mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1525 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+ #include <cstdint>
3
+ #include <cstring>
4
+ #include <sstream>
5
+
6
+ #include <nanobind/ndarray.h>
7
+ #include <nanobind/stl/complex.h>
8
+ #include <nanobind/stl/optional.h>
9
+ #include <nanobind/stl/string.h>
10
+ #include <nanobind/stl/variant.h>
11
+ #include <nanobind/stl/vector.h>
12
+ #include <nanobind/typing.h>
13
+
14
+ #include "mlx/backend/metal/metal.h"
15
+ #include "python/src/buffer.h"
16
+ #include "python/src/convert.h"
17
+ #include "python/src/indexing.h"
18
+ #include "python/src/small_vector.h"
19
+ #include "python/src/utils.h"
20
+
21
+ #include "mlx/mlx.h"
22
+
23
+ namespace mx = mlx::core;
24
+ namespace nb = nanobind;
25
+ using namespace nb::literals;
26
+
27
+ class ArrayAt {
28
+ public:
29
+ ArrayAt(mx::array x) : x_(std::move(x)) {}
30
+ ArrayAt& set_indices(nb::object indices) {
31
+ initialized_ = true;
32
+ indices_ = indices;
33
+ return *this;
34
+ }
35
+ void check_initialized() {
36
+ if (!initialized_) {
37
+ throw std::invalid_argument(
38
+ "Must give indices to array.at (e.g. `x.at[0].add(4)`).");
39
+ }
40
+ }
41
+
42
+ mx::array add(const ScalarOrArray& v) {
43
+ check_initialized();
44
+ return mlx_add_item(x_, indices_, v);
45
+ }
46
+ mx::array subtract(const ScalarOrArray& v) {
47
+ check_initialized();
48
+ return mlx_subtract_item(x_, indices_, v);
49
+ }
50
+ mx::array multiply(const ScalarOrArray& v) {
51
+ check_initialized();
52
+ return mlx_multiply_item(x_, indices_, v);
53
+ }
54
+ mx::array divide(const ScalarOrArray& v) {
55
+ check_initialized();
56
+ return mlx_divide_item(x_, indices_, v);
57
+ }
58
+ mx::array maximum(const ScalarOrArray& v) {
59
+ check_initialized();
60
+ return mlx_maximum_item(x_, indices_, v);
61
+ }
62
+ mx::array minimum(const ScalarOrArray& v) {
63
+ check_initialized();
64
+ return mlx_minimum_item(x_, indices_, v);
65
+ }
66
+
67
+ private:
68
+ mx::array x_;
69
+ bool initialized_{false};
70
+ nb::object indices_;
71
+ };
72
+
73
+ class ArrayPythonIterator {
74
+ public:
75
+ ArrayPythonIterator(mx::array x) : idx_(0), x_(std::move(x)) {
76
+ if (x_.shape(0) > 0 && x_.shape(0) < 10) {
77
+ splits_ = mx::split(x_, x_.shape(0));
78
+ }
79
+ }
80
+
81
+ mx::array next() {
82
+ if (idx_ >= x_.shape(0)) {
83
+ throw nb::stop_iteration();
84
+ }
85
+
86
+ if (idx_ >= 0 && idx_ < splits_.size()) {
87
+ return mx::squeeze(splits_[idx_++], 0);
88
+ }
89
+
90
+ return *(x_.begin() + idx_++);
91
+ }
92
+
93
+ private:
94
+ int idx_;
95
+ mx::array x_;
96
+ std::vector<mx::array> splits_;
97
+ };
98
+
99
+ void init_array(nb::module_& m) {
100
+ // Set Python print formatting options
101
+ mx::get_global_formatter().capitalize_bool = true;
102
+
103
+ // Types
104
+ nb::class_<mx::Dtype>(
105
+ m,
106
+ "Dtype",
107
+ R"pbdoc(
108
+ An object to hold the type of a :class:`array`.
109
+
110
+ See the :ref:`list of types <data_types>` for more details
111
+ on available data types.
112
+ )pbdoc")
113
+ .def_prop_ro(
114
+ "size", &mx::Dtype::size, R"pbdoc(Size of the type in bytes.)pbdoc")
115
+ .def(
116
+ "__repr__",
117
+ [](const mx::Dtype& t) {
118
+ std::ostringstream os;
119
+ os << "mlx.core.";
120
+ os << t;
121
+ return os.str();
122
+ })
123
+ .def(
124
+ "__eq__",
125
+ [](const mx::Dtype& t, const nb::object& other) {
126
+ return nb::isinstance<mx::Dtype>(other) &&
127
+ t == nb::cast<mx::Dtype>(other);
128
+ })
129
+ .def("__hash__", [](const mx::Dtype& t) {
130
+ return static_cast<int64_t>(t.val());
131
+ });
132
+
133
+ m.attr("bool_") = nb::cast(mx::bool_);
134
+ m.attr("uint8") = nb::cast(mx::uint8);
135
+ m.attr("uint16") = nb::cast(mx::uint16);
136
+ m.attr("uint32") = nb::cast(mx::uint32);
137
+ m.attr("uint64") = nb::cast(mx::uint64);
138
+ m.attr("int8") = nb::cast(mx::int8);
139
+ m.attr("int16") = nb::cast(mx::int16);
140
+ m.attr("int32") = nb::cast(mx::int32);
141
+ m.attr("int64") = nb::cast(mx::int64);
142
+ m.attr("float16") = nb::cast(mx::float16);
143
+ m.attr("float32") = nb::cast(mx::float32);
144
+ m.attr("float64") = nb::cast(mx::float64);
145
+ m.attr("bfloat16") = nb::cast(mx::bfloat16);
146
+ m.attr("complex64") = nb::cast(mx::complex64);
147
+ nb::enum_<mx::Dtype::Category>(
148
+ m,
149
+ "DtypeCategory",
150
+ R"pbdoc(
151
+ Type to hold categories of :class:`dtypes <Dtype>`.
152
+
153
+ * :attr:`~mlx.core.generic`
154
+
155
+ * :ref:`bool_ <data_types>`
156
+ * :attr:`~mlx.core.number`
157
+
158
+ * :attr:`~mlx.core.integer`
159
+
160
+ * :attr:`~mlx.core.unsignedinteger`
161
+
162
+ * :ref:`uint8 <data_types>`
163
+ * :ref:`uint16 <data_types>`
164
+ * :ref:`uint32 <data_types>`
165
+ * :ref:`uint64 <data_types>`
166
+
167
+ * :attr:`~mlx.core.signedinteger`
168
+
169
+ * :ref:`int8 <data_types>`
170
+ * :ref:`int32 <data_types>`
171
+ * :ref:`int64 <data_types>`
172
+
173
+ * :attr:`~mlx.core.inexact`
174
+
175
+ * :attr:`~mlx.core.floating`
176
+
177
+ * :ref:`float16 <data_types>`
178
+ * :ref:`bfloat16 <data_types>`
179
+ * :ref:`float32 <data_types>`
180
+ * :ref:`float64 <data_types>`
181
+
182
+ * :attr:`~mlx.core.complexfloating`
183
+
184
+ * :ref:`complex64 <data_types>`
185
+
186
+ See also :func:`~mlx.core.issubdtype`.
187
+ )pbdoc")
188
+ .value("complexfloating", mx::complexfloating)
189
+ .value("floating", mx::floating)
190
+ .value("inexact", mx::inexact)
191
+ .value("signedinteger", mx::signedinteger)
192
+ .value("unsignedinteger", mx::unsignedinteger)
193
+ .value("integer", mx::integer)
194
+ .value("number", mx::number)
195
+ .value("generic", mx::generic)
196
+ .export_values();
197
+
198
+ nb::class_<mx::finfo>(
199
+ m,
200
+ "finfo",
201
+ R"pbdoc(
202
+ Get information on floating-point types.
203
+ )pbdoc")
204
+ .def(nb::init<mx::Dtype>())
205
+ .def_ro(
206
+ "min",
207
+ &mx::finfo::min,
208
+ R"pbdoc(The smallest representable number.)pbdoc")
209
+ .def_ro(
210
+ "max",
211
+ &mx::finfo::max,
212
+ R"pbdoc(The largest representable number.)pbdoc")
213
+ .def_ro(
214
+ "eps",
215
+ &mx::finfo::eps,
216
+ R"pbdoc(
217
+ The difference between 1.0 and the next smallest
218
+ representable number larger than 1.0.
219
+ )pbdoc")
220
+ .def_ro("dtype", &mx::finfo::dtype, R"pbdoc(The :obj:`Dtype`.)pbdoc")
221
+ .def("__repr__", [](const mx::finfo& f) {
222
+ std::ostringstream os;
223
+ os << "finfo("
224
+ << "min=" << f.min << ", max=" << f.max << ", dtype=" << f.dtype
225
+ << ")";
226
+ return os.str();
227
+ });
228
+
229
+ nb::class_<mx::iinfo>(
230
+ m,
231
+ "iinfo",
232
+ R"pbdoc(
233
+ Get information on integer types.
234
+ )pbdoc")
235
+ .def(nb::init<mx::Dtype>())
236
+ .def_ro(
237
+ "min",
238
+ &mx::iinfo::min,
239
+ R"pbdoc(The smallest representable number.)pbdoc")
240
+ .def_ro(
241
+ "max",
242
+ &mx::iinfo::max,
243
+ R"pbdoc(The largest representable number.)pbdoc")
244
+ .def_ro("dtype", &mx::iinfo::dtype, R"pbdoc(The :obj:`Dtype`.)pbdoc")
245
+ .def("__repr__", [](const mx::iinfo& i) {
246
+ std::ostringstream os;
247
+ os << "iinfo("
248
+ << "min=" << i.min << ", max=" << i.max << ", dtype=" << i.dtype
249
+ << ")";
250
+ return os.str();
251
+ });
252
+
253
+ nb::class_<ArrayAt>(
254
+ m,
255
+ "ArrayAt",
256
+ R"pbdoc(
257
+ A helper object to apply updates at specific indices.
258
+ )pbdoc")
259
+ .def("__getitem__", &ArrayAt::set_indices, "indices"_a.none())
260
+ .def("add", &ArrayAt::add, "value"_a)
261
+ .def("subtract", &ArrayAt::subtract, "value"_a)
262
+ .def("multiply", &ArrayAt::multiply, "value"_a)
263
+ .def("divide", &ArrayAt::divide, "value"_a)
264
+ .def("maximum", &ArrayAt::maximum, "value"_a)
265
+ .def("minimum", &ArrayAt::minimum, "value"_a);
266
+
267
+ nb::class_<ArrayLike>(
268
+ m,
269
+ "ArrayLike",
270
+ R"pbdoc(
271
+ Any Python object which has an ``__mlx__array__`` method that
272
+ returns an :obj:`array`.
273
+ )pbdoc")
274
+ .def(nb::init_implicit<nb::object>());
275
+
276
+ nb::class_<ArrayPythonIterator>(
277
+ m,
278
+ "ArrayIterator",
279
+ R"pbdoc(
280
+ A helper object to iterate over the 1st dimension of an array.
281
+ )pbdoc")
282
+ .def("__next__", &ArrayPythonIterator::next)
283
+ .def("__iter__", [](const ArrayPythonIterator& it) { return it; });
284
+
285
+ // Install buffer protocol functions
286
+ PyType_Slot array_slots[] = {
287
+ {Py_bf_getbuffer, (void*)getbuffer},
288
+ {Py_bf_releasebuffer, (void*)releasebuffer},
289
+ {0, nullptr}};
290
+
291
+ nb::class_<mx::array>(
292
+ m,
293
+ "array",
294
+ R"pbdoc(An N-dimensional array object.)pbdoc",
295
+ nb::type_slots(array_slots),
296
+ nb::is_weak_referenceable())
297
+ .def(
298
+ "__init__",
299
+ [](mx::array* aptr, ArrayInitType v, std::optional<mx::Dtype> t) {
300
+ new (aptr) mx::array(create_array(v, t));
301
+ },
302
+ "val"_a,
303
+ "dtype"_a = nb::none(),
304
+ nb::sig(
305
+ "def __init__(self: array, val: Union[scalar, list, tuple, numpy.ndarray, array], dtype: Optional[Dtype] = None)"))
306
+ .def_prop_ro(
307
+ "size",
308
+ &mx::array::size,
309
+ R"pbdoc(Number of elements in the array.)pbdoc")
310
+ .def_prop_ro(
311
+ "ndim", &mx::array::ndim, R"pbdoc(The array's dimension.)pbdoc")
312
+ .def_prop_ro(
313
+ "itemsize",
314
+ &mx::array::itemsize,
315
+ R"pbdoc(The size of the array's datatype in bytes.)pbdoc")
316
+ .def_prop_ro(
317
+ "nbytes",
318
+ &mx::array::nbytes,
319
+ R"pbdoc(The number of bytes in the array.)pbdoc")
320
+ .def_prop_ro(
321
+ "shape",
322
+ [](const mx::array& a) { return nb::cast(a.shape()); },
323
+ nb::sig("def shape(self) -> tuple[int, ...]"),
324
+ R"pbdoc(
325
+ The shape of the array as a Python tuple.
326
+
327
+ Returns:
328
+ tuple(int): A tuple containing the sizes of each dimension.
329
+ )pbdoc")
330
+ .def_prop_ro(
331
+ "dtype",
332
+ &mx::array::dtype,
333
+ R"pbdoc(
334
+ The array's :class:`Dtype`.
335
+ )pbdoc")
336
+ .def_prop_ro(
337
+ "real",
338
+ [](const mx::array& a) { return mx::real(a); },
339
+ R"pbdoc(
340
+ The real part of a complex array.
341
+ )pbdoc")
342
+ .def_prop_ro(
343
+ "imag",
344
+ [](const mx::array& a) { return mx::imag(a); },
345
+ R"pbdoc(
346
+ The imaginary part of a complex array.
347
+ )pbdoc")
348
+ .def(
349
+ "item",
350
+ &to_scalar,
351
+ nb::sig("def item(self) -> scalar"),
352
+ R"pbdoc(
353
+ Access the value of a scalar array.
354
+
355
+ Returns:
356
+ Standard Python scalar.
357
+ )pbdoc")
358
+ .def(
359
+ "tolist",
360
+ &tolist,
361
+ nb::sig("def tolist(self) -> list_or_scalar"),
362
+ R"pbdoc(
363
+ Convert the array to a Python :class:`list`.
364
+
365
+ Returns:
366
+ list: The Python list.
367
+
368
+ If the array is a scalar then a standard Python scalar is returned.
369
+
370
+ If the array has more than one dimension then the result is a nested
371
+ list of lists.
372
+
373
+ The value type of the list corresponding to the last dimension is either
374
+ ``bool``, ``int`` or ``float`` depending on the ``dtype`` of the array.
375
+ )pbdoc")
376
+ .def(
377
+ "astype",
378
+ &mx::astype,
379
+ "dtype"_a,
380
+ "stream"_a = nb::none(),
381
+ R"pbdoc(
382
+ Cast the array to a specified type.
383
+
384
+ Args:
385
+ dtype (Dtype): Type to which the array is cast.
386
+ stream (Stream): Stream (or device) for the operation.
387
+
388
+ Returns:
389
+ array: The array with type ``dtype``.
390
+ )pbdoc")
391
+ .def(
392
+ "__array_namespace__",
393
+ [](const mx::array& a,
394
+ const std::optional<std::string>& api_version) {
395
+ if (api_version) {
396
+ throw std::invalid_argument(
397
+ "Explicitly specifying api_version is not yet implemented.");
398
+ }
399
+ return nb::module_::import_("mlx.core");
400
+ },
401
+ "api_version"_a = nb::none(),
402
+ R"pbdoc(
403
+ Returns an object that has all the array API functions on it.
404
+
405
+ See the `Python array API <https://data-apis.org/array-api/latest/index.html>`_
406
+ for more information.
407
+
408
+ Args:
409
+ api_version (str, optional): String representing the version
410
+ of the array API spec to return. Default: ``None``.
411
+
412
+ Returns:
413
+ out (Any): An object representing the array API namespace.
414
+ )pbdoc")
415
+ .def("__getitem__", mlx_get_item, nb::arg().none())
416
+ .def("__setitem__", mlx_set_item, nb::arg().none(), nb::arg())
417
+ .def_prop_ro(
418
+ "at",
419
+ [](const mx::array& a) { return ArrayAt(a); },
420
+ R"pbdoc(
421
+ Used to apply updates at the given indices.
422
+
423
+ .. note::
424
+
425
+ Regular in-place updates map to assignment. For instance ``x[idx] += y``
426
+ maps to ``x[idx] = x[idx] + y``. As a result, assigning to the
427
+ same index ignores all but one update. Using ``x.at[idx].add(y)``
428
+ will correctly apply all updates to all indices.
429
+
430
+ .. list-table::
431
+ :header-rows: 1
432
+
433
+ * - array.at syntax
434
+ - In-place syntax
435
+ * - ``x = x.at[idx].add(y)``
436
+ - ``x[idx] += y``
437
+ * - ``x = x.at[idx].subtract(y)``
438
+ - ``x[idx] -= y``
439
+ * - ``x = x.at[idx].multiply(y)``
440
+ - ``x[idx] *= y``
441
+ * - ``x = x.at[idx].divide(y)``
442
+ - ``x[idx] /= y``
443
+ * - ``x = x.at[idx].maximum(y)``
444
+ - ``x[idx] = mx.maximum(x[idx], y)``
445
+ * - ``x = x.at[idx].minimum(y)``
446
+ - ``x[idx] = mx.minimum(x[idx], y)``
447
+
448
+ Example:
449
+ >>> a = mx.array([0, 0])
450
+ >>> idx = mx.array([0, 1, 0, 1])
451
+ >>> a[idx] += 1
452
+ >>> a
453
+ array([1, 1], dtype=int32)
454
+ >>>
455
+ >>> a = mx.array([0, 0])
456
+ >>> a.at[idx].add(1)
457
+ array([2, 2], dtype=int32)
458
+ )pbdoc")
459
+ .def(
460
+ "__len__",
461
+ [](const mx::array& a) {
462
+ if (a.ndim() == 0) {
463
+ throw nb::type_error("len() 0-dimensional array.");
464
+ }
465
+ return a.shape(0);
466
+ })
467
+ .def(
468
+ "__iter__", [](const mx::array& a) { return ArrayPythonIterator(a); })
469
+ .def(
470
+ "__getstate__",
471
+ [](const mx::array& a) {
472
+ auto nd = (a.dtype() == mx::bfloat16)
473
+ ? mlx_to_np_array(mx::view(a, mx::uint16))
474
+ : mlx_to_np_array(a);
475
+ return nb::make_tuple(nd, static_cast<uint8_t>(a.dtype().val()));
476
+ })
477
+ .def(
478
+ "__setstate__",
479
+ [](mx::array& arr, const nb::tuple& state) {
480
+ if (nb::len(state) != 2) {
481
+ throw std::invalid_argument(
482
+ "Invalid pickle state: expected (ndarray, Dtype::Val)");
483
+ }
484
+ using ND = nb::ndarray<nb::ro, nb::c_contig, nb::device::cpu>;
485
+ ND nd = nb::cast<ND>(state[0]);
486
+ auto val = static_cast<mx::Dtype::Val>(nb::cast<uint8_t>(state[1]));
487
+ if (val == mx::Dtype::Val::bfloat16) {
488
+ auto owner = nb::handle(state[0].ptr());
489
+ new (&arr) mx::array(nd_array_to_mlx(
490
+ ND(nd.data(),
491
+ nd.ndim(),
492
+ reinterpret_cast<const size_t*>(nd.shape_ptr()),
493
+ owner,
494
+ nullptr,
495
+ nb::bfloat16),
496
+ mx::bfloat16));
497
+ } else {
498
+ new (&arr) mx::array(nd_array_to_mlx(nd, std::nullopt));
499
+ }
500
+ })
501
+ .def("__dlpack__", [](const mx::array& a) { return mlx_to_dlpack(a); })
502
+ .def(
503
+ "__dlpack_device__",
504
+ [](const mx::array& a) {
505
+ // See
506
+ // https://github.com/dmlc/dlpack/blob/5c210da409e7f1e51ddf445134a4376fdbd70d7d/include/dlpack/dlpack.h#L74
507
+ if (mx::metal::is_available()) {
508
+ return nb::make_tuple(8, 0);
509
+ } else if (mx::cu::is_available()) {
510
+ return nb::make_tuple(13, 0);
511
+ } else {
512
+ // CPU device
513
+ return nb::make_tuple(1, 0);
514
+ }
515
+ })
516
+ .def("__copy__", [](const mx::array& self) { return mx::array(self); })
517
+ .def(
518
+ "__deepcopy__",
519
+ [](const mx::array& self, nb::dict) { return mx::array(self); },
520
+ "memo"_a)
521
+ .def(
522
+ "__add__",
523
+ [](const mx::array& a, const ScalarOrArray v) {
524
+ if (!is_comparable_with_array(v)) {
525
+ throw_invalid_operation("addition", v);
526
+ }
527
+ auto b = to_array(v, a.dtype());
528
+ return mx::add(a, b);
529
+ },
530
+ "other"_a)
531
+ .def(
532
+ "__iadd__",
533
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
534
+ if (!is_comparable_with_array(v)) {
535
+ throw_invalid_operation("inplace addition", v);
536
+ }
537
+ a.overwrite_descriptor(mx::add(a, to_array(v, a.dtype())));
538
+ return a;
539
+ },
540
+ "other"_a,
541
+ nb::rv_policy::none)
542
+ .def(
543
+ "__radd__",
544
+ [](const mx::array& a, const ScalarOrArray v) {
545
+ if (!is_comparable_with_array(v)) {
546
+ throw_invalid_operation("addition", v);
547
+ }
548
+ return mx::add(a, to_array(v, a.dtype()));
549
+ },
550
+ "other"_a)
551
+ .def(
552
+ "__sub__",
553
+ [](const mx::array& a, const ScalarOrArray v) {
554
+ if (!is_comparable_with_array(v)) {
555
+ throw_invalid_operation("subtraction", v);
556
+ }
557
+ return mx::subtract(a, to_array(v, a.dtype()));
558
+ },
559
+ "other"_a)
560
+ .def(
561
+ "__isub__",
562
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
563
+ if (!is_comparable_with_array(v)) {
564
+ throw_invalid_operation("inplace subtraction", v);
565
+ }
566
+ a.overwrite_descriptor(mx::subtract(a, to_array(v, a.dtype())));
567
+ return a;
568
+ },
569
+ "other"_a,
570
+ nb::rv_policy::none)
571
+ .def(
572
+ "__rsub__",
573
+ [](const mx::array& a, const ScalarOrArray v) {
574
+ if (!is_comparable_with_array(v)) {
575
+ throw_invalid_operation("subtraction", v);
576
+ }
577
+ return mx::subtract(to_array(v, a.dtype()), a);
578
+ },
579
+ "other"_a)
580
+ .def(
581
+ "__mul__",
582
+ [](const mx::array& a, const ScalarOrArray v) {
583
+ if (!is_comparable_with_array(v)) {
584
+ throw_invalid_operation("multiplication", v);
585
+ }
586
+ return mx::multiply(a, to_array(v, a.dtype()));
587
+ },
588
+ "other"_a)
589
+ .def(
590
+ "__imul__",
591
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
592
+ if (!is_comparable_with_array(v)) {
593
+ throw_invalid_operation("inplace multiplication", v);
594
+ }
595
+ a.overwrite_descriptor(mx::multiply(a, to_array(v, a.dtype())));
596
+ return a;
597
+ },
598
+ "other"_a,
599
+ nb::rv_policy::none)
600
+ .def(
601
+ "__rmul__",
602
+ [](const mx::array& a, const ScalarOrArray v) {
603
+ if (!is_comparable_with_array(v)) {
604
+ throw_invalid_operation("multiplication", v);
605
+ }
606
+ return mx::multiply(a, to_array(v, a.dtype()));
607
+ },
608
+ "other"_a)
609
+ .def(
610
+ "__truediv__",
611
+ [](const mx::array& a, const ScalarOrArray v) {
612
+ if (!is_comparable_with_array(v)) {
613
+ throw_invalid_operation("division", v);
614
+ }
615
+ return mx::divide(a, to_array(v, a.dtype()));
616
+ },
617
+ "other"_a)
618
+ .def(
619
+ "__itruediv__",
620
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
621
+ if (!is_comparable_with_array(v)) {
622
+ throw_invalid_operation("inplace division", v);
623
+ }
624
+ if (!mx::issubdtype(a.dtype(), mx::inexact)) {
625
+ throw std::invalid_argument(
626
+ "In place division cannot cast to non-floating point type.");
627
+ }
628
+ a.overwrite_descriptor(divide(a, to_array(v, a.dtype())));
629
+ return a;
630
+ },
631
+ "other"_a,
632
+ nb::rv_policy::none)
633
+ .def(
634
+ "__rtruediv__",
635
+ [](const mx::array& a, const ScalarOrArray v) {
636
+ if (!is_comparable_with_array(v)) {
637
+ throw_invalid_operation("division", v);
638
+ }
639
+ return mx::divide(to_array(v, a.dtype()), a);
640
+ },
641
+ "other"_a)
642
+ .def(
643
+ "__div__",
644
+ [](const mx::array& a, const ScalarOrArray v) {
645
+ if (!is_comparable_with_array(v)) {
646
+ throw_invalid_operation("division", v);
647
+ }
648
+ return mx::divide(a, to_array(v, a.dtype()));
649
+ },
650
+ "other"_a)
651
+ .def(
652
+ "__rdiv__",
653
+ [](const mx::array& a, const ScalarOrArray v) {
654
+ if (!is_comparable_with_array(v)) {
655
+ throw_invalid_operation("division", v);
656
+ }
657
+ return mx::divide(to_array(v, a.dtype()), a);
658
+ },
659
+ "other"_a)
660
+ .def(
661
+ "__floordiv__",
662
+ [](const mx::array& a, const ScalarOrArray v) {
663
+ if (!is_comparable_with_array(v)) {
664
+ throw_invalid_operation("floor division", v);
665
+ }
666
+ return mx::floor_divide(a, to_array(v, a.dtype()));
667
+ },
668
+ "other"_a)
669
+ .def(
670
+ "__ifloordiv__",
671
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
672
+ if (!is_comparable_with_array(v)) {
673
+ throw_invalid_operation("inplace floor division", v);
674
+ }
675
+ a.overwrite_descriptor(mx::floor_divide(a, to_array(v, a.dtype())));
676
+ return a;
677
+ },
678
+ "other"_a,
679
+ nb::rv_policy::none)
680
+ .def(
681
+ "__rfloordiv__",
682
+ [](const mx::array& a, const ScalarOrArray v) {
683
+ if (!is_comparable_with_array(v)) {
684
+ throw_invalid_operation("floor division", v);
685
+ }
686
+ auto b = to_array(v, a.dtype());
687
+ return mx::floor_divide(b, a);
688
+ },
689
+ "other"_a)
690
+ .def(
691
+ "__mod__",
692
+ [](const mx::array& a, const ScalarOrArray v) {
693
+ if (!is_comparable_with_array(v)) {
694
+ throw_invalid_operation("modulus", v);
695
+ }
696
+ return mx::remainder(a, to_array(v, a.dtype()));
697
+ },
698
+ "other"_a)
699
+ .def(
700
+ "__imod__",
701
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
702
+ if (!is_comparable_with_array(v)) {
703
+ throw_invalid_operation("inplace modulus", v);
704
+ }
705
+ a.overwrite_descriptor(mx::remainder(a, to_array(v, a.dtype())));
706
+ return a;
707
+ },
708
+ "other"_a,
709
+ nb::rv_policy::none)
710
+ .def(
711
+ "__rmod__",
712
+ [](const mx::array& a, const ScalarOrArray v) {
713
+ if (!is_comparable_with_array(v)) {
714
+ throw_invalid_operation("modulus", v);
715
+ }
716
+ return mx::remainder(to_array(v, a.dtype()), a);
717
+ },
718
+ "other"_a)
719
+ .def(
720
+ "__eq__",
721
+ [](const mx::array& a,
722
+ const ScalarOrArray& v) -> std::variant<mx::array, bool> {
723
+ if (!is_comparable_with_array(v)) {
724
+ return false;
725
+ }
726
+ return mx::equal(a, to_array(v, a.dtype()));
727
+ },
728
+ "other"_a)
729
+ .def(
730
+ "__lt__",
731
+ [](const mx::array& a, const ScalarOrArray v) -> mx::array {
732
+ if (!is_comparable_with_array(v)) {
733
+ throw_invalid_operation("less than", v);
734
+ }
735
+ return mx::less(a, to_array(v, a.dtype()));
736
+ },
737
+ "other"_a)
738
+ .def(
739
+ "__le__",
740
+ [](const mx::array& a, const ScalarOrArray v) -> mx::array {
741
+ if (!is_comparable_with_array(v)) {
742
+ throw_invalid_operation("less than or equal", v);
743
+ }
744
+ return mx::less_equal(a, to_array(v, a.dtype()));
745
+ },
746
+ "other"_a)
747
+ .def(
748
+ "__gt__",
749
+ [](const mx::array& a, const ScalarOrArray v) -> mx::array {
750
+ if (!is_comparable_with_array(v)) {
751
+ throw_invalid_operation("greater than", v);
752
+ }
753
+ return mx::greater(a, to_array(v, a.dtype()));
754
+ },
755
+ "other"_a)
756
+ .def(
757
+ "__ge__",
758
+ [](const mx::array& a, const ScalarOrArray v) -> mx::array {
759
+ if (!is_comparable_with_array(v)) {
760
+ throw_invalid_operation("greater than or equal", v);
761
+ }
762
+ return mx::greater_equal(a, to_array(v, a.dtype()));
763
+ },
764
+ "other"_a)
765
+ .def(
766
+ "__ne__",
767
+ [](const mx::array& a,
768
+ const ScalarOrArray v) -> std::variant<mx::array, bool> {
769
+ if (!is_comparable_with_array(v)) {
770
+ return true;
771
+ }
772
+ return mx::not_equal(a, to_array(v, a.dtype()));
773
+ },
774
+ "other"_a)
775
+ .def("__neg__", [](const mx::array& a) { return -a; })
776
+ .def("__bool__", [](mx::array& a) { return nb::bool_(to_scalar(a)); })
777
+ .def(
778
+ "__repr__",
779
+ [](mx::array& a) {
780
+ nb::gil_scoped_release nogil;
781
+ std::ostringstream os;
782
+ os << a;
783
+ return os.str();
784
+ })
785
+ .def(
786
+ "__matmul__",
787
+ [](const mx::array& a, mx::array& other) {
788
+ return mx::matmul(a, other);
789
+ },
790
+ "other"_a)
791
+ .def(
792
+ "__imatmul__",
793
+ [](mx::array& a, mx::array& other) -> mx::array& {
794
+ a.overwrite_descriptor(mx::matmul(a, other));
795
+ return a;
796
+ },
797
+ "other"_a,
798
+ nb::rv_policy::none)
799
+ .def(
800
+ "__pow__",
801
+ [](const mx::array& a, const ScalarOrArray v) {
802
+ if (!is_comparable_with_array(v)) {
803
+ throw_invalid_operation("power", v);
804
+ }
805
+ return mx::power(a, to_array(v, a.dtype()));
806
+ },
807
+ "other"_a)
808
+ .def(
809
+ "__rpow__",
810
+ [](const mx::array& a, const ScalarOrArray v) {
811
+ if (!is_comparable_with_array(v)) {
812
+ throw_invalid_operation("power", v);
813
+ }
814
+ return mx::power(to_array(v, a.dtype()), a);
815
+ },
816
+ "other"_a)
817
+ .def(
818
+ "__ipow__",
819
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
820
+ if (!is_comparable_with_array(v)) {
821
+ throw_invalid_operation("inplace power", v);
822
+ }
823
+ a.overwrite_descriptor(mx::power(a, to_array(v, a.dtype())));
824
+ return a;
825
+ },
826
+ "other"_a,
827
+ nb::rv_policy::none)
828
+ .def(
829
+ "__invert__",
830
+ [](const mx::array& a) {
831
+ if (mx::issubdtype(a.dtype(), mx::inexact)) {
832
+ throw std::invalid_argument(
833
+ "Floating point types not allowed with bitwise inversion.");
834
+ }
835
+ if (a.dtype() == mx::bool_) {
836
+ return mx::logical_not(a);
837
+ }
838
+ return mx::bitwise_invert(a);
839
+ })
840
+ .def(
841
+ "__and__",
842
+ [](const mx::array& a, const ScalarOrArray v) {
843
+ if (!is_comparable_with_array(v)) {
844
+ throw_invalid_operation("bitwise and", v);
845
+ }
846
+ auto b = to_array(v, a.dtype());
847
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
848
+ mx::issubdtype(b.dtype(), mx::inexact)) {
849
+ throw std::invalid_argument(
850
+ "Floating point types not allowed with bitwise and.");
851
+ }
852
+ return mx::bitwise_and(a, b);
853
+ },
854
+ "other"_a)
855
+ .def(
856
+ "__iand__",
857
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
858
+ if (!is_comparable_with_array(v)) {
859
+ throw_invalid_operation("inplace bitwise and", v);
860
+ }
861
+ auto b = to_array(v, a.dtype());
862
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
863
+ mx::issubdtype(b.dtype(), mx::inexact)) {
864
+ throw std::invalid_argument(
865
+ "Floating point types not allowed with bitwise and.");
866
+ }
867
+ a.overwrite_descriptor(mx::bitwise_and(a, b));
868
+ return a;
869
+ },
870
+ "other"_a,
871
+ nb::rv_policy::none)
872
+ .def(
873
+ "__or__",
874
+ [](const mx::array& a, const ScalarOrArray v) {
875
+ if (!is_comparable_with_array(v)) {
876
+ throw_invalid_operation("bitwise or", v);
877
+ }
878
+ auto b = to_array(v, a.dtype());
879
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
880
+ mx::issubdtype(b.dtype(), mx::inexact)) {
881
+ throw std::invalid_argument(
882
+ "Floating point types not allowed with bitwise or.");
883
+ }
884
+ return mx::bitwise_or(a, b);
885
+ },
886
+ "other"_a)
887
+ .def(
888
+ "__ior__",
889
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
890
+ if (!is_comparable_with_array(v)) {
891
+ throw_invalid_operation("inplace bitwise or", v);
892
+ }
893
+ auto b = to_array(v, a.dtype());
894
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
895
+ mx::issubdtype(b.dtype(), mx::inexact)) {
896
+ throw std::invalid_argument(
897
+ "Floating point types not allowed with bitwise or.");
898
+ }
899
+ a.overwrite_descriptor(mx::bitwise_or(a, b));
900
+ return a;
901
+ },
902
+ "other"_a,
903
+ nb::rv_policy::none)
904
+ .def(
905
+ "__lshift__",
906
+ [](const mx::array& a, const ScalarOrArray v) {
907
+ if (!is_comparable_with_array(v)) {
908
+ throw_invalid_operation("left shift", v);
909
+ }
910
+ auto b = to_array(v, a.dtype());
911
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
912
+ mx::issubdtype(b.dtype(), mx::inexact)) {
913
+ throw std::invalid_argument(
914
+ "Floating point types not allowed with left shift.");
915
+ }
916
+ return mx::left_shift(a, b);
917
+ },
918
+ "other"_a)
919
+ .def(
920
+ "__ilshift__",
921
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
922
+ if (!is_comparable_with_array(v)) {
923
+ throw_invalid_operation("inplace left shift", v);
924
+ }
925
+ auto b = to_array(v, a.dtype());
926
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
927
+ mx::issubdtype(b.dtype(), mx::inexact)) {
928
+ throw std::invalid_argument(
929
+ "Floating point types not allowed with left shift.");
930
+ }
931
+ a.overwrite_descriptor(mx::left_shift(a, b));
932
+ return a;
933
+ },
934
+ "other"_a,
935
+ nb::rv_policy::none)
936
+ .def(
937
+ "__rshift__",
938
+ [](const mx::array& a, const ScalarOrArray v) {
939
+ if (!is_comparable_with_array(v)) {
940
+ throw_invalid_operation("right shift", v);
941
+ }
942
+ auto b = to_array(v, a.dtype());
943
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
944
+ mx::issubdtype(b.dtype(), mx::inexact)) {
945
+ throw std::invalid_argument(
946
+ "Floating point types not allowed with right shift.");
947
+ }
948
+ return mx::right_shift(a, b);
949
+ },
950
+ "other"_a)
951
+ .def(
952
+ "__irshift__",
953
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
954
+ if (!is_comparable_with_array(v)) {
955
+ throw_invalid_operation("inplace right shift", v);
956
+ }
957
+ auto b = to_array(v, a.dtype());
958
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
959
+ mx::issubdtype(b.dtype(), mx::inexact)) {
960
+ throw std::invalid_argument(
961
+ "Floating point types not allowed with right shift.");
962
+ }
963
+ a.overwrite_descriptor(mx::right_shift(a, b));
964
+ return a;
965
+ },
966
+ "other"_a,
967
+ nb::rv_policy::none)
968
+ .def(
969
+ "__xor__",
970
+ [](const mx::array& a, const ScalarOrArray v) {
971
+ if (!is_comparable_with_array(v)) {
972
+ throw_invalid_operation("bitwise xor", v);
973
+ }
974
+ auto b = to_array(v, a.dtype());
975
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
976
+ mx::issubdtype(b.dtype(), mx::inexact)) {
977
+ throw std::invalid_argument(
978
+ "Floating point types not allowed with bitwise xor.");
979
+ }
980
+ return mx::bitwise_xor(a, b);
981
+ },
982
+ "other"_a)
983
+ .def(
984
+ "__ixor__",
985
+ [](mx::array& a, const ScalarOrArray v) -> mx::array& {
986
+ if (!is_comparable_with_array(v)) {
987
+ throw_invalid_operation("inplace bitwise xor", v);
988
+ }
989
+ auto b = to_array(v, a.dtype());
990
+ if (mx::issubdtype(a.dtype(), mx::inexact) ||
991
+ mx::issubdtype(b.dtype(), mx::inexact)) {
992
+ throw std::invalid_argument(
993
+ "Floating point types not allowed bitwise xor.");
994
+ }
995
+ a.overwrite_descriptor(mx::bitwise_xor(a, b));
996
+ return a;
997
+ },
998
+ "other"_a,
999
+ nb::rv_policy::none)
1000
+ .def("__int__", [](mx::array& a) { return nb::int_(to_scalar(a)); })
1001
+ .def("__float__", [](mx::array& a) { return nb::float_(to_scalar(a)); })
1002
+ .def(
1003
+ "__format__",
1004
+ [](mx::array& a, nb::object format_spec) {
1005
+ if (nb::len(nb::str(format_spec)) > 0 && a.ndim() > 0) {
1006
+ throw nb::type_error(
1007
+ "unsupported format string passed to mx.array.__format__");
1008
+ } else if (a.ndim() == 0) {
1009
+ auto obj = to_scalar(a);
1010
+ return nb::cast<std::string>(
1011
+ nb::handle(PyObject_Format(obj.ptr(), format_spec.ptr())));
1012
+ } else {
1013
+ nb::gil_scoped_release nogil;
1014
+ std::ostringstream os;
1015
+ os << a;
1016
+ return os.str();
1017
+ }
1018
+ })
1019
+ .def(
1020
+ "flatten",
1021
+ [](const mx::array& a,
1022
+ int start_axis,
1023
+ int end_axis,
1024
+ const mx::StreamOrDevice& s) {
1025
+ return mx::flatten(a, start_axis, end_axis, s);
1026
+ },
1027
+ "start_axis"_a = 0,
1028
+ "end_axis"_a = -1,
1029
+ nb::kw_only(),
1030
+ "stream"_a = nb::none(),
1031
+ R"pbdoc(
1032
+ See :func:`flatten`.
1033
+ )pbdoc")
1034
+ .def(
1035
+ "reshape",
1036
+ [](const mx::array& a, nb::args shape_, mx::StreamOrDevice s) {
1037
+ mx::Shape shape;
1038
+ if (!nb::isinstance<int>(shape_[0])) {
1039
+ shape = nb::cast<mx::Shape>(shape_[0]);
1040
+ } else {
1041
+ shape = nb::cast<mx::Shape>(shape_);
1042
+ }
1043
+ return mx::reshape(a, std::move(shape), s);
1044
+ },
1045
+ "shape"_a,
1046
+ "stream"_a = nb::none(),
1047
+ R"pbdoc(
1048
+ Equivalent to :func:`reshape` but the shape can be passed either as a
1049
+ :obj:`tuple` or as separate arguments.
1050
+
1051
+ See :func:`reshape` for full documentation.
1052
+ )pbdoc")
1053
+ .def(
1054
+ "squeeze",
1055
+ [](const mx::array& a,
1056
+ const IntOrVec& v,
1057
+ const mx::StreamOrDevice& s) {
1058
+ if (std::holds_alternative<std::monostate>(v)) {
1059
+ return mx::squeeze(a, s);
1060
+ } else if (auto pv = std::get_if<int>(&v); pv) {
1061
+ return mx::squeeze(a, *pv, s);
1062
+ } else {
1063
+ return mx::squeeze(a, std::get<std::vector<int>>(v), s);
1064
+ }
1065
+ },
1066
+ "axis"_a = nb::none(),
1067
+ nb::kw_only(),
1068
+ "stream"_a = nb::none(),
1069
+ R"pbdoc(
1070
+ See :func:`squeeze`.
1071
+ )pbdoc")
1072
+ .def(
1073
+ "abs",
1074
+ &mx::abs,
1075
+ nb::kw_only(),
1076
+ "stream"_a = nb::none(),
1077
+ "See :func:`abs`.")
1078
+ .def(
1079
+ "__abs__",
1080
+ [](const mx::array& a) { return mx::abs(a); },
1081
+ "See :func:`abs`.")
1082
+ .def(
1083
+ "square",
1084
+ &mx::square,
1085
+ nb::kw_only(),
1086
+ "stream"_a = nb::none(),
1087
+ "See :func:`square`.")
1088
+ .def(
1089
+ "sqrt",
1090
+ &mx::sqrt,
1091
+ nb::kw_only(),
1092
+ "stream"_a = nb::none(),
1093
+ "See :func:`sqrt`.")
1094
+ .def(
1095
+ "rsqrt",
1096
+ &mx::rsqrt,
1097
+ nb::kw_only(),
1098
+ "stream"_a = nb::none(),
1099
+ "See :func:`rsqrt`.")
1100
+ .def(
1101
+ "reciprocal",
1102
+ &mx::reciprocal,
1103
+ nb::kw_only(),
1104
+ "stream"_a = nb::none(),
1105
+ "See :func:`reciprocal`.")
1106
+ .def(
1107
+ "exp",
1108
+ &mx::exp,
1109
+ nb::kw_only(),
1110
+ "stream"_a = nb::none(),
1111
+ "See :func:`exp`.")
1112
+ .def(
1113
+ "log",
1114
+ &mx::log,
1115
+ nb::kw_only(),
1116
+ "stream"_a = nb::none(),
1117
+ "See :func:`log`.")
1118
+ .def(
1119
+ "log2",
1120
+ &mx::log2,
1121
+ nb::kw_only(),
1122
+ "stream"_a = nb::none(),
1123
+ "See :func:`log2`.")
1124
+ .def(
1125
+ "log10",
1126
+ &mx::log10,
1127
+ nb::kw_only(),
1128
+ "stream"_a = nb::none(),
1129
+ "See :func:`log10`.")
1130
+ .def(
1131
+ "sin",
1132
+ &mx::sin,
1133
+ nb::kw_only(),
1134
+ "stream"_a = nb::none(),
1135
+ "See :func:`sin`.")
1136
+ .def(
1137
+ "cos",
1138
+ &mx::cos,
1139
+ nb::kw_only(),
1140
+ "stream"_a = nb::none(),
1141
+ "See :func:`cos`.")
1142
+ .def(
1143
+ "log1p",
1144
+ &mx::log1p,
1145
+ nb::kw_only(),
1146
+ "stream"_a = nb::none(),
1147
+ "See :func:`log1p`.")
1148
+ .def(
1149
+ "all",
1150
+ [](const mx::array& a,
1151
+ const IntOrVec& axis,
1152
+ bool keepdims,
1153
+ mx::StreamOrDevice s) {
1154
+ return mx::all(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1155
+ },
1156
+ "axis"_a = nb::none(),
1157
+ "keepdims"_a = false,
1158
+ nb::kw_only(),
1159
+ "stream"_a = nb::none(),
1160
+ "See :func:`all`.")
1161
+ .def(
1162
+ "any",
1163
+ [](const mx::array& a,
1164
+ const IntOrVec& axis,
1165
+ bool keepdims,
1166
+ mx::StreamOrDevice s) {
1167
+ return mx::any(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1168
+ },
1169
+ "axis"_a = nb::none(),
1170
+ "keepdims"_a = false,
1171
+ nb::kw_only(),
1172
+ "stream"_a = nb::none(),
1173
+ "See :func:`any`.")
1174
+ .def(
1175
+ "moveaxis",
1176
+ &mx::moveaxis,
1177
+ "source"_a,
1178
+ "destination"_a,
1179
+ nb::kw_only(),
1180
+ "stream"_a = nb::none(),
1181
+ "See :func:`moveaxis`.")
1182
+ .def(
1183
+ "swapaxes",
1184
+ &mx::swapaxes,
1185
+ "axis1"_a,
1186
+ "axis2"_a,
1187
+ nb::kw_only(),
1188
+ "stream"_a = nb::none(),
1189
+ "See :func:`swapaxes`.")
1190
+ .def(
1191
+ "transpose",
1192
+ [](const mx::array& a, nb::args axes_, mx::StreamOrDevice s) {
1193
+ if (axes_.size() == 0) {
1194
+ return mx::transpose(a, s);
1195
+ }
1196
+ std::vector<int> axes;
1197
+ if (!nb::isinstance<int>(axes_[0])) {
1198
+ axes = nb::cast<std::vector<int>>(axes_[0]);
1199
+ } else {
1200
+ axes = nb::cast<std::vector<int>>(axes_);
1201
+ }
1202
+ return mx::transpose(a, axes, s);
1203
+ },
1204
+ "axes"_a,
1205
+ "stream"_a = nb::none(),
1206
+ R"pbdoc(
1207
+ Equivalent to :func:`transpose` but the axes can be passed either as
1208
+ a tuple or as separate arguments.
1209
+
1210
+ See :func:`transpose` for full documentation.
1211
+ )pbdoc")
1212
+ .def_prop_ro(
1213
+ "T",
1214
+ [](const mx::array& a) { return mx::transpose(a); },
1215
+ "Equivalent to calling ``self.transpose()`` with no arguments.")
1216
+ .def(
1217
+ "sum",
1218
+ [](const mx::array& a,
1219
+ const IntOrVec& axis,
1220
+ bool keepdims,
1221
+ mx::StreamOrDevice s) {
1222
+ return mx::sum(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1223
+ },
1224
+ "axis"_a = nb::none(),
1225
+ "keepdims"_a = false,
1226
+ nb::kw_only(),
1227
+ "stream"_a = nb::none(),
1228
+ "See :func:`sum`.")
1229
+ .def(
1230
+ "prod",
1231
+ [](const mx::array& a,
1232
+ const IntOrVec& axis,
1233
+ bool keepdims,
1234
+ mx::StreamOrDevice s) {
1235
+ return mx::prod(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1236
+ },
1237
+ "axis"_a = nb::none(),
1238
+ "keepdims"_a = false,
1239
+ nb::kw_only(),
1240
+ "stream"_a = nb::none(),
1241
+ "See :func:`prod`.")
1242
+ .def(
1243
+ "min",
1244
+ [](const mx::array& a,
1245
+ const IntOrVec& axis,
1246
+ bool keepdims,
1247
+ mx::StreamOrDevice s) {
1248
+ return mx::min(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1249
+ },
1250
+ "axis"_a = nb::none(),
1251
+ "keepdims"_a = false,
1252
+ nb::kw_only(),
1253
+ "stream"_a = nb::none(),
1254
+ "See :func:`min`.")
1255
+ .def(
1256
+ "max",
1257
+ [](const mx::array& a,
1258
+ const IntOrVec& axis,
1259
+ bool keepdims,
1260
+ mx::StreamOrDevice s) {
1261
+ return mx::max(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1262
+ },
1263
+ "axis"_a = nb::none(),
1264
+ "keepdims"_a = false,
1265
+ nb::kw_only(),
1266
+ "stream"_a = nb::none(),
1267
+ "See :func:`max`.")
1268
+ .def(
1269
+ "logcumsumexp",
1270
+ [](const mx::array& a,
1271
+ std::optional<int> axis,
1272
+ bool reverse,
1273
+ bool inclusive,
1274
+ mx::StreamOrDevice s) {
1275
+ if (axis) {
1276
+ return mx::logcumsumexp(a, *axis, reverse, inclusive, s);
1277
+ } else {
1278
+ return mx::logcumsumexp(a, reverse, inclusive, s);
1279
+ }
1280
+ },
1281
+ "axis"_a = nb::none(),
1282
+ nb::kw_only(),
1283
+ "reverse"_a = false,
1284
+ "inclusive"_a = true,
1285
+ "stream"_a = nb::none(),
1286
+ "See :func:`logcumsumexp`.")
1287
+ .def(
1288
+ "logsumexp",
1289
+ [](const mx::array& a,
1290
+ const IntOrVec& axis,
1291
+ bool keepdims,
1292
+ mx::StreamOrDevice s) {
1293
+ return mx::logsumexp(
1294
+ a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1295
+ },
1296
+ "axis"_a = nb::none(),
1297
+ "keepdims"_a = false,
1298
+ nb::kw_only(),
1299
+ "stream"_a = nb::none(),
1300
+ "See :func:`logsumexp`.")
1301
+ .def(
1302
+ "mean",
1303
+ [](const mx::array& a,
1304
+ const IntOrVec& axis,
1305
+ bool keepdims,
1306
+ mx::StreamOrDevice s) {
1307
+ return mx::mean(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
1308
+ },
1309
+ "axis"_a = nb::none(),
1310
+ "keepdims"_a = false,
1311
+ nb::kw_only(),
1312
+ "stream"_a = nb::none(),
1313
+ "See :func:`mean`.")
1314
+ .def(
1315
+ "std",
1316
+ [](const mx::array& a,
1317
+ const IntOrVec& axis,
1318
+ bool keepdims,
1319
+ int ddof,
1320
+ mx::StreamOrDevice s) {
1321
+ return mx::std(
1322
+ a, get_reduce_axes(axis, a.ndim()), keepdims, ddof, s);
1323
+ },
1324
+ "axis"_a = nb::none(),
1325
+ "keepdims"_a = false,
1326
+ "ddof"_a = 0,
1327
+ nb::kw_only(),
1328
+ "stream"_a = nb::none(),
1329
+ "See :func:`std`.")
1330
+ .def(
1331
+ "var",
1332
+ [](const mx::array& a,
1333
+ const IntOrVec& axis,
1334
+ bool keepdims,
1335
+ int ddof,
1336
+ mx::StreamOrDevice s) {
1337
+ return mx::var(
1338
+ a, get_reduce_axes(axis, a.ndim()), keepdims, ddof, s);
1339
+ },
1340
+ "axis"_a = nb::none(),
1341
+ "keepdims"_a = false,
1342
+ "ddof"_a = 0,
1343
+ nb::kw_only(),
1344
+ "stream"_a = nb::none(),
1345
+ "See :func:`var`.")
1346
+ .def(
1347
+ "split",
1348
+ [](const mx::array& a,
1349
+ const std::variant<int, mx::Shape>& indices_or_sections,
1350
+ int axis,
1351
+ mx::StreamOrDevice s) {
1352
+ if (auto pv = std::get_if<int>(&indices_or_sections); pv) {
1353
+ return mx::split(a, *pv, axis, s);
1354
+ } else {
1355
+ return mx::split(
1356
+ a, std::get<mx::Shape>(indices_or_sections), axis, s);
1357
+ }
1358
+ },
1359
+ "indices_or_sections"_a,
1360
+ "axis"_a = 0,
1361
+ nb::kw_only(),
1362
+ "stream"_a = nb::none(),
1363
+ "See :func:`split`.")
1364
+ .def(
1365
+ "argmin",
1366
+ [](const mx::array& a,
1367
+ std::optional<int> axis,
1368
+ bool keepdims,
1369
+ mx::StreamOrDevice s) {
1370
+ if (axis) {
1371
+ return mx::argmin(a, *axis, keepdims, s);
1372
+ } else {
1373
+ return mx::argmin(a, keepdims, s);
1374
+ }
1375
+ },
1376
+ "axis"_a = std::nullopt,
1377
+ "keepdims"_a = false,
1378
+ nb::kw_only(),
1379
+ "stream"_a = nb::none(),
1380
+ "See :func:`argmin`.")
1381
+ .def(
1382
+ "argmax",
1383
+ [](const mx::array& a,
1384
+ std::optional<int> axis,
1385
+ bool keepdims,
1386
+ mx::StreamOrDevice s) {
1387
+ if (axis) {
1388
+ return mx::argmax(a, *axis, keepdims, s);
1389
+ } else {
1390
+ return mx::argmax(a, keepdims, s);
1391
+ }
1392
+ },
1393
+ "axis"_a = nb::none(),
1394
+ "keepdims"_a = false,
1395
+ nb::kw_only(),
1396
+ "stream"_a = nb::none(),
1397
+ "See :func:`argmax`.")
1398
+ .def(
1399
+ "cumsum",
1400
+ [](const mx::array& a,
1401
+ std::optional<int> axis,
1402
+ bool reverse,
1403
+ bool inclusive,
1404
+ mx::StreamOrDevice s) {
1405
+ if (axis) {
1406
+ return mx::cumsum(a, *axis, reverse, inclusive, s);
1407
+ } else {
1408
+ return mx::cumsum(a, reverse, inclusive, s);
1409
+ }
1410
+ },
1411
+ "axis"_a = nb::none(),
1412
+ nb::kw_only(),
1413
+ "reverse"_a = false,
1414
+ "inclusive"_a = true,
1415
+ "stream"_a = nb::none(),
1416
+ "See :func:`cumsum`.")
1417
+ .def(
1418
+ "cumprod",
1419
+ [](const mx::array& a,
1420
+ std::optional<int> axis,
1421
+ bool reverse,
1422
+ bool inclusive,
1423
+ mx::StreamOrDevice s) {
1424
+ if (axis) {
1425
+ return mx::cumprod(a, *axis, reverse, inclusive, s);
1426
+ } else {
1427
+ return mx::cumprod(a, reverse, inclusive, s);
1428
+ }
1429
+ },
1430
+ "axis"_a = nb::none(),
1431
+ nb::kw_only(),
1432
+ "reverse"_a = false,
1433
+ "inclusive"_a = true,
1434
+ "stream"_a = nb::none(),
1435
+ "See :func:`cumprod`.")
1436
+ .def(
1437
+ "cummax",
1438
+ [](const mx::array& a,
1439
+ std::optional<int> axis,
1440
+ bool reverse,
1441
+ bool inclusive,
1442
+ mx::StreamOrDevice s) {
1443
+ if (axis) {
1444
+ return mx::cummax(a, *axis, reverse, inclusive, s);
1445
+ } else {
1446
+ return mx::cummax(a, reverse, inclusive, s);
1447
+ }
1448
+ },
1449
+ "axis"_a = nb::none(),
1450
+ nb::kw_only(),
1451
+ "reverse"_a = false,
1452
+ "inclusive"_a = true,
1453
+ "stream"_a = nb::none(),
1454
+ "See :func:`cummax`.")
1455
+ .def(
1456
+ "cummin",
1457
+ [](const mx::array& a,
1458
+ std::optional<int> axis,
1459
+ bool reverse,
1460
+ bool inclusive,
1461
+ mx::StreamOrDevice s) {
1462
+ if (axis) {
1463
+ return mx::cummin(a, *axis, reverse, inclusive, s);
1464
+ } else {
1465
+ return mx::cummin(a, reverse, inclusive, s);
1466
+ }
1467
+ },
1468
+ "axis"_a = nb::none(),
1469
+ nb::kw_only(),
1470
+ "reverse"_a = false,
1471
+ "inclusive"_a = true,
1472
+ "stream"_a = nb::none(),
1473
+ "See :func:`cummin`.")
1474
+ .def(
1475
+ "round",
1476
+ [](const mx::array& a, int decimals, mx::StreamOrDevice s) {
1477
+ return mx::round(a, decimals, s);
1478
+ },
1479
+ "decimals"_a = 0,
1480
+ nb::kw_only(),
1481
+ "stream"_a = nb::none(),
1482
+ "See :func:`round`.")
1483
+ .def(
1484
+ "diagonal",
1485
+ [](const mx::array& a,
1486
+ int offset,
1487
+ int axis1,
1488
+ int axis2,
1489
+ mx::StreamOrDevice s) {
1490
+ return mx::diagonal(a, offset, axis1, axis2, s);
1491
+ },
1492
+ "offset"_a = 0,
1493
+ "axis1"_a = 0,
1494
+ "axis2"_a = 1,
1495
+ "stream"_a = nb::none(),
1496
+ "See :func:`diagonal`.")
1497
+ .def(
1498
+ "diag",
1499
+ [](const mx::array& a, int k, mx::StreamOrDevice s) {
1500
+ return mx::diag(a, k, s);
1501
+ },
1502
+ "k"_a = 0,
1503
+ nb::kw_only(),
1504
+ "stream"_a = nb::none(),
1505
+ R"pbdoc(
1506
+ Extract a diagonal or construct a diagonal matrix.
1507
+ )pbdoc")
1508
+ .def(
1509
+ "conj",
1510
+ [](const mx::array& a, mx::StreamOrDevice s) {
1511
+ return mx::conjugate(to_array(a), s);
1512
+ },
1513
+ nb::kw_only(),
1514
+ "stream"_a = nb::none(),
1515
+ "See :func:`conj`.")
1516
+ .def(
1517
+ "view",
1518
+ [](const ScalarOrArray& a,
1519
+ const mx::Dtype& dtype,
1520
+ mx::StreamOrDevice s) { return mx::view(to_array(a), dtype, s); },
1521
+ "dtype"_a,
1522
+ nb::kw_only(),
1523
+ "stream"_a = nb::none(),
1524
+ "See :func:`view`.");
1525
+ }