self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
643
+
644
+ for dtype in ("float32",):
645
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
646
+ for iH, kH, stride, padding, output_padding in (
647
+ (3, 2, 2, 0, 1),
648
+ (5, 3, 2, 1, 0),
649
+ (7, 4, 3, 1, 2),
650
+ ):
651
+ run_conv_transpose_1d_output_padding(
652
+ N, C, O, iH, kH, stride, padding, output_padding, dtype=dtype
653
+ )
654
+
655
+ @unittest.skipIf(not has_torch, "requires Torch")
656
+ def test_torch_conv_transpose_2d_output_padding(self):
657
+ def run_conv_transpose_2d_output_padding(
658
+ N,
659
+ C,
660
+ O,
661
+ idim,
662
+ kdim,
663
+ stride,
664
+ padding,
665
+ output_padding,
666
+ dtype="float32",
667
+ atol=1e-5,
668
+ ):
669
+ with self.subTest(
670
+ dtype=dtype,
671
+ N=N,
672
+ C=C,
673
+ O=O,
674
+ idim=idim,
675
+ kdim=kdim,
676
+ stride=stride,
677
+ padding=padding,
678
+ output_padding=output_padding,
679
+ ):
680
+ np_dtype = getattr(np, dtype)
681
+ np.random.seed(0)
682
+ iH, iW = idim
683
+ kH, kW = kdim
684
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, iW, C)).astype(np_dtype)
685
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, kW, C)).astype(np_dtype)
686
+
687
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
688
+ in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2))
689
+ wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2))
690
+
691
+ out_mx = mx.conv_transpose2d(
692
+ in_mx,
693
+ wt_mx,
694
+ stride=stride,
695
+ padding=padding,
696
+ output_padding=output_padding,
697
+ )
698
+
699
+ out_pt = torch.conv_transpose2d(
700
+ in_pt,
701
+ wt_pt,
702
+ stride=stride,
703
+ padding=padding,
704
+ output_padding=output_padding,
705
+ )
706
+ out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
707
+
708
+ self.assertEqual(out_pt.shape, out_mx.shape)
709
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
710
+
711
+ for dtype in ("float32",):
712
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
713
+ for idim, kdim, stride, padding, output_padding in (
714
+ ((3, 3), (2, 2), (2, 2), (0, 0), (1, 1)),
715
+ ((5, 5), (3, 3), (2, 2), (1, 1), (0, 0)),
716
+ ((7, 7), (4, 4), (3, 3), (1, 1), (2, 2)),
717
+ ):
718
+ run_conv_transpose_2d_output_padding(
719
+ N,
720
+ C,
721
+ O,
722
+ idim,
723
+ kdim,
724
+ stride,
725
+ padding,
726
+ output_padding,
727
+ dtype=dtype,
728
+ )
729
+
730
+ @unittest.skipIf(not has_torch, "requires Torch")
731
+ def test_torch_conv_transpose_3d_output_padding(self):
732
+ def run_conv_transpose_3d_output_padding(
733
+ N,
734
+ C,
735
+ O,
736
+ idim,
737
+ kdim,
738
+ stride,
739
+ padding,
740
+ output_padding,
741
+ dtype="float32",
742
+ atol=1e-5,
743
+ ):
744
+ with self.subTest(
745
+ dtype=dtype,
746
+ N=N,
747
+ C=C,
748
+ O=O,
749
+ idim=idim,
750
+ kdim=kdim,
751
+ stride=stride,
752
+ padding=padding,
753
+ output_padding=output_padding,
754
+ ):
755
+ np_dtype = getattr(np, dtype)
756
+ np.random.seed(0)
757
+ iD, iH, iW = idim
758
+ kD, kH, kW = kdim
759
+ in_np = np.random.normal(0, 1.0 / C, (N, iD, iH, iW, C)).astype(
760
+ np_dtype
761
+ )
762
+ wt_np = np.random.normal(0, 1.0 / C, (O, kD, kH, kW, C)).astype(
763
+ np_dtype
764
+ )
765
+
766
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
767
+ in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
768
+ wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
769
+
770
+ out_mx = mx.conv_transpose3d(
771
+ in_mx,
772
+ wt_mx,
773
+ stride=stride,
774
+ padding=padding,
775
+ output_padding=output_padding,
776
+ )
777
+ out_pt = torch.conv_transpose3d(
778
+ in_pt,
779
+ wt_pt,
780
+ stride=stride,
781
+ padding=padding,
782
+ output_padding=output_padding,
783
+ )
784
+ out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
785
+
786
+ self.assertEqual(out_pt.shape, out_mx.shape)
787
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
788
+
789
+ for dtype in ("float32",):
790
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
791
+ for idim, kdim, stride, padding, output_padding in (
792
+ ((3, 3, 3), (2, 2, 2), (2, 2, 2), (0, 0, 0), (1, 1, 1)),
793
+ ((5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 1, 1), (0, 0, 0)),
794
+ ((7, 7, 7), (4, 4, 4), (3, 3, 3), (1, 1, 1), (2, 2, 2)),
795
+ ):
796
+ run_conv_transpose_3d_output_padding(
797
+ N,
798
+ C,
799
+ O,
800
+ idim,
801
+ kdim,
802
+ stride,
803
+ padding,
804
+ output_padding,
805
+ dtype=dtype,
806
+ )
807
+
808
+
809
+ if __name__ == "__main__":
810
+ mlx_tests.MLXTestRunner()